ログイン
言語:

WEKO3

  • トップ
  • ランキング
To

Field does not validate



インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 教育学部・大学院教育学研究科
  1. 教育学部・大学院教育学研究科
  2. その他 (教育学部)

Prediction of natural wind using neural networks for Wind turbine generator for install at Samut-Prakan, Thailand in year 2011

http://hdl.handle.net/10458/3733
http://hdl.handle.net/10458/3733
c9e206cf-cea1-4a9e-8a5b-59090e780137
名前 / ファイル ライセンス アクション
yuji_59-63.pdf yuji_59-63.pdf (2.4 MB)
Item type 会議発表論文 / Conference Paper(1)
公開日 2012-06-05
タイトル
タイトル Prediction of natural wind using neural networks for Wind turbine generator for install at Samut-Prakan, Thailand in year 2011
言語 en
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_5794
資源タイプ conference paper
著者 Thungsuk, N.

× Thungsuk, N.

WEKO 11453

en Thungsuk, N.

Search repository
Mungkung, Narong

× Mungkung, Narong

WEKO 197

en Mungkung, Narong


Search repository
Chaitanakulwat, A.

× Chaitanakulwat, A.

WEKO 11455

en Chaitanakulwat, A.

Search repository
Yuji, T.

× Yuji, T.

WEKO 11443

en Yuji, T.

Search repository
抄録
内容記述タイプ Abstract
内容記述 This research, the Artificial Neural Networks (ANN) is proposed to estimate wind speed using wind turbine generator in comparison with data from the Thai Meteorological Department at Samut-Prakan station where is 1 km away. The results are studied to estimate the accuracy estimation of ANN. In experiment, data of wind speed from 150 W wind turbine generator are compared with data from Thai Meteorological Department at Samut-Prakan station where is 1 km away using MatLAB program. The stimulation of AN is investigated using input data from wind speed collected at the station from 2009 to 2010. The network of ANN use Tansig of transfer function for input and Purelin of transfer function for output. Input data was value between 0 - 1 from neural weights and bias value of ANN network will start from random value. There requirement of goal is zero and ANN has learning from wind speed record in year 2009 and year 2010 for 500 cycle. And has obtained 0.0573294 at Epochs, which that nearest of goal. The wind speed data average must error was 1.29 meter per second. The error of the lowest wind speed average was 0.03 m/s and the total average error is zero m/s. However the Neural network can be used to predict the wind speed from different location but there are some errors from unstable wind speed. However, the average of estimation is acceptable.
言語 en
書誌情報 en : 1st Japan–Thailand Friendship International Workshop on Science Technology & Technology Education, Hand-making Education, Engineering Education, Environmental Education 2012

p. 59-63, 発行日 2012
出版者
出版者 Faculty of Education & Culture , University of Miyazaki
言語 en
ISBN
識別子タイプ ISBN
関連識別子 9789744567284
著者版フラグ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
戻る
0
views
See details
Views

Versions

Ver.2 2023-07-30 02:36:29.317442
Ver.1 2023-05-15 12:32:56.901602
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3