WEKO3
アイテム
リアルタイムバースト検出手法による即応性を考慮したDDoS攻撃検知手法
http://hdl.handle.net/10458/6441
http://hdl.handle.net/10458/6441b79683ed-4328-4132-975b-0881dc718023
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 紀要論文 / Departmental Bulletin Paper(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2020-06-21 | |||||
タイトル | ||||||
タイトル | リアルタイムバースト検出手法による即応性を考慮したDDoS攻撃検知手法 | |||||
言語 | ja | |||||
タイトル | ||||||
タイトル | Highly Responsive Detection Method of Distributed Denial-of-Service Attacks Using Data Mining Technique | |||||
言語 | en | |||||
言語 | ||||||
言語 | jpn | |||||
キーワード | ||||||
言語 | en | |||||
主題Scheme | Other | |||||
主題 | network security, DDoS attack detection, data mining | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||
資源タイプ | departmental bulletin paper | |||||
著者 |
臼崎, 翔太郎
× 臼崎, 翔太郎× 山場, 久昭× 油田, 健太郎× 岡崎, 直宣× 臼崎, 翔太郎 |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | The damage caused by DDoS (Distributed Denial-of-Service) attack is a big threat for modern society. It is expected that the damage will become bigger, therefore effective attack detection system is desired. In general, DDoS attack detection methods are roughly divided into signature type and anomaly type. The signature type has signature database that stores a pattern of an attack packet. This method detects the attack by comparing its characteristics with the signature every time a packet arrives. However, the more the pattern of registered attack increases, the more the responsiveness decreases because of computational complexity of pattern matching. On the other hand, the anomaly type detects the attack by using statistical information. This method detects attack by comparing statistical information of the current packet series and those of normal case for each window size. However, it has the trade-off relationship between detection accuracy and responsiveness. This is because it is necessary to widen the window size in order to improve the detection accuracy. The detection process is not performed until the window size is exceeded. In order to solve the problem, we propose the anomaly-based DDoS attack detection method using a data mining technique that can process when event occurs, while maintaining sufficient data necessary for detection processing. In this research, we evaluate the detection accuracy and the processing efficiency of the proposed method. | |||||
言語 | en | |||||
書誌情報 |
ja : 宮崎大学工学部紀要 en : Memoirs of Faculty of Engineering, University of Miyazaki 巻 47, p. 221-225, 発行日 2018-07 |
|||||
出版者 | ||||||
出版者 | 宮崎大学工学部 | |||||
言語 | ja | |||||
出版者 | ||||||
出版者 | Faculty of Engineering, University of Miyazaki | |||||
言語 | en | |||||
ISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 05404924 | |||||
書誌レコードID | ||||||
収録物識別子タイプ | NCID | |||||
収録物識別子 | AA00732558 | |||||
著者版フラグ | ||||||
出版タイプ | VoR | |||||
出版タイプResource | http://purl.org/coar/version/c_970fb48d4fbd8a85 |