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A two-dimensional scattering of a plane wave from a periodic array of dielectric

cylinders with arbitrary shape using multigrid-moment method is examined in

this paper. The scattered field is expressed in terms of the integral form by

an infinite summation of the surface integral over the cross section of the

reference cylinder. The integral form is converted into the matrix equation by

using moment method. The integration in the elements of the matrix equation

is evaluated by the lattice sums technique in order to obtain precise solution.

The multigrid method is applied to the matrix equation to improve the CPU

time. As numerical results, the CPU time and residual norm are examined

for a given number of iteration and cycle index. After that, the effects of

shape and material of the periodic structure on the power reflection coefficient

of the fundamental Floquet mode are shown. The results also indicate the

effect of changing the relative permittivity of the dielectric coated body and

the reflection coefficient.
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1. Introduction

Periodic structures that have very interesting and useful properties have been used as the

frequency selective filters and polarization filters [1]. Recently, the interest in photonic crys-

tals as the periodic structures has increased, since there exists the specific frequency selective

properties [2, 3]. These structures have many applications in the design of antennas and

waveguide for bandwidth enhancement or dual-band applications. The frequency response

of the array is characterized by the scattering properties of the individual objects and the

multiple scattering due to the periodic arrangement of scatterers. When the shape of the

scatterer is the circular cylinder or sphere, the eigen-function expansion method can be used

in order to examine the scattering properties. On the other hand, the numerical technique

such as the finite element method [4], the differential method [5], the time domain methods

[6, 7], etc are used for the arbitrary shape and the complex structures. Moment Method

(MoM) [8] has been applied to various problems in the electromagnetic and optics fields and

is one of the useful numerical methods to obtain the good accuracy.

When the size of the matrix becomes large, it is well known that the load of CPU

and/or a computer memory increases. In this case, the fast solver for the matrix equation

is needed. Multigrid method [9, 10, 11] developed by Brandt [12] is known as one of fast

solvers. This method attempts to obtain a converging solution at high speed by means of

iterative calculations between several computation grids with different sizes. It was shown

that Multigrid Method combined with MoM improves the computational time needed to

carry out the numerical analysis [13].

In this paper, the multigrid-moment method is applied to a two-dimensional scattering
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of a plane wave from a periodic array of dielectric cylinders with arbitrary shape. The scat-

tered field is obtained by the volume equivalent theorem [14]. The integral form is converted

into the matrix equation by MoM. The Multigrid method is applied to this matrix equation

to solve as fast as possible. In addition to this, the dense matrix coefficient expressed in

the periodic Green’s function of arbitrary high order can be simplified to an integral form

of elementary functions. These elementary functions constitute the lattice sums expres-

sion used in [15] because this expression only depends on the geometrical parameter of the

structure. Using the lattice sums technique [15], the computational time for the numerical

evaluation decreases drastically. In the multigrid scheme, three multigrid levels are taken

into consideration and GMRES (Generalized Minimum Residual) method [16] is applied as

the relaxation method in all of the grid levels. As numerical results, the effect of shape and

material of the periodic structure on the power reflection coefficient are shown. We also

show the effect of changing the relative permittivity of the composite dielectric body and

the reflection coefficient for the fundamental reflection coefficient of the periodic structure.

2. Formulation

Consider the scattering from a periodic array of dielectric cylinders with arbitrary shape

along the x-direction with periodicity d as shown in Fig. 1. It is assumed that the incident

plane wave Ei is polarized along the z-axis, which corresponds to an E-polarized wave. In

this case, the scattered field at any point of the structure is obtained using the result of

scattering by one cylinder [14], and Floquet’s theorem. The total electric field E(r) is the
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superposition of the incident field Ei(r) and scattered field Es(r) as follows:

E(r) = Ei(r) − j
k2

4

∞∑
l=−∞

∫
s0

H
(2)
0 (kρl)E(r0) exp(−jkxld)(εr − 1)ds0 (1)

where kx = −k sin θi, k is the wavenumber of free space, θi is the incident angle with respect

to the y-axis. The integration is performed on the reference cylinder. H2
0 is the zeroth-

order Hankel function of the second kind. E(r0) is unknown total electric field and ρl is

the distance between the observation point r and source point r0 of the reference cylinder.

To obtain the form of the matrix equations for Eq. (1) by MoM, the pulse function as the

basis function is used. The reference cylinder is divided in N number of cells and the total

electric field and the relative permittivity is assumed to be constant on each cell. The form

of the matrix equation is as follows:

N∑
n=1

CmnEn = Ei
m m = 1, · · · , N (2)

The expression of the coefficient Cmn is given as follows

Cmn = j
π

2
[εr(n) − 1]kanJ1(kan)

∞∑
l=−∞

exp(−jkxld)H
(2)
0 (kρl

mn) (m �= n) (3)

and

Cnn = 1 + j
π

2
[εr0(n) − 1]

[{
kanH

(2)
1 (kan) − 2j

π

}

+ kanJ1(kan)
∞∑

l=−∞, l �=0

exp(−jkxld)H
(2)
0 (kρl

nn)

]
(m = n) (4)

where an is the radius of the equivalent circular cell with the same cross-sectional area. The

integration on the reference cylinder is approximated by Richmond approximation [14]. The

distance ρl
mn is defined as

√
(xm − ld)2 + y2

m) and xm, ym are the centers of the mth cell

with the location of the reference cylinder.

5



The scattered field at observation point r is obtained by using the total electric fields in

the cylinder as follows:

Es(x, y) = −
N∑

n=1

CmnEn (5)

where the coefficient Cmn is given by Eqs. (3) and (4) with xm = x and yn = y.

The evaluation of the infinite sum of Hankel functions multiplied by trigonometric angular

dependencies in Eqs. (3) and (4) is the most time consuming part in the scattering problem

of periodic structures. In order to obtain the summation efficiently with less computational

time, two numerical techniques are applied. One is lattice sums technique [15] and another

is multigrid method [11].

A H-polarized wave whose magnetic wave is parallel to the cylindrical axis can be treated

in the same procedure presented in this paper. For a H-polarized wave, the electric wave

has two components. Since the equivalent current which is related to the electric waves is

used in the formulation, the above procedure is applied to these two components, and then,

the matrix equation for the electric waves can be obtained [14].

3. Lattice Sums Technique

The coefficient Cmn includes the following periodic Green’s function.

∞∑
l=−∞

exp(jkld sin θi)H
(2)
0 (kρl

mn)

=
[
H2

0(kρ) + S0(kd, θi)J0(kρ) + 2

∞∑
p=1

Sp(kd, θi)Jp(kρ) cos(pφ)
]

(6)

where

Sp(kd, θi) =

∞∑
l=1

H(2)
p (lkd) exp (jlkd sin θi) +

∞∑
l=1

(−1)pH(2)
p (lkd) exp (−jlkd sin θi) (7)
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and Jn is Bessel function of the nth order and ρ =
√

x2
m + y2

m, and φ = cos−1(xm/ρ). By

using the integral representation of Hankel function, the first term of Eq. (7) is written as

follows [15]:

∞∑
l=1

H(2)
p (lkd) exp (jlkd sin θi)

= (−1)p exp {j(π/4 + kd sin θi)}
√

2

π

∫ a

0

[Gp(τ) + Gp(−τ)] · F (τ ; kd, sin θi)dt (8)

where

Gp = (t − j
√

1 − t2)p (9)

F (τ ; kd, sin θi) =
e−jkd

√
1−t2

√
1 − t2[1 − e−jkd(

√
1−t2−sin θi)]

(10)

and p denotes the number of cylindrical harmonics and a the integration limit. p is evaluated

from the Bessel function of the p-order Jp(kρ) and the integration limit was attained using

numerical integration.

4. Multigrid Method

Multigrid method attempts to obtain a converging solution at high speed by means of

iterative calculations between several computation grids with different sizes. The outline of

two levels V-shape multigrid scheme is as follows [11]:

1. Initial guess is assumed at the fine grid. Then GMRES method is applied to the

matrix equation on the fine grid until a convergence is attained. The residual at the

fine grid is then computed.

2. The residual at the fine grid is then restricted to the course grid using the the weighting

average operator [11]. The relaxation scheme such as GMRES method is applied to

7



the correction matrix equation on the course grid and the guess is corrected for one

iteration step.

3. The corrected term at the course grid is interpolated to the fine grid using the bilinear

interpolation operator [11] and the guess is modified. GMRES method is applied to the

matrix equation using the modified guess as initial value to obtain a new approximate

solution.

When the above V-shape cycle multigrid scheme is applied recursively, a W-cycle multigrid

scheme can be formed as shown in Fig. 2.

5. Numerical Results

As the numerical results, an E-polarised wave incidence is considered. The reflection prop-

erties from a periodic array of dielectric cylinders is firstly examined in order to verity the

validity of the method in this paper. The CPU time, residual norm and effect of initial

values on the convergence speed are examined for the case of the periodic circular cylinders.

Figure 3 indicates the normalized residual norm and CPU time for various cycle indices

γ of W cycles for the periodic circular cylinder when a/λ = 0.3, d/λ = 0.999, εr = 2.0 and

The number of unknowns N = 8100. The structure of the multigrid is three level scheme

and the matrix equation on the finest grid is solved under the condition that the normalized

residual norm is less than 10−5. When the cycle index increases, the residual norm decreases

and the CPU time increases. In the same case, GMRES method with the condition that

the normalized residual norm is less than 10−7 is applied and the CPU time is 29.1 sec. It

is found from Fig. 3 that the CPU time for the multigrid method is 17.1 sec for the number
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of multigrid cycles 3 and γ = 5 or 6. Then, the multigrid method is useful and suitable for

the periodic structure.

The initial value for the multigrid would affects the convergence of the residual norm.

The convergence tendency is similar to the results of scattering by two dielectric cylinders

[13]. The normalised residual norm and CPU time for the number of multigrid cycles using

the proposed scheme in Fig. 4 is indicated in Fig. 5. For the residual norm less than10−7,

the number of multigrid cycles and CPU is 2 and 5.91 sec, respectively. It is found that the

CPU time is improved and the proposed scheme is suitable for the periodic structure.

In what follows, we examine the reflection properties from the periodic array of the

dielectric cylinders using the scheme in Fig. 4. The scattered field Es(x, y) is obtained using

the integral representation of Hankel function as follows:

Es =
−j

2

N∑
n=1

En [εr0(n) − 1]kanJ1(kan)

×
∞∑

l=−∞

1

κ(kx,l)
exp[+jkx,lx

0
n + jκ(kx,l)y

0
n] exp[−jkx,lx − jκ(kx,l)y] (11)

where

kx,l = kx + l
2π

d
(12)

κ(kx,l) =
√

k2 − k2
x,l , Im(κ(kx,l)) ≤ 0 (13)

After the following relation is used,

∞∑
l=−∞

exp[−jkxld + jξld] =
2π

d

∞∑
l=−∞

δ

(
ξ − kx − l

2π

d

)
(14)

the reflection coefficient of lth order of the space harmonics is obtained as follows:

Rl =
−j

2

N∑
n=1

En [εr0(n) − 1]kanJ1(kan)
1

κ(kx,l)
exp

[
+jkx,lx

0
n + jκ(kx,l)y

0
n

]
(15)
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We discuss the power reflection coefficient from a periodic array of the circular cylinders

for the fundamental mode. The numerical calculation depends on the parameters and the

geometry. In this paper, the truncated number for Sp(kd, θi) in Eq. (6) is set to be |p| = 13

for the conservation energy error of the Bessel function taken to be 10−5. The numerical

integration limit in Eq. (8) is chosen as a = 8 when the error is less than 10−3. The number

of unknowns for the dielectric cylinder is set to be N = 3600.

We first of all confirm the presented method by comparing the computational time and

the power reflection coefficient for a periodic array of circular cylinders with the radius

0.3d [17]. Figure 6 shows the power reflection coefficient |R0|2 for the effect of changing

the permittivity for the circular cylinders of radius 0.3d. The accuracy of using lattice

sums together with multigrid-moment method is compared with the previous result and is

confirmed the good agreement each other for εr = 2.0. It is shown from this figure that

the peak of the power reflectance moves to the higher frequency and is controllable with

the permittivity. Also, the side-band of the power reflectance reduces by decreasing the

permittivity of the cylinder.

The power reflection coefficient |R0|2 for the circular cylinders that is coated with a

circular shape dielectric material at various position within the cylinder is indicated in

Fig. 7. The inner circular cylinder is allocated as that the outer one may be touched. The

definition of the angle φgr is indicated in the inset. We experience a single resonance peak

with a broader side-band reflectance profile when φgr = 0◦. When φgr > 0◦, it is found

that two peaks are shifted toward a lower and higher d/λ values with reduced side-band

reflectance. From this result, the inner cylinder affects the frequency that gives the peak of
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the power reflectance.

Next, the reflection property from the elliptical cylinder coated with the circular body

as shown in Fig. 8 is examined. The axis dimension, radius and relative permittivity of

the cylinder and the coated body are given by (a, b, εr1) and (R2, εr2), respectively. d12

is the distance between the centers of the coated circular body and the cylinder. e is the

eccentricity defined as

b = a
√

1 − e2 (16)

At first, we consider the scattering by the elliptical cylinder without the inner cylinder.

Figure 9 shows the power reflection coefficient |R0|2 for various eccentricities of the elliptical

cylinder. The eccentricity affects the resonance profile. Decreasing the eccentricity affects

the shift of the resonance frequency to a lower value on to the point when e = 0.5. When

e < 0.5, the difference of the reflection property is small because the shape has gradually

tended to a circular shape.

Figure 10 shows the power reflection coefficients |R0|2 as a function of the normalised

wavelength d/λ for various εr2 of the elliptical cylinder that has eccentricity of 0.86 and

a = 0.3d. A single resonance peak is noticeable but the side-band reflectance property

is narrow for the case when εr2 = 1.5 and broaden when εr2 increases with a depictable

lowering of the normalised resonance wavelength.

Figure 11 shows the power reflection coefficients |R0|2 as a function of the normalised

wavelength d/λ where the elliptical cylinder of eccentricity 0.3 with a = 0.3d and relative

permittivity of 1.5 is coated with two circular dielectric cylinders with radius of r1 = 0.1d.

One of the body is coated at the center of the elliptical cylinder and the other at 0.2d from
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the center of the elliptical cylinder. We observe two noticeable resonance peaks and there

exists the frequency of |R0|2 = 0. The resonance peaks depict the multiple scattering effect

between the elliptical cylinder and the coated circular cylinders. When εr1 increases, the

peaks are shifted toward lower d/λ values with broader side-band reflectance properties.

Figure 12 shows the total intensity contour map for d = 0.902λ, εr1 = 3.23, εr2 = 1.5,

R1 = 0.1d, d12 = 0.2d with the eccentricity of the elliptical cylinder of 0.3 and a = 0.3d.

As it is shown in Fig. 12, the total field intensity is very strong between the array on to the

point y < 0.5λ and stronger for y > 0.5λ above each array cylinder. A propagating plane

wave near the point y = λ, y = 1.5λ and y = 2λ is observed.

6. Conclusions

The scattering from a periodic array of dielectric cylinders with arbitrary shape has been an-

alyzed by using both of lattice sums technique and multigrid-moment method. At first, the

validity of the presented method has been examined from the CPU time and residual norm

points of view. It can be shown the effect of not only the computational time but also the

accuracy of the result. After that, the effect of the shape and material of the structure has

been investigated. For the circular cylinder, the permittivity affects the frequency that gives

the peaks of the maximum power reflection. Also, the periodic structure with coated dielec-

tric material for both of the circular and elliptical cylinder affects the resonance properties

of the structure. This phenomena has the possibility as a frequency selection device.

The layered periodic array of dielectric cylinders is also of significant importance for

getting a better performance of optical grating structure. The presented method can be

extended to the layered periodic array using reflection and transmission matrices. The scat-
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tered wave is decomposed into the up-going and down-going waves. Applying the boundary

condition on the artificial boundary of each layer leads to the relation of the reflection and

transmission. The detailed examination is one of the future works. Also, the optimal pa-

rameter for the filter will be considered using the optimization algorithm from the practical

point of view.
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List of Figure Captions

Fig. 1. Geometry of a periodic array of dielectric cylinders with arbitrary shape.

Fig. 2. Structure of W cycle with cycle index γ = 3 and three levels.

Fig. 3. Normalized residual norm and CPU time for several cycle indices. The number

of unknowns 8100 and the matrix equation on the finest grid is solved under the

condition that the normalized residual norm is less than 10−5.

Fig. 4. Scheme for the improvement of the initial values for the multigrid.

Fig. 5. Normalized residual norm and CPU time for several cycle indices using the scheme

indicated in Fig. 4.

Fig. 6. Power reflection coefficient |R0|2 of the fundamental space harmonics for several

different relative permittivity as function of the normalized frequency d/λ; radius

of circular cylinder is 0.3d.

Fig. 7. Power reflection coefficient|R0|2 of the fundamental space harmonics for several

different inclination angles Φgr as function of the normalized frequency d/λ; εr =

2.25, ε2 = 2.0, r1 = 0.15d, r2 = 0.3d.

Fig. 8. Geometry of a periodic array of composite elliptical cylinders.

Fig. 9. Power reflection coefficient |R0|2 of the fundamental space harmonics for several

different eccentricities as function of the normalized frequency d/λ; a = 0.3d and

ε2 = 2.0.
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Fig. 10. Power reflection coefficient |R0|2 of the fundamental space harmonics for several

different relative permittivity as function of the normalized frequency d/λ; a = 0.3d

and eccentricity is 0.86.

Fig. 11. Power reflection coefficient|R0|2 of the fundamental space harmonics for the ellipti-

cal cylinder where two circular cylinders are contained as function of the normalized

frequency d/λ; a = 0.3 and eccentricity is 0.3.

Fig. 12. Distribution of the total intensity contour distribution map; d = 0.902λ, εr1 = 3.23,

R1 = 0.1d and the eccentricity of the elliptical cylinder is 0.3 with a = 0.3d.
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Fig. 2. Structure of W cycle with cycle index γ = 3 and three levels. Yokota JOSAA fig2.eps
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Fig. 4. Scheme for the improvement of the initial values for the multigrid.
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