WEKO3
アイテム
Numerical Method for Unsteady Gas-Liquid Two-Phase Flow using Preconditioning
http://hdl.handle.net/10458/0002000283
http://hdl.handle.net/10458/00020002839944b2f9-f549-469b-aba4-2f8effdf854c
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 紀要論文 / Departmental Bulletin Paper(1) | |||||||
---|---|---|---|---|---|---|---|---|
公開日 | 2023-11-01 | |||||||
タイトル | ||||||||
タイトル | Numerical Method for Unsteady Gas-Liquid Two-Phase Flow using Preconditioning | |||||||
言語 | en | |||||||
言語 | ||||||||
言語 | eng | |||||||
キーワード | ||||||||
言語 | en | |||||||
主題Scheme | Other | |||||||
主題 | Gas-liquid two-phase flow | |||||||
キーワード | ||||||||
言語 | en | |||||||
主題Scheme | Other | |||||||
主題 | Preconditioning matrix | |||||||
キーワード | ||||||||
言語 | en | |||||||
主題Scheme | Other | |||||||
主題 | Modified Roe scheme | |||||||
キーワード | ||||||||
言語 | en | |||||||
主題Scheme | Other | |||||||
主題 | Artificial viscosity | |||||||
キーワード | ||||||||
言語 | en | |||||||
主題Scheme | Other | |||||||
主題 | FDM, Shock tube problem | |||||||
キーワード | ||||||||
言語 | en | |||||||
主題Scheme | Other | |||||||
主題 | FDM | |||||||
キーワード | ||||||||
言語 | en | |||||||
主題Scheme | Other | |||||||
主題 | Shock tube problem | |||||||
資源タイプ | ||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||
資源タイプ | departmental bulletin paper | |||||||
著者 |
Zhao, Tianmu
× Zhao, Tianmu
× 申, 炳録 |
|||||||
抄録 | ||||||||
内容記述タイプ | Abstract | |||||||
内容記述 | Gas-liquid two-phase flow such as cavitation is a formidable computational challenge due to its flow characteristics with compressible and incompressible flow nature. In this study, a time consistent high resolution numerical method for gas-liquid two-phase flows is proposed and applied to a shock tube problem. A finite-difference 4th-order Runge-Kutta method and a Roe-type flux splitting method with the 3rd-order MUSCL TVD scheme are employed to solve the 1-D Euler equations. The artificial viscous terms in the flux splitting are modified by using the preconditioning matrix to enhance the numerical stability and time consistency in computation for compressible and incompressible unsteady flow with arbitrary Mach numbers. A homogeneous equilibrium gas-liquid two-phase flow model is used. So that, the present method permits simple treatment of the whole gas-liquid two-phase flow field including wave propagation, large density changes, and incompressible flow characteristics at low Mach numbers. As numerical examples, 1-D shock tube problems of gas-liquid two-phase flow with an arbitrary void fraction were solved to validate the present numerical method and the results showed a good agreement with exact solutions in pressure, density, velocity and temperature distributions as well as simulations of unsteady phenomena of the shock waves. The stability and convergence of the present method for arbitrary Mach number flow problems were confirmed. Observations of the shock and expansion wave behaviors were made and discussed. | |||||||
言語 | en | |||||||
書誌情報 |
ja : 宮崎大学工学部紀要 en : Memoirs of Faculty of Engineering, University of Miyazaki 巻 52, p. 47-52, 発行日 2023-10-27 |
|||||||
出版者 | ||||||||
出版者 | 宮崎大学工学部 | |||||||
言語 | ja | |||||||
出版者 | ||||||||
出版者 | Faculty of Engineering, University of Miyazaki | |||||||
言語 | en | |||||||
ISSN | ||||||||
収録物識別子タイプ | ISSN | |||||||
収録物識別子 | 05404924 | |||||||
書誌レコードID | ||||||||
収録物識別子タイプ | NCID | |||||||
収録物識別子 | AA00732558 | |||||||
著者版フラグ | ||||||||
出版タイプ | VoR | |||||||
出版タイプResource | http://purl.org/coar/version/c_970fb48d4fbd8a85 |