WEKO3
-
RootNode
アイテム
Optimal Weighted Voting-Based Collaborated Malware Detection for Zero-Day Malware: A Case Study on VirusTotal and MalwareBazaar
http://hdl.handle.net/10458/0002001145
http://hdl.handle.net/10458/0002001145d1bd2be0-7bd5-416a-abf7-d38ee3932b23
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Item type | 学術雑誌論文 / Journal Article(1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2025-03-31 | |||||||||||
タイトル | ||||||||||||
タイトル | Optimal Weighted Voting-Based Collaborated Malware Detection for Zero-Day Malware: A Case Study on VirusTotal and MalwareBazaar | |||||||||||
言語 | en | |||||||||||
言語 | ||||||||||||
言語 | eng | |||||||||||
キーワード | ||||||||||||
言語 | en | |||||||||||
主題Scheme | Other | |||||||||||
キーワード | malware detection | |||||||||||
キーワード | ||||||||||||
言語 | en | |||||||||||
主題Scheme | Other | |||||||||||
キーワード | collaborative security | |||||||||||
キーワード | ||||||||||||
言語 | en | |||||||||||
主題Scheme | Other | |||||||||||
キーワード | VirusTotal | |||||||||||
キーワード | ||||||||||||
言語 | en | |||||||||||
主題Scheme | Other | |||||||||||
キーワード | MalwareBazaar | |||||||||||
資源タイプ | ||||||||||||
資源タイプ | journal article | |||||||||||
アクセス権 | ||||||||||||
著者 |
岡崎, 直宣
× 岡崎, 直宣× 臼崎, 翔太郎× Waki, Tsubasa
× Kawagoe, Hyoga
× Park, Mirang
× 山場, 久昭× 油田, 健太郎 |
|||||||||||
抄録 | ||||||||||||
内容記述タイプ | Abstract | |||||||||||
内容記述 | We propose a detection system incorporating a weighted voting mechanism that reflects the vote’s reliability based on the accuracy of each detector’s examination, which overcomes the problem of cooperative detection. Collaborative malware detection is an effective strategy against zero-day attacks compared to one using only a single detector because the strategy might pick up attacks that a single detector overlooked. However, cooperative detection is still ineffective if most anti-virus engines lack sufficient intelligence to detect zero-day malware. Most collaborative methods rely on majority voting, which prioritizes the quantity of votes rather than the quality of those votes. Therefore, our study investigated the zero-day malware detection accuracy of the collaborative system that optimally rates their weight of votes based on their malware categories of expertise of each anti-virus engine. We implemented the prototype system with the VirusTotal API and evaluated the system using real malware registered in MalwareBazaar. To evaluate the effectiveness of zero-day malware detection, we measured recall using the inspection results on the same day the malware was registered in the MalwareBazaar repository. Through experiments, we confirmed that the proposed system can suppress the false negatives of uniformly weighted voting and improve detection accuracy against new types of malware. | |||||||||||
言語 | en | |||||||||||
内容記述 | ||||||||||||
内容記述タイプ | Other | |||||||||||
内容記述 | Citation: Okazaki, N.; Usuzaki, S.; Waki, T.; Kawagoe, H.; Park, M.; Yamaba, H.; Aburada, K. Optimal Weighted Voting-Based Collaborated Malware Detection for Zero-Day Malware: A Case Study on VirusTotal and MalwareBazaar. Future Internet 2024, 16, 259. https://doi.org/10.3390/fi16080259 | |||||||||||
言語 | en | |||||||||||
bibliographic_information |
en : Future Internet 巻 16, 号 8, p. 259, 発行日 2024-07-23 |
|||||||||||
出版者 | ||||||||||||
出版者 | MDPI AG | |||||||||||
言語 | en | |||||||||||
ISSN | ||||||||||||
収録物識別子タイプ | EISSN | |||||||||||
収録物識別子 | 1999-5903 | |||||||||||
item_10001_relation_14 | ||||||||||||
関連タイプ | isVersionOf | |||||||||||
識別子タイプ | DOI | |||||||||||
関連識別子 | https://doi.org/10.3390/fi16080259 | |||||||||||
権利 | ||||||||||||
言語 | en | |||||||||||
権利情報 | © 2024 by the authors. | |||||||||||
出版タイプ | ||||||||||||
出版タイプ | VoR |
Share
Cite as
岡崎, 直宣, 臼崎, 翔太郎, Waki, Tsubasa, Kawagoe, Hyoga, Park, Mirang, 山場, 久昭, 油田, 健太郎, 2024, Optimal Weighted Voting-Based Collaborated Malware Detection for Zero-Day Malware: A Case Study on VirusTotal and MalwareBazaar: MDPI AG, 259– p.
Loading...