ログイン
言語:

WEKO3

  • トップ
  • ランキング
To

Field does not validate



インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

There is a newer version of this record available.
  1. 工学部
  1. 工学部
  2. 紀要掲載論文 (工学部)
  1. 工学部
  2. 紀要掲載論文 (工学部)
  3. 宮崎大學工學部紀要
  4. 47号

Image Classification by Using Multi-Layer Neural Network

http://hdl.handle.net/10458/6437
http://hdl.handle.net/10458/6437
7ceddd76-51bd-45f1-8567-25c72045b5d0
名前 / ファイル ライセンス アクション
p193-199_vol47.pdf 本文 (923.7 kB)
Item type 紀要論文 / Departmental Bulletin Paper(1)
公開日 2020-06-21
タイトル
タイトル Image Classification by Using Multi-Layer Neural Network
言語 ja
言語
言語 jpn
キーワード
言語 en
主題Scheme Other
主題 Multi-Layer Neural Network, Deep Learning, Deep Convolutional Neural Network, Shape Image Classification, Color Image Classification, Size Image Classification
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ departmental bulletin paper
著者 Swe, Zar Maw

× Swe, Zar Maw

WEKO 30582

en Swe, Zar Maw

Search repository
Ei, Phyo Min

× Ei, Phyo Min

WEKO 30583

en Ei, Phyo Min

Search repository
Yokota, Mitsuhiro

× Yokota, Mitsuhiro

WEKO 7103
e-Rad 40191506

en Yokota, Mitsuhiro

Search repository
Thi, Thi Zinc

× Thi, Thi Zinc

WEKO 30585

en Thi, Thi Zinc

Search repository
抄録
内容記述タイプ Abstract
内容記述 We perform a scalable approach for automatically classifying shape, color and size of the images using a multilayer neural network (deep learning) in order to demonstrate the interesting application that aims for kindergarten. Our process makes use of the state-of-the-art methodology of extracting deep features using convolutional neural network. The main idea of our system is a deep convolutional neural network that trained to classify different shapes and colors of the grayscale images. To implement our approach, we used BabyAIImageandQuestion Dataset which consists of different shape, color, size and location sub datasets. Among these sub datasets, we mainly applied shape, color and size datasets to present our proposed method. We have achieved a good performance accuracy (average 95%) in classification of shape color and size with fast processing time. The objective of our approach is to develop the visual ability of children which includes visual acuity, tracking, color perception, depth perception, and object recognition by effectively applying the deep learning algorithm. We also hope that our proposed method will be effectively useful for real world application.
言語 en
書誌情報 ja : 宮崎大学工学部紀要
en : Memoirs of Faculty of Engineering, University of Miyazaki

巻 47, p. 193-199, 発行日 2018-07
出版者
出版者 宮崎大学工学部
言語 ja
出版者
出版者 Faculty of Engineering, University of Miyazaki
言語 en
ISSN
収録物識別子タイプ ISSN
収録物識別子 05404924
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA00732558
著者版フラグ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
戻る
0
views
See details
Views

Versions

Ver.2 2023-07-29 12:29:25.362453
Ver.1 2023-05-15 12:12:02.637297
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

Swe, Zar Maw, Ei, Phyo Min, Yokota, Mitsuhiro, Thi, Thi Zinc, 2018, Image Classification by Using Multi-Layer Neural Network: 宮崎大学工学部, 193–199 p.

Loading...

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3