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1.  INTRODUCTION 

 

     In this paper, a spectral representation of stochastic fields is given in a 

form that is convenient for their simulation or digital generation of their 

sample functions. In a previous paper, Shinozuka and Jan (1972) discussed a 

simulation technique of multivariate multi-dimensional homogeneous as well 

as nonhomogeneous processes which represent frozen patterns of stochastic 

waves propagating in the direction specified by the wave number vector 

located in the first or last quadrant in an n-dimensional rectangular 

Cartesian coordinate system for wave numbers. The wave numbers are 

positive (negative). In this sense, the fields simulated by Shinozuka and Jan 

are not consistent with the general spectral representation of stochastic 

processes, although their simulated stochastic fields satisfy the target power 

spectral density (or correlation) functions. A revised version of the simulation 

technique was published by Shinozuka (1985) to satisfy this situation. The 

present paper provides a more detailed analysis in this direction. 

     The present paper also discusses how time space stochastic processes or 

stochastic waves, can be characterized within the framework of a second order 

analysis. Tn this connection, the numerical examples involving seismic array 

records in Taiwan (SMART-1) are worked out. Finally, brief account is made 

in this paper as to how the spectral density functions of bi-variate two 

dimensional stochastic fields or stochastic waves can be estimated from a set 
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of data in a finite region. Although the present study restricts itself to bi-

variate two dimensional cases for simplicity, the results may be easily 

extended to multi-variate multi-dimensional cases. 
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2. SPECTRAL REPRESENTATION AND SIMULATION 

OF BI-VARIATE ONE DIMENSIONAL STOCHASTIC 

FIELDS 

 

2.1 Complex Valued Stochastic Fields 

In the harmonic analysis of stochastic fields, it is convenient to consider 

the fields to be complex-valued. Real-valued stochastic fields can be treated 

as a special case of complex-valued fields. 

The complex stochastic fields ( )f x  and ( )g x  can be defined such that 

(1) (2)

(1) (2)

( ) ( ) ( )

( ) ( ) ( )

f x f x if x

g x g x ig x
                                            (2.1-1) 

where is 1i the imaginary unit and the functions (1) (2) (1)( ), ( ), ( )f x f x g x

and (2)( )g x  mean real stochastic fields as functions of the space coordinate 

x .  The expected value can be defined as 

(1) (2)

(1) (2)

[ ( )] [ ( )] [ ( )]

[ ( )] [ ( )] [ ( )]

E f x E f x iE f x

E g x E g x iE g x
                                   (2.1-2) 

where [ ]E  means the expectation operator. 

     If the fields are homogeneous with zero mean; 

(1) (2) (1) (2)[ ( )] [ ( )] [ ( )] [ ( )] 0E f x E f x E g x E g x                  (2.1-3) 

Then, the covariance function matrix can be defined as 
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* *

* *

( ) ( )
( )

( ) ( )

[ ( ) ( )] [ ( ) ( )]

[ ( ) ( )] [ ( ) ( )]

ff fg

gf gg

R R

R R

E f x f x E f x g x

E g x f x E g x g x

R

                      (2.1-4) 

where *( )f x  denotes the complex conjugate of ( )f x ; * (1) (2)( ) ( ) ( )f x f x if x . 

From Eq. (2.1-4), it can be shown that the covariance function satisfies the 

following condition: 

*( ) ( )jk kjR R                                                (2.1-5) 

where j  denotes f  or g and so does k ;  this notation will be used 

throughout. 

     The stochastic fields ( )f x  and ( )g x  can be represented by the 

following integrals: 

( ) e ( ), ( ) e ( )i x i x
f gf x dZ g x dZ                    (2.1-6) 

where ( )fdZ  and ( )gdZ  are the orthogonal increments satisfying the 

following conditions (Yaglom (1962, 1973)): 

*

[ ( )] 0

( ) ( )

[ ( ) ( )]

( )Re ( )

Im ( ) 0

( )
( )

j

jk

j k

jk

jk

jk
jk

E dZ

dF j k

E dZ dZ

dF
j k

dF

dF
S

d

       (2.1-7) 
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where ( )means the delta function and Re( )  expresses real part. For 

, ( ) 0  and ( ) ( ) ( )jk jkdF dF . 

Substitution of Eq. (2.1-6) into Eq. (2.1-4) and use of Eq. (2.1-7) result in 

*

( ) *

( )

( ) [ ( ) ( )]

e e [ ( ) ( )]

e e ( ) ( )

e ( )

jk

i x i x
j k

i x i
jk

i
jk

R E j x k x

E dZ dZ

dF

dF

                  (2.1-8) 

  If ( )jkdF  is differentiable, then the integral of Eq. (2.1-8) reduces to: 

( ) e ( )i
jk jkR S d                                       (2.1-9a) 

The inverse transform gives ( )jkS  in terms of ( )jkR : 

1
( ) e ( )

2
i

jk jkS R d                                   (2.1-9b) 

Eqs, (2.1-9a) and (2.1-9b) represent the well-known Wiener Khintchine 

transform pair. 

     When j k , then Eqs. (2.1-9a) and (2.1-9b) reduce to 

( ) e ( )

1
( ) e ( )

2

i
jj jj

i
jj jj

R S d

S R d

                                   (2.1-10) 

where ( )jjR  and ( )jjS are the autocorrelation function and the power 
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spectral density function of ( )j x  with ( ) ( )jj jjR R  and ( ) ( )jj jjS S .  

2.2 Real Valued Stochastic Fields 

Consider that the complex valued increment functions ( )jkdF and 

( )jdZ  introduced above are represented in terms of orthogonal increments 

such that 

(1) (2)

(1) (2)

1
( ) ( ( ) ( ))

2
1

( ) ( ( ) ( ))
2

jk jk jk

j j j

dF dF idF

dZ dU idU
                               (2.2-1) 

where the functions (1) (2) (1), ,jk jk jdF dF dU and (2)
jdU  are real-valued.  

     Substitution of Eq. (2.2-1) into Eq. (2.1-7), we obtain the followings; 

(1) (2)[ ( )] [ ( )] 0j jE dU E dU                               (2.2-2a) 

and 

(1) (1)

(2) (2)
*

(1) (2)

(2) (1)

(1)

[ ( ) ( )]

[ ( ) ( )]1
[ ( ) ( )]

4 [ ( ) ( )]

[ ( ) ( )]

1
( )( ( )

2

j k

j k
j k

j k

j k

jk

E dU dU

E dU dU
E dZ dZ

E dU dU
i
E dU dU

dF i (2)( ))jkdF

       (2.2-2b) 

From Eq. (2.2-2b), the increment real valued functions (1) (2) (1), ,jk jk jdF dF dU and 

(2)
jdU  must satisfy the following equations; 
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(1) (1) (2) (2)

(1)

(1) (2) (2) (1)

(2)

[ ( ) ( )] [ ( ) ( )]

( ) ( )

[ ( ) ( )] [ ( ) ( )]

( ) ( )

0

j k j k

jk

j k j k

jk

E dU dU E dU dU

dF

E dU dU E dU dU

dF j k

j k

                (2.2-2c) 

Substitution of Eq. (2.2-1) into Eqs. (2.1-6) and (2.1-7) yields the 

following alternative expressions for ( )jkR  and ( )j x : 

(1) (2)

(1) (2)

1
( ) (cos ( ) sin ( ))

2

1
(sin ( ) cos ( ))

2

jk jk jk

jk jk

R dF dF

i dF dF

             (2.2-3a) 

and 

(1) (2)

(1) (2)

1
( ) (cos ( ) sin ( ))

2

1
(sin ( ) cos ( ))

2

j j

j j

j x dU dU

i dU dU

             (2.2-3b) 

     For real valued stochastic fields, the imaginary parts of ( )jkR  and 

( )j x  in the above equations must be zero. This requires that,  

(1) (1) (2) (2)

(1) (1) (2) (2)

( ) ( ), ( ) ( )

( ) ( ), ( ) ( )
jk jk jk jk

j j j j

dF dF dF dF

dU dU dU dU
               (2.2-4) 

Eq. (2.2-4) implies that the real part of ( )jkdF  and ( )jdZ  are even 

functions of wave number, while their imaginary parts are odd functions of 

wave number. Therefore, for real valued stochastic fields, the complex valued 

increment functions ( )jkdF  and ( )jdZ  must satisfy the following 

conditions: 
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*

*

( ) ( )

( ) ( )
jk jk

j j

dF dF

dZ dZ
                                         (2.2-5) 

Using the above conditions, Eqs. (2.2-2) and (2.2-3) reduce to 

(1) (1) (2)

0

( ) ( ) (cos ( ) sin ( ))jk jk jk jkR R dF dF           (2.2-6) 

and 

(1) (1) (2)

0

( ) ( ) (cos ( ) sin ( ))j jj x j x xdU xdU              (2.2-7) 

It is not hard to derive Eq. (2.2-6) from Eq. (2.27) in conjunction with Eq. 

(2.2-2c). In fact, 

(1) (1) (1)

(1)

(2)

0 0 (1) (2)

(1)

( ) [ ( ) ( )]

cos ( )cos ( )

sin ( )sin ( )

cos ( ) sin ( )

cos ( )cos

sin ( )sin

jk

j

j

k k

jk

R E j x k x

x xdU

x xdUE

xdU xdU

x x
dF

x x

(2)0

(1) (2)

0

( )

sin ( )cos
( )

cos ( )sin

(cos ( ) sin ( ))

jk

jk jk

x x
dF

x x

dF dF

         (2.2-8) 

Especially when j k , then from Eqs. (2.2-6) and (2.2-2c), 

(1) (1) (2)( ) ( ), ( ) 0jj jj jjR R dF                            (2.2-9) 

Hence, Eq. (2.2-6) reduce to 

(1) (1)

0

( ) cos ( )jj jjR dF                                   (2.2-10) 
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If (1)( )jjdF  is continuous, the power spectral density function ( )ffS  can be 

defined from Eq. (2.1-7) such as 

(1)
(1)

( ) ( )1
( ) ( ) 2 ( )

2
jj jj

jj jj jj

dF dF
S dF S d

d d
        (2.2-11) 

     Substituting Eq. (2.2-11) into Eq. (2.2-10), we obtain 

(1)

0

( ) 2 cos ( )jj jjR S d                                   (2.2-12a) 

The inverse transform gives ( )jjS  as 

(1)

0

1
( ) cos ( )jj jjS R d                                 (2.2-12b) 

From Eqs. (2.2-9) and (2.2-12b), (1)( )jjR  and ( )jjS  are even functions, then 

Eqs. (2.2-12a) and (2.2-12b) can be also expressed as 

(1)

(1)

( ) cos ( )

1
( ) cos ( )

2

jj jj

jj jj

R S d

S R d

                                (2.2-13) 

It is noted here that the above equation is the real part of the Wiener 

Khintchine transform pair of Eq. (2.1-10).  

 

2.3 Simulation Method 

     We now consider the simulation method of the homogeneous stochastic 

fields ( )f x  and ( )g x  under the condition that the power spectral density 

function ( )jkS  is specified such that 
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*( ) ( )
( ) , ( ) ( )

( ) ( )
ff fg

gf fg
gf gg

S S
S S

S S
S                        (2.3-1) 

Since the power spectral density function matrix constitutes the Hermitian 

and non-negative definite matrix (Yaglom (1962)), Eq. (2.3-1) can be 

decomposed as 

* * 2 *
11 11 21 11 11 21

* * 2 2
21 22 22 21 11 21 22

0 | |

0 | | | |

a a a a a a

a a a a a a a
                 (2.3-2) 

where jka  can be obtained by equating Eq. (2.3-1) with Eq. (2.3-2) such that 

     

1 1

21 1 21

2 2

( ) ( )
11 11

( ) ( ( ) ( ))
21 21

2
( ) ( )

22 22

| | e ( ) e

| ( ) |
| | e e

( )

( ) ( ) | ( ) |
| | e e

( )

i i
ff

i ifg

ff

i iff gg fg

ff

a a S

S
a a

S

S S S
a a

S

            (2.3-3a) 

               (2.3-8) where 1( )  and 2( )are arbitrary phase angles and 

1
21

Im( ( ))
( ) tan

Re( ( ))
fg

fg

S

S
                                  (2.3-3b) 

     On the other hand, the covariance of the orthogonal increment ( )jdZ

is given by Eq. (2.1-7), that is 

*

*

*

[ ( ) ( )] ( )

[ ( ) ( )] ( )

[ ( ) ( )] ( )

f f ff

f g fg

g g gg

E dZ dZ S d

E dZ dZ S d

E dZ dZ S d

                                  (2.3-4) 

Comparison of Eqs. (2.3-2) and (2.3-4) motivates the introduction of a new 
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definition for the orthogonal increments ( )fdZ  and ( )gdZ  to efficiently 

express the orthogonal increments in terms of the power spectral density 

functions as follows: 

( ) ( )

( ) ( ) ( )
f ff

g gf gg

dZ dZ

dZ dZ dZ
                                   (2.3-5a) 

where  

* *[ ( ) ( )] [ ( ) ( )] 0ff gg gf ggE dZ dZ E dZ dZ                      (2.3-5b) 

and similarly 

(1) (2)

(1) (2) (1) (2)

1
( ) ( ( ) ( ))

2
1 1

( ) ( ( ) ( )) ( ( ) ( ))
2 2

f ff ff

g gf gf gg gg

dZ dU idU

dZ dU idU dU idU
     (2.3-5c) 

where (1)( )jkdU  and (2)( )jkdU  are real valued. 

     Substitution of Eq. (2.3-5a) into Eq. (2.3-4) and taking into account Eq. 

(2.3-5b) yields the following equation as 

* *

* *

2 *

* 2 2

[ ( ) ( )] [ ( ) ( )]

[ ( ) ( )] [ ( ) ( )]

[| ( ) | ] [ ( ) ( )]

[ ( ) ( )] [| ( ) | | ( ) | ]

f f f g

g f g g

ff ff gf

gf ff gf gg

E dZ dZ E dZ dZ

E dZ dZ E dZ dZ

E dZ E dZ dZ

E dZ dZ E dZ dZ

                (2.3-6) 

Comparing Eq. (2.3-2) with Eq. (2.3-6), the orthogonal increments an be 

obtained such that 

1

1 21

2

( )
11

( ( ) ( ))
21

( )
22

( ) | | e

( ) | | e

( ) | | e

i
ff

i
gf

i
gf

dZ a d

dZ a d

dZ a d

                                (2.3-7) 
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also, taking into account Eq. (2.3-5c), 

(1)
11 1

(2)
11 1

(1)
21 1 21

(2)
21 1 21

(1)
22 2

(2)
22 2

( ) 2 | | cos ( )

( ) 2 | | sin ( )

( ) 2 | | cos( ( )+ ( ))

( ) 2 | | sin( ( )+ ( ))

( ) 2 | | cos ( )

( ) 2 | | sin ( )

ff

ff

gf

gf

gg

gg

dU a d

dU a d

dU a d

dU a d

dU a d

dU a d

               (2.3-8) 

     In Eqs. (2.3-7) and (2.3-8), the arbitrary phase angle 1( ) and 2( )

must be appropriate random functions so that the orthogonal increment 

( )jdZ  satisfy the orthogonal conditions as given in Eqs. (2.1-7) or (2.2-2c). If 

we choose independent random phases uniformly distributed between 0  and 

2  for 1( ) and 2( ) , it is easy to show that Eqs. (2.3-7) and (2.3-8) satisfy 

Eqs. (2.1-7) or (2.2-2c), respectively.  

     From Eqs. (2.2-7), (2.3-3) and (2.3-8), the real valued stochastic fields  

(1)( )f x and (1)( )g x  can be expressed as 

(1)
11 1

0

( ) 2 | | cos( ( ))f x a d x                    (2.3-9a) 

and 

(1)
21 1 21

0

22 2
0

( ) 2 | | cos( ( )+ ( ))

+ 2 | | cos( ( ))

g x a d x

a d x

           (2.3-9b) 
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The integrals mean, for 0d  and n nd  

(1)
11 1

1

( ) 2 | | cos( ( ))
N

n n
n

f x a d x                     (2.3-10a) 

and 

(1)
21 1 21

1

22 2

( ) 2 | | cos( ( )+ ( ))

+2 | | cos( ( ))

N

n n n n
n

n n n

g x a d x

a d x

           (2.3-10b) 

where 

  

11

21

2

22

| | ( )

| ( ) |
| |

( )

( ) ( ) | ( ) |
| |

( )

ff

fg

ff

ff gg fg

ff

a S

S
a

S

S S S
a

S

                              (2.3-10c) 

 Equation (2.3-10) is identical to tha used by Shinozuka and Jan (1972). As 

shown by them, making use of the FFT (Fast Fourier Transform) technique 

in the summations appearing in Eq. (2.3-10) drastically reduces the 

computing time. 
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3. SPECTRAL REPRESENTATION OF BI-VARIATE 

TWO-DIMENSIONAL STOCHASTIC FIELDS 

 

The previous procedure described in Chapter 2 can be directly used for 

the bi-variate two-dimensional case. Almost all the equation in Chapter 3 and 

4 are similar, but the equations for real valued fields are quite different. This 

difference is also quite important in the simulation of real valued stochastic 

fields as explained in the numerical examples in Chapter 6. To explained the 

difference, a similar procedure and equation are provided. 

 

3.1 Complex Valued Stochastic Fields 

     The complex stochastic fields ( , )f x y  and ( , )g x y  can be defined as 

(1) (2)

(1) (2)

( , ) ( , ) ( , )

( , ) ( , ) ( , )

f x y f x y if x y

g x y g x y ig x y
                                    (3.1-1) 

where 1i , the functions (1)( , )f x y , (2)( , )f x y , (1)( , )g x y  and (2)( , )g x y are 

the real valued stochastic fields, and ,x y  denote real coordinates. The mean 

can be defined as 

(1) (2)

(1) (2)

[ ( , )] [ ( , )] [ ( , )]

[ ( , )] [ ( , )] [ ( , )]

E f x y E f x y iE f x y

E g x y E g x y iE g x y
                           (3.1-2) 

where [ ]E  is the expectation operator. 

     Now suppose that the fields are homogeneous stochastic fields with zero 
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mean. Then, the covariance function of the fields can be defined in matrix 

form such that 

* *

* *

( , ) ( , )
( , )

( , ) ( , )

[ ( , ) ( , )] [ ( , ) ( , )]

[ ( , ) ( , )] [ ( , ) ( , )]

ff x y fg x y
x y

gf x y gg x y

x y x y

x y x y

R R

R R

E f x y f x y E f x y g x y

E g x y f x y E g x y g x y

R

     (3.1-3) 

where * (1) (2)( , ) ( , ) ( , )f x y f x y if x y  denotes the complex conjugate of ( , )f x y . 

Thus 

*( , ) ( , ), , ,jk x y kj x yR R j k f g                          (3.1-4) 

that is, the covariance matrix for bi-variate stochastic fields constitutes   

Hermitian. In particular, the variances of the diagonal term are real and 

positive, that is, 

*

(1) 2 (2) 2

*

(1) 2 (2) 2

Var[ ] (0) [ ( , ) ( , )]

[( ( , )) ( ( , )) ]

Var[ ] (0) [ ( , ) ( , )]

[( ( , )) ( ( , )) ]

ff

gg

f R E f x y f x y

E f x y f x y

g R E g x y g x y

E g x y g x y

                           (3.1-5) 

     It can be shown for the homogeneous stochastic fields ( , )f x y  and 

( , )g x y , that the covariance function ( , ), ( , , )jk x yR j k f g  can always be 

represented as follows (Yaglom (1962)): 

( )
( , ) e ( , )x x y yi

jk x y jk x yR dF                        (3.1-6) 

and the fields themselves can be represented as 
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( )

( )

( , ) e ( , )

( , ) e ( , )

x y

x y

i x y

f x y

i x y

g x y

f x y dZ

g x y dZ

                            (3.1-7) 

where the integral means the Fourier Stieljes integral standing for the limit, 

for instance, for the integral of Eq. (3.1-7), 

( )

( )

0
0

( , ) lim e ( , )

lim lim e ( , )

x y

xn ym

x

y

a b
i x y

f x ya
a bb

N M
i x y

f xn yma d
n N m Mb d

f x y dZ

dZ

        (3.1-8a) 

where the complex discrete orthogonal increment is defined by all the 

combination of wave numbers such that 

 

,

,
( , ) ( , )

( , ) ( , )

( , ) ( , )

xn x ym y

xn ym

d d

f xn ym f xn ym

f xn x ym y f xn x ym

f xn ym y f xn ym

dZ Z

Z d d Z d

Z d Z

 (3.1-8b) 

and the summation is over all the subjects appearing in the partition as 

shown in Fig. 3.1-1. 

1 1,

x N xn xN

y M ym yM

x xn xn y ym ym

a a

b b

d d

                      (3.1-8c) 

The function ( , )jk x yF  which is a non-negative and non-decreasing function 

is called the spectral function of the fields ( , )f x y  and ( , )g x y . When the 

function ( , )jk x yF  is continuous, its derivative is called the spectral density 

function ( , )jk x yS , that is  
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2 ( , )
( , ) jk x y
jk x y

x y

F
S                                    (3.1-9) 

Then, the Fourier Stieltjes integral of Eq. (3.1-7) reduces to the Fourier 

integral as 

( )
( , ) e ( , )x x y yi

jk x y jk x y x yR S d d               (3.1-10a) 

The inverse transformation yields the spectral density function as 

( )

2

1
( , ) e ( , )

(2 )
x x y yi

jk x y jk x y x yS R d d         (3.1-10b) 

Equations (3.1-6a) and (3.1-6b) are the Wiener Kintchine relationships. 

 

 

 

 

 

 

 

 

  

 

 

Fig. 3.1-1 Discretization of x-y Plane 
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x  
a  

b  

b  

y  
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     Turning to the representations of stochastic fields given by Eq. (3.1-7), 

these representations imply that ( , )f x y  and ( , )g x y  can be written as the 

sum of many elementary waves exp[ ( )]x yi x y  with complex orthogonal 

random amplitudes ( , )f x ydZ  and ( , )g x ydZ , respectively. The orthogonal 

random amplitude is generally called the orthogonal increment which is 

defined as follows and satisfies the following conditions: 

*

2

[ ( , )] 0

[ ( , ) ( , )]

( ) ( ) ( , )

( ) ( )Re ( , )

( , )
( , )

j x y

j x y k x y

x x y y jk x y

x x y y jk x y

jk x y
jk x y

x y

E dZ

E dZ dZ

dF j k

dF j k

F
S

          (3.1-11a) 

where ( , ) ( ) ( )x y x y means the delta function with the conditions: 

,
( ) ( )

0 ,

( ) ( ) ( , ) ( , )

x x y y
x x y y

x x y y

x x y y jk x y jk x ydF dF

               (3.1-11b) 

and Re( )  expresses real part. 

    Due to Eqs. (3.1-11a) and (3.1-11b) (orthogonal conditions), it is easily 

confirmed that the covariance function is given by Eq. (3.1-6). In fact, 

*

[ ( ) ( )] [ ]

*

( )

( , ) [ ( , ) ( , )]

e e

[ ( , ) ( , )]

e ( , )

x x y y x y

x x y y

jk x y x y
i x y i x y

j x y k x y

i

jk x y

R E j x y k x y

E dZ dZ

dF

         (3.1-12) 
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3.2 Real Valued Stochastic Fields 

     Suppose the complex valued spectral distribution function ( , )jk x yF  

and the orthogonal function ( , )j x yZ  are represented in terms of the 

increment such that 

 

(1) (2)

(1) (2)

1
( , ) ( , ) ( , )

2

1
( , ) ( , ) ( , )

2

jk x y jk x y jk x y

j x y j x y j x y

dF dF idF

dZ dU idU

                  (3.2-1) 

where (1)
jkdF and (2)

jkdF are the real valued spectral distribution functions 

associated with the real and imaginary parts of jkdF . The functions (1)
jdU and 

(2)
jdU are also the real valued increments associated with the real and 

imaginary parts of jdZ . 

     Substitution of Eq. (3.2-1) into Eqs. (3.1-6) and (3.1-7) yields alternative 

expressions for ( , )jk x yR  and ( , )j x y  such that 

(1)

(2)

(1)

(2)

cos( ) ( , )1
( , )

2 sin( ) ( , )

sin( ) ( , )1

2 cos( ) ( , )

x x y y jk x y
jk x y

x x y y jk x y

x x y y jk x y

x x y y jk x y

dF
R

dF

dF
i

dF

        (3.2-2) 

and the fields ( , )f x y  and ( , )g x y  are for ,j f g , 
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(1)

(2)

(1)

(2)

cos( ) ( , )1
( , )

2 sin( ) ( , )

sin( ) ( , )1

2 cos( ) ( , )

x y j x y

x y j x y

x y j x y

x y j x y

x y dU
j x y

x y dU

x y dU
i

x y dU

          (3.2-3) 

For real valued stochastic fields, the imaginary parts of ( , )jk x yR  and

( , )j x y  given by Eqs. (3.2-2) and (3.2-3) must be zero. This requires the 

conditions as follows: 

(1) (1) (1) (1)

(2) (2) (2) (2)

(1) (1) (1) (1)

(2)

( , ) ( , ), ( , ) ( , )

( , ) ( , ), ( , ) ( , )

( , ) ( , ), ( , ) ( , )

( ,

jk x y jk x y jk x y jk x y

jk x y jk x y jk x y jk x y

j x y j x y j x y j x y

j x

dF dF dF dF

dF dF dF dF

dU dU dU dU

dU (2) (2) (2)) ( , ), ( , ) ( , )y j x y j x y j x ydU dU dU

                          

(3.2-4) 

Above equations yield the conditions for ( , )jk x ydF and ( , )j x ydZ : 

*

*

( , ) ( , )

( , ) ( , )
jk x y jk x y

jk x y jk x y

dF dF

dF dF
                              (3.2-5a) 

and 

*

*

( , ) ( , )

( , ) ( , )
j x y j x y

j x y j x y

dZ dZ

dZ dZ
                               (3.2-5b) 

Equations (3.2-5a) and (3.2-5b) imply the bi-spectral distribution 

functions ( , )jk x yF  and ( , )jk x yF are necessary for representing the 

covariance function (1)( , )jk x yR  of the real valued homogeneous stochastic 
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fields (1)( , )j x y  and (1)( , )k x y  (see Fig. 3.2-1).  

Equations (3.2-5a) and (3.2-5b) also imply that the two orthogonal 

increments ( , )j x ydZ and ( , )j x ydZ are needed for the spectral 

representation of the real valued stochastic field (1)( , )j x y  (see Fig. 3.2-1a). If 

( , ) ( , )jk x y jk x yF F  or ( , ) ( , )j x y j x yZ Z , the stochastic field is 

called quadrant symmetry (see Fig. 3.2-1b)) 

 

 

 

 

 

                                     

 

 

 

(a) Homogeneous Two-Dimensional Case     (b) Quadrant Symmetry Case 

 

Fig. 3.2-1 Characteristics of Homogenous Two-Dimensional Stochastic 

Fields in Wave Number Domain  

 

Substitution of the conditions given by Eqs. (3.2-5a) and (3.2-5b) into 

Eqs. (3.1-6) and (3.1-7) or Eqs. (3.2-2) and (3.2-3) yields the required 

fundamental expressions for real valued two-dimensional stochastic fields 

x  

y  ( , )

( , )
jk x y

j x y

dF

dZ
 

*

*

( , )

( , )
jk x y

j x y

dF

dZ
 ( , )

( , )
jk x y

j x y

dF

dZ
 

*

*

( , )

( , )
jk x y

j x y

dF

dZ
 

x  

y  ( , )

( , )
jk x y

j x y

dF

dZ
 



 

24 

 

such that 

(1)

(2)
0 0

(1)

(2)
0 0

cos( ) ( , )
( , )

sin( ) ( , )

cos( ) ( , )

sin( ) ( , )

x x y y jk x y
jk x y

x x y y jk x y

x x y y jk x y

x x y y jk x y

dF
R

dF

dF

dF

            (3.2-6a) 

where ,j f g  and the field itself is 

(1)

(2)
0 0

(1)

(2)
0 0

cos( ) ( , )
( , )

sin( ) ( , )

cos( ) ( , )

sin( ) ( , )

x y j x y

x y j x y

x y j x y

x y j x y

x y dU
j x y

x y dU

x y dU

x y dU

              (3.2-6b) 

It is easy to show that the real valued increments (1)
jkdF , (2)

jkdF  and (1)
jdU ,

(2)
jdU  have the following requirements, by substituting Eq. (3.2-1) into Eqs. 

(2.2-2a), (2.2-2b) and (2.2-2c) for the conditions of the complex orthogonal 

increments. 

(1) (2)

(1) (1) (2) (2)

(1)

(2) (1) (1) (2)

[ ( , )] [ ( , )] 0

[ ( , ) ( , )] [ ( , ) ( , )]

( ) ( ) ( , )

[ ( , ) ( , )] [ ( , ) ( , )]

(

j x y j x y

j x y k x y j x y k x

x x y y jk x y

j x y k x y j x y k x y

E dU E dU

E dU dU E dU dU

dF

E dU dU E dU dU

(2)) ( ) ( , )

0
x x y y jk xdF j k

j k

  (3.2-7) 

     It is also easy to show Eq. (3.2-6a), by using the spectral representation 

of the real valued field ( , )j x y  given by Eq. (3.2-6b) and the orthogonal 
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conditions for the real valued increments (1)
jdU  and (2)

jdU  given by Eq. (3.2-

7). In fact, 

(1) (1) (1)

(1)

(2)

(1)

(2)

( , ) [ ( , ) ( , )]

cos( ( ) ( )) ( , )

sin( ( ) ( )) ( , )

cos( ( ) ( )) ( , )

sin( ( ) ( )) ( , )

jk x y x y

x x y y j x y

x x y y j x y

x x y y j x y

x x y y j x y

R E j x y k x y

x y dU

x y dU

x y dU

x y dU
0 0 0 0

(1)

(2)

(1)

(2)

cos( ( ) ( )) ( , )

sin( ( ) ( )) ( , )

cos( ( ) ( )) ( , )

sin( ( ) ( )) ( , )

x x y y j x y

x x y y j x y

x x y y j x y

x x y y j x y

x y dU

x y dU

x y dU

x y dU

(1)

(2)
0 0

(1)

(2)
0 0

cos( ) ( , )

sin( ) ( , )

cos( ) ( , )

sin( ) ( , )

x x y y jk x y

x x y y jk x y

x x y y jk x y

x x y y jk x y

dF

dF

dF

dF   (3.2-8) 
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4. SIMULATION METHOD 

 

     Consider the simulation problem of the homogeneous stochastic fields 

and under the condition that the power spectral density function matrix is 

specified such that  

*( , ) ( , )
( ) , ( , ) ( , )

( , ) ( , )
ff x y fg x y

gf x y fg x y
gf x y gg x y

S S
S S

S S
S         (4.1) 

Since the power spectral density function matrix constitutes the Hermitian 

and non-negative definite matrix, Eq. (4-1) can be decomposed as 

* * 2 *
11 11 21 11 11 21

* * 2 2
21 22 22 21 11 21 22

0 | |

0 | | | |

a a a a a a

a a a a a a a
                 (4-2) 

Where each element jka  can be obtained as 

     

1 1

21

1 21

2

2

( , ) ( , )

11 11

( , )

21 21

( ( , ) ( , ))

( , )

22 22

2
( , )

| | e ( , ) e

| | e

| ( , ) |
e

( , )

| | e

( , ) ( , ) | ( , ) |
e

( , )

x y x y

x y

x y x y

x y

x y

i i

ff x y

i

ifg x y

ff x y

i

iff x y gg x y fg x y

ff x y

a a S

a a

S

S

a a

S S S

S

          (4-3a) 

where 1( , )x y  and 2( , )x y are arbitrary phase angles and 

1
21

Im( ( , ))
( , ) tan

Re( ( , ))
fg x y

x y
fg x y

S

S
                         (4-3b) 
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     On the other hand, the covariance of the orthogonal increment 

( , )j x ydZ is given by Eq. (3.1-8b) or Eq. (3.1-11a), that is 

*

*

*

[ ( , ) ( , )] ( , )

[ ( , ) ( , )] ( , )

[ ( , ) ( , )] ( , )

f x y f x y ff x y x y

f x y g x y fg x y x y

g x y g x y gg x y x y

E dZ dZ S d d

E dZ dZ S d d

E dZ dZ S d d

                     (4-4) 

Comparison of Eqs. (4-2) and (4-4) motivates the introduction of a new 

definition for the orthogonal increments fdZ  and gdZ  to efficiently express 

the orthogonal increments in terms of the power spectral density functions as 

follows: 

f ff

g gf gg

dZ dZ

dZ dZ dZ
                                              (4-5a) 

where  

* *[ ] [ ] 0ff gg gf ggE dZ dZ E dZ dZ                                    (4-5b) 

and similarly 

(1) (2)

(1) (2) (1) (2)

1
( )
2
1 1
( ) ( )
2 2

f ff ff

g gf gf gg gg

dZ dU idU

dZ dU idU dU idU
                      (4-5c) 

where (1)
jkdU  and (2)

jkdU  are real valued. 

     Substitution of Eq. (4-5a) into Eq. (4-4) and taking into account Eq. (4-

5b) yields the following equation as 

* * 2 *

* * * 2 2

[ ] [ ] [| | ] [ ]

[ ] [ ] [ ] [| | | | ]
f f f g ff ff gf

g f g g gf ff gf gg

E dZ dZ E dZ dZ E dZ E dZ dZ

E dZ dZ E dZ dZ E dZ dZ E dZ dZ
     (4-6) 

By comparison of Eq. (4-2) and Eq. (4-6), the orthogonal increments can be 
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expressed in terms of jka which in turn is a function of the power spectral 

density function such that 

1

1 21

2

( , )

11
( ( , ) ( , ))

21
( , )

22

( , ) | | e

( , ) | | e

( , ) | | e

x y

x y x y

x y

i

ff x y x y
i

gf x y x y
i

gf x y x y

dZ a d d

dZ a d d

dZ a d d

                     (4-7) 

Also, taking into account Eq. (4-5c), 

(1)
11 1

(2)
11 1

(1)
21 1 21

(2)
21 1 21

(1)

( , ) 2 | | cos ( , )

( , ) 2 | | sin ( , )

( , ) 2 | | cos( ( , )+ ( , ))

( , ) 2 | | sin( ( , )+ ( , ))

( , ) 2

ff x y x y x y

ff x y x y x y

gf x y x y x y x y

gf x y x y x y x y

gg x y

dU a d d

dU a d d

dU a d d

dU a d d

dU 22 2

(2)
22 2

| | cos ( , )

( , ) 2 | | sin ( , )

x y x y

gg x y x y x y

a d d

dU a d d

        (4-8) 

     If we choose independent random phases uniformly distributed between 

0  and 2  for 1( , )x y  and 2( , )x y , it is easy to show that Eqs. (4-7) and 

(4-8) satisfy Eqs. (3.1-11a) or (3.2-7), respectively.  

     From Eqs. (3.2-6b) and (2.3-8), the real valued stochastic fields  

(1)( , )f x y and (1)( , )g x y  can be expressed as 

   

(1)
11 11

0 0

11 11
0 0

11 1

11 1

( , ) 2 | ( , ) | cos ( , )

2 | ( , ) | cos ( , )

( , ) ( ( , ))

( , ) ( ( , ))

x y x y x y

x y x y x y

x y x y x y

x y x y x y

f x y a d d A

a d d A

A x y

A x y

      (4-9a) 
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and 

(1)
21 21

0 0

21 21
0 0

22 22
0 0

22 22
0 0

21 1

( , ) 2 | ( , ) | cos ( , )

+ 2 | ( , ) | cos ( , )

2 | ( , ) | cos ( , )

2 | ( , ) | cos ( , )

( , ) ( ( , )+

x y x y x y

x y x y x y

x y x y x y

x y x y x y

x y x y x y

g x y a d d A

a d d A

a d d A

a d d A

A x y 21

21 1 21

22 2

22 2

( , ))

( , ) ( ( , )+ ( , ))

( , ) ( ( , ))

( , ) ( ( , ))

x y

x y x y x y x y

x y x y x y

x y x y x y

A x y

A x y

A x y

          (4-9b) 

The integrals mean, for 0, 0x yd d  and ,xn x ym ynd md  

(1)
11 11

1 1

11 11

11 1

11 1

( , ) 2 | ( , ) | cos ( , )

2 | ( , ) | cos ( , )

( , ) ( ( , ))

( , ) ( ( , ))

N M

xn ym x y xn ym
n m

xn ym x y xn ym

xn ym xn ym xn ym

xn ym xn ym xn ym

f x y a d d A

a d d A

A x y

A x y

    (4-10a) 

It is noted here that the uniformly distributed random angles 1( , )xn ym  

and 1( , )xn ym  between 0  and 2  are independent each other. 

and 
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(1)
21 21

1 1

21 21

22 22

22 22

21 1

( , ) 2 | ( , ) | cos ( , )

2 | ( , ) | cos ( , )

2 | ( , ) | cos ( , )

2 | ( , ) | cos ( , )

( , ) ( (

N M

xn ym x y xn ym
n m

xn ym x y xn ym

xn ym x y xn ym

xn ym x y xn ym

xn ym xn ym x

g x y a d d A

a d d A

a d d A

a d d A

A x y 21

21 1 21

22 2

22 2

, )+ ( , ))

( , ) ( ( , )+ ( , ))

( , ) ( ( , ))

( , ) ( ( , ))

n ym xn ym

xn ym xn ym xn ym xn ym

xn ym xn ym xn ym

xn ym xn ym xn ym

A x y

A x y

A x y

   (4-10b) 

where the uniformly distributed random angles 1( , )xn ym , 1( , )xn ym ,

2( , )xn ym  and 2( , )xn ym  are also independent each other. And 

   

11

21

2

22

| ( , ) | ( , )

| ( , ) |
| ( , ) |

( , )

( , ) ( , ) | ( , ) |
| ( , ) |

( , )

xn ym ff xn ym

fg xn ym
xn ym

ff xn ym

ff xn ym gg xn ym fg xn ym
xn ym

ff xn ym

a S

S
a

S

S S S
a

S

    (4-10c) 

and 

1
21

Im( ( , ))
( , ) tan

Re( ( , ))
fg xn ym

xn ym
fg xn ym

S

S
                       (4-10d) 

If the fields and are quadrant symmetry where the power spectral 

density function satisfies ( , ) ( , )jk x y jk x yS S  (see Fig. 3.2-1), then 

21 21

( , ) ( , ), , 1,2

( , ) ( , )
jk xn ym jk xn ym

xn ym xn ym

a a j k
                       (4-11) 
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Hence, Eq. (2.3-10) reduce to, for quadrant symmetry, 

(1) 11
11

111 1

cos ( , )
( , ) 2 | ( , ) |

cos ( , )

N M
xn ym

xn ym x y
xn ymn m

A
f x y a d d

A
 (4-12a) 

and 

(1) 21
21

211 1

22
22

22

cos ( , )
( , ) 2 | ( , ) |

cos ( , )

cos ( , )
2 | ( , ) |

cos ( , )

N M
xn ym

xn ym x y
xn ymn m

xn ym
xn ym x y

xn ym

A
g x y a d d

A

A
a d d

A

 (4-12b) 

The above Eqs. (4.10) and (4.12) are suitable for the computer simulation of 

real valued (1)( , )f x y and (1)( , )g x y . 

     The wave number vector is assumed to be located in the first (1st) 

quadrant so that all the wave numbers are positive (negative). Then Eqs. 

(4.10) and (4.12) reduce to as follows, although their simulated stochastic 

fields satisfy the target power spectral density (or correlation) functions. 

(1)
11 11

1 1

( , ) 2 | ( , ) | cos ( , )
N M

xn ym x y xn ym
n m

f x y a d d A       (4-13a) 

and 

(1)
21 21

1 1

22 22

( , ) 2 | ( , ) | cos ( , )

2 | ( , ) | cos ( , )

N M

xn ym x y xn ym
n m

xn ym x y xn ym

g x y a d d A

a d d A

       (4-13b) 

The above simulated fields may be called as the first quadrant symmetry. Eq. 

(4-13) was proposed by Shinozuka and Jan (1972).  

     Figure 4.1 shows schematically the wave number field of the Bi-

directional wave number (quadrant symmetry) where both ( , )jk xn ymA  and 
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1( , )jk xn ymA  are taken into account as Eq. (4.12). If the field is the first 

quadrant symmetry, Uni-directional wave number where only ( , )jk xn ymA  

is taken into account such as Eq. (4.13). Therefore, the first quadrant 

symmetry field shows a random field with directional characteristics, while 

the directional nature cannot be seen for the quadrant symmetry field 

(Chapter 6). 

  

Fig. 4.1 Bi-Directional Wave Number in X-Y Plane 
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5. TIME-SPACE STOCHASTIC FIELDS 

 

   In the previous Chapters we were concerned with stochastic fields whose 

sample functions are continuous functions of the space coordinates x and y . 

We now turn to a more general case where the stochastic fields are functions 

of time as well as the space coordinates. This Chapter presents the 

relationships of the various second moments of the complex valued time space 

fields, and also only the results of the spectral representation of the real 

valued time space fields, because the real valued time space stochastic fields 

are obvious from the procedure shown in Chapter 4. 

 

5.1 Second Moments of Time-Space Stochastic Fields 

     As defined in Chapters 2 and 3, the complex valued time space 

stochastic fields ( , , )f x y t  and ( , , )g x y t  can be defined as 

(1) (2)

(1) (2)

( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , )

f x y t f x y t if x y t

g x y t g x y t ig x y t
                           (5.1-1) 

where (1)f , (2)f , (1)g  and (2)g are the real valued stochastic fields. The mean 

can be defined as 

(1) (2)

(1) (2)

[ ( , , )] [ ( , , )] [ ( , , )]

[ ( , , )] [ ( , , )] [ ( , , )]

E f x y t E f x y t iE f x y t

E g x y t E g x y t iE g x y t
                       (5.1-2) 

where [ ]E  is the expectation operator. 

    Now suppose that the fields are stationary, homogeneous and zero mean. 
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Then, the time space covariance function of the fields can be written in matrix 

form as 

* *

* *

( , , ) ( , , )
( , , )

( , , ) ( , , )

[ ( , , ) ( , , )] [ ( , , ) ( , , )]

[ ( , , ) ( , , )] [ ( , , ) ( , , )]

ff x y fg x y
x y

gf x y gg x y

x y x y

x y x y

R R

R R

E f x y t f x y t E f x y t g x y t

E g x y t f x y t E g x y t g x y t

R

     

(5.1-3) 

From the definition given by Eq. (5.1-3), the time space covariance function 

possesses the property such that 

*( , , ) ( , , ), , ,jk x y kj x yR R j k f g                      (5.1-4) 

That is, the covariance matrix is Hermitian.  

Transforming the time lag  into the frequency  by means of the 

Wiener Kintchine transform yields the temporal frequency spatial spectral 

density function as a function of separation distances x  and y : 

1
( , , ) e ( , , )

2
i

jk x y kj x yB R d                         (5.1-5a) 

By performing an inverse transformation, we can reclaim ( , , )jk x yR  as 

( , , ) e ( , , )i
kj x y jk x yR B d                          (5.1-5b) 

If the separation distances x  and y  are zero, the temporal frequency 

spatial spectral density function is expressed as ( at any point x  and y ): 

 (0,0, ) ( )jk jkB S                                           (5.1-6) 
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Normalization of the temporal frequency cross spectral density function 

with respect to its value at the zero separation distances gives the frequency 

dependent spatial covariance function as follows: 

( , , )
( , , )

( )
jk x y

jk x y
jk

B

S
                                   (5.1-7) 

The spatial covariance function can be defined as 

( , ) ( , , 0)jk x y jk x yB R                                 (5.1-8a) 

and hence, with the aid of Eqs. (5.1-5a) and (5.1-7), 

( , ) ( , , ) ( ) ( , , )jk x y jk x y jk jk x yB B d S d     (5.1-8b) 

Thus, the spatial covariance function is a weighted integral of the frequency 

dependent spatial covariance function ( , , )jk x y with the point cross 

spectral density function ( )jkS  as the weight. 

     If the time space stochastic fields are assumed to be ergodic, the spatial 

covariance function may be estimated from the temporal average such that 

*

0

( , ) ( , , 0)

1
lim ( , , ) ( , , )

jk x y jk x y
T

n x y nT

B R

j x y t k x y t dt
T

            (5.1-9b) 

or from the following spatial average 

*

0 0

( , ) ( , , 0)

1
lim ( , , ) ( , , )

yx

x

y

jk x y jk x y
LL

n x y nL
x yL

B R

j x y t k x y t dxdy
L L

            (5.1-9b) 

in which ( , , )nj x y t  represents the n-th sample function of real valued 



 

36 

 

( , , )j x y t , where ,j f g . However, in practice, Eq. (5.1-9b) cannot usually be 

used since the observations ( , , )nj x y t  are made at only a few discrete 

locations along the x  and y  axes and therefore the integration of Eq. (5.1-

9b) is not possible. 

     Similarly, transforming the separation distances x  and y  into the 

wave numbers x  and y  by means of the Wiener Khintchine transform 

gives the temporal covariance spatial cross wave number spectral density 

function ( , , )jk x yC  as a function of : 

( )

2

1
( , , ) e ( , , )

(2 )
x x y yi

jk x y jk x y x yC R d d       (5.1-10a) 

By performing an inverse transformation, we can reclaim ( , , )jk x yR  as 

( )
( , , ) e ( , , )x x y yi

jk x y jk x y x yR C d d             (5.1-10b) 

     Finally, transforming both the time lag and the separation distances 

into the frequency and wave numbers by means of the Wiener Khintchine 

transform gives the frequency wave number cross spectral density function 

such that 

( )

3

1
( , , ) e ( , , )

(2 )
x x y yi

jk x y jk x y x yS R d d d   (5.1-11a) 

From the inverse transformation 

( )
( , , ) e ( , , )x x y yi

jk x y jk x y x yR S d d d         (5.1-11b) 
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     Due to Eqs. (5.1-5a), (5.1-5b) and (5.1-10a), the frequency wave number 

spectral density function ( , , )jk x yS  is also related to ( , , )jk x yB  and 

( , , )jk x yC  such that 

( )

2

1
( , , ) e ( , , )

(2 )
x x y yi

jk x y jk x y x yS B d d        (5.1-12a) 

and 

1
( , , ) e ( , , )

2
i

jk x y jk x yS C d                        (5.1-13a) 

By the inverse transformation 

( )
( , , ) e ( , , )x x y yi

jk x y jk x y x yB S d d               (5.1-12b) 

and 

( , , ) e ( , , )i
jk x y jk x yC S d                            (5.1-13b) 

And the point spectral density function defined by Eq. (5.1-6) is also written 

as 

( ) (0,0, ) ( , , )jk jk jk x y x yS B S d d                   (5.1-14) 

     Similar to Eq. (5.1-7), normalization of the frequency wave number 

spectral density function ( , , )jk x yS  with respect to the point spectral 

density function ( )jkS  yields the frequency dependent wave number 

spectral density function as follows: 
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( , , )
( , , )

( )
jk x y

jk x y
jk

S

S
                                 (5.1-15) 

The spatial wave number spectral density function ( , )jk x yS  can be defined 

as ( , ) ( , , 0)jk x y jk x yS C   and hence, with the aid of Eqs. (5.1-13b) 

and (5.1-15), 

( , ) ( , , 0)

( , , )

( ) ( , , )

jk x y jk x y

jk x y

jk jk x y

S C

S d

S d

                       (5.1-16) 

     As described above, there is a close relationship among the various 

functions which are summarized in Fig. 5.1-1. From a general 

characterization point of view, the frequency wave number spectral density 

function ( , , )jk x yS  defined by Eq. (5.1-11a) may be more useful because 

this function plays a central role when we perform an analysis similar to that 

used for the spectral representation of stochastic fields as described in 

Chapter 2 and 3. On the other hand, the spatial covariance function 

( , )jk x yB and the spatial spectral density function ( , )jk x yS are also 

important functions to characterize the spatial variation of the time space 

stochastic fields ( , , )j x y t  and ( , , )k x y t . In fact, the spatial variation of 

earthquake ground motion displacements is of major significance or the 

response of underground lifeline structures such as pipelines.  In Chapter 6, 

a numerical example for the spatial variation of earthquake ground 
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displacement is presented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

Fig. 5.1-1 Relationship among the Various Second Moments for Stationary- 

Homogeneous Time-Space Stochastic Fields 
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5.2 Spectral Representation of Time Space Fields  

     Since the formulation is just same to the two-dimensional stochastic fields 

described in Chapters 3 and 4, we show only the results of the spectral 

representation of time space stochastic fields and their simulation method. 

     For the time space stochastic fields, we must take into account for the four 

combinations of frequency wave numbers as shown in Fig. 5.2-1, while two 

combinations are necessary for the two-dimensional stochastic fields. 

  

   

 

 

 

 Fig. 5.2-1 Four Combinations of Frequency Wave Numbers for Time Space 

Stochastic Field 

 

By considering the four combinations of frequency wave numbers in the real 

valued two-dimensional stochastic fields given by Eqs. (4-9a) and (4.9b), the 

spectral representation of time space stochastic fields is given such that 

 

x  

y  
y  
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(1)
11 11

0 0 0

11 11
0 0

11 11
0 0

11 11
0 0

( , , ) 2 | ( , , ) | cos ( , , )

2 | ( , , ) | cos ( , , )

2 | ( , , ) | cos ( , , )

2 | ( , , ) | cos ( , , )

x y x y x y

x y x y x y

x y x y x y

x y x y x y

f x y t a d d d A

a d d d A

a d d d A

a d d d A

11 1

11 1

( , , ) ( ( , , ))

( , , ) ( ( , , ))

x y x y x y

x y x y x y

A x y

A x y

 (5.2-1) 

In order to make above equation simple, we express it such as 

(1) 11

, 1 110 0 0

11 1

| ( , , ) |
( , , ) 2

cos ( , )

( , , ) ( ( , , ))

y

x y y x y

I I y y

x y y x y y x y y

a I I d d d
f x y t

A I I

A I I x I y I I

   (5.2-2a) 

and 

21

(1) 21

, 10 0 0 22

22

1
21

2

| ( , , ) |

cos ( , , )
( , , ) 2

| ( , , ) |

cos ( , , )

( , , )+
( , , )

y

x y y x y

x y y

I I x y y x y

x y y

x y y x y y
x y y

a I I d d d

A I I
g x y t

a I I d d d

A I I

x I y I I
A I I

1

22 2

( , , )

( , , ) ( ( , , ))

x y y

x y y x y y x y y

I I

A I I x I y I I

   (5.2-2b) 
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11

21

2

22

| ( , , ) | ( , , )

| ( , , ) |
| ( , , ) |

( , , )

( , , ) ( , , )

| ( , , ) |
| ( , , ) |

( , , )

x y y ff x y y

fg x y y
x y y

ff x y y

ff x y y gg x y y

fg x y y

x y y
ff x y y

a I I S I I

S I I
a I I

S I I

S I I S I I

S I I
a I I

S I I

    (5.2-2c) 

and 

1
21

Im( ( , , ))
( , , ) tan

Re( ( , , ))
fg x y y

x y y
fg x y y

S I I
I I

S I I
              (5.2-2d) 

If the fields are quadrant symmetry, that is, the four spectral density 

function are same such as 

11 11

21 21

22 22

| ( , , ) | | ( , , ) |

| ( , , ) | | ( , , ) |

| ( , , ) | | ( , , ) |

x y y x y

x y y x y

x y y x y

a I I a

a I I a

a I I a

                              (5.2-3) 

Then, the spectral representation of real valued time space stochastic fields is 

given such that 

(1) 11

, 1 110 0 0

11 1

| ( , , ) |
( , , ) 2

cos ( , , )

( , , ) ( ( , , ))

y

x y x y

I I x y y

x y y x y y x y y

a d d d
f x y t

A I I

A I I x I y I I

     (5.2-2a) 

and 
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21

21
(1)

, 10 0 0
22

22

1
21

| ( , , ) |

cos ( , , )

( , , ) 2

| ( , , ) |

cos ( , , )

( , , )+
( , , )

y

x y x y

x y y

I I

x y x y

x y y

x y y x y y
x y y

a d d d

A I I

g x y t

a d d d

A I I

x I y I I
A I I

21

22 2

( , , )

( , , ) ( ( , , ))

x y y

x y y x y y x y y

I I

A I I x I y I I

      (5.2-2b) 

     The three hold integrals can be approximately expressed as (see Chapter 4) 

(1)

1 1 1

11

, 1 11

11 1

( , , )

| ( , , ) |
2

cos ( , , )

( , , ) ( ( , , ))

y

K N M

k n m

xn y ym k x y

I I xn y ym k

xn y ym k xn y ym xn y ym k

f x y t

a I I d d d

A I I

A I I x I y I I

   (5.2-3a) 

and 

(1)

1 1 1

21

21

, 1

22

22

21

( , , )

| ( , , ) |

cos ( , , )

2

| ( , , ) |

cos ( , , )

( , ,

y

K N M

k n m

xn y ym k x y

xn y ym k

I I

xn y yn k x y

xn y ym k

xn y ym

g x y t

a I I d d d

A I I

a I I d d d

A I I

A I I 1

21

22 2

( , , )+
)

( , , )

( , , ) ( ( , , ))

xn y ym xn y ym k
k

xn y ym k

xn y ym k xn y ym xn y ym k

x I y I I

I I

A I I x I y I I

  (5.2-3b) 
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max max max2 2 2
, ,

, ,

x x
x y

xn x yn y k

d d d
N M K

nd md kd
                 (5.2-3c) 

where max max max( , , )x y  mean the upper frequency wave numbers in which the 

frequency wave number power spectral density functions could be zero over them. 
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6. NUMERICAL EXAMPLES 

 

     To visually illustrate the significance of the simulation equations previously 

described, we present here several numerical examples of the sample function 

(real value) of (1)( , ) ( , )f x y f x y simulated using the simulation equations in 

Chapter 4. And also, we present here an example of the seismic ground 

deformation pattern 0( , , )u x y t  of ground surface at time 0t t  estimated from 

seismic observation in Taiwan (SMART-1 Array). By extending the power 

spectral density function of 0( , , )u x y t  estimated from the data of the SMART-

1, we demonstrate the temporal space variation of ( , , )u x y t .  

 

6.1 Simulation Examples 

     For simplicity, consider the simulation of (1)( , )f x y  using Eq. (4.12a) 

(Quadrant symmetry, Uni-variate, Two-dimensional Case). From Eqs. (4.10c) 

and (4.12a): 

(1)
1

1 1
1

2 ( , )

( , ) 2 cos( )

cos( )

ff xn ym x yN M

xn ym nm
n m

xn ym nm

S d d

f x y x y

x y

            (6.1-1a) 

where 1nm  and 1nm  are mutually independent random phase angles 

uniformly distributed between 0  and 2 . The discrete parameters are given 
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by 

max max2 2
,

,

x x
x y

xn x yn y

d d
N M

nd md
                               (6.1-1b) 

where max max( , )x y  mean the upper frequency wave numbers in which the 

frequency wave number power spectral density functions could be zero over them. 

     Equation (6.1-1) signifies that a sample function (1)( , )f x y  can be 

expressed as the sum of many elementary waves 1cos( )xn ym nmx y  and 

1cos( )xn ym nmx y which propagate in the A and B directions, as shown 

previously in Fig. 4.1 with amplitude 2 ( , )ff xn ym x yS d d . To illustrate the 

above, two sample functions are generated using only the first term of Eq. 

(6.1-1a). 

     In Fig. 6.1-1a, a sample function of (1)( , )f x y  is plotted for an isotropic 

power spectral density function (see Fig. 6.1-2) such as 

2
2 2 2 2( ) exp( ( / 2) ),
4ff x y

b
S b                (6.1-2a) 

For the numerical example, the following data are used: 

max1, 1, 64, 2b N M                    (6.1-2b) 

From Fig. 6.1-1a, a sample function exhibits an isotropic pattern where 

the variation pattern is independent of direction. However, if we use only the 

first term in Eq. (6.1-1a) for the simulation (First Quadrant Symmetry Case), 

a directional dependent pattern as shown in Fig. 6.1-1b is observed, 
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notwithstanding the use of an isotropic power spectral density function. 

 

 

 

Fig. 6.1-1 Simulated Sample Stochastic Field 

 ((a): Bi-Directional Simulation, (b): Uni-Directional Simulation) 
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Fig. 6.1-2 Isotropic Spectral Density Function 

 

6.2 Ground Deformation Using Seismic Array 

   Observations 

     The data used in this study consist of the original accelerograms recorded 

on January 29, 1981 (Event 5) by a SMART-1 seismograph array as shown in Fig. 

6.2-1 installed at Lotung, Taiwan. In this study, a displacement time history along 

the direction ( 77  or 13N W ) which is considered to be approximately the 

direction of the seismic source of this earthquake (Event 5), is computed at each 



 

49 

 

accelerogram station from two-component data (EW and NS). The purpose of 

this study is to show an example of the spatial variation of seismic ground 

displacement for the analysis of underground pipelines. A more detailed 

description of this study is given in a report by Harada and Oda (1984). 

 

Fig. 6.2-1 The SMART-1 Array and Coordinate System  
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     By interpreting the displacement time history ( , , )u x y t ( 13N W component) 

at each station as sample functions of the uni-variate and spatially two-

dimensional time-space stochastic process (1)( , , )f x y t , and using Eq. (5.1-9a), a 

spatial correlation function ( , )uu x yB  was computed from the records of all the 

combinations of the 17 stations, C-00, I-03~I-12, M-03~M-09 and O-04~O-09, 

specifying the standard stations as C-00, M-05 and O-05. Since the computed 

correlation functions approximately indicate quadrant symmetric behavior, that is, 

( ( , ) ( , )uu x y uu x yB B ), all the correlation coefficient data were plotted by 

alim arrows as shown in Fig. 6.2-2. 

 

 

Fig. 6.2-2 Observed and Approximated Two Dimensional Correlations    
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     By judging the distribution of the correlation coefficients, a simple analytical 

correlation function was assumed such that 

22 2

2( , ) 1 2 exp yx x
uu x y uu

x x y

B
b b b

            (6.2-1a) 

where 3 31.24 cm, 1.131 10 m, 3.012 10 muu x yb b . The values of Eq. 

(6.2-1) are also plotted with fat arrows in Fig. 6.2-2 indicating that the 

analytical form of Eq. (6.2-1a) is approximately valid. From the Wiener 

Khintchine relationship shown in Fig. 5.1-1, the corresponding power spectral 

density function ( , )uu x yS  is obtained as 

 

( )

2

222
3 2

1
( , ) ( , )e

(2 )

exp
8 2 2

x x y yi

uu x y uu x y x y

y yuu x x
x y x

S B d d

bb
b b

        (6.2-1b) 

     A sample function of ( , )u x y  in the area of 22747.60 m by 19884.06 m is 

shown in Fig. 6.2-3. In this example, following data are used in Eq. (6.1-1): 

3
max

3
max

64

10 / 8.84 10 rad/m

10 / 3.32 10 rad/m
x x

y y

N M

b

b

                          (6.1-1c) 

     It is observed from Fig. 6.2-3 that there is relatively rapid variation 

along the x  axis ( 13N W : seismic source approximate direction) compared 

with the variation along the y  axis. From the number of peaks (9) along the  

x  axis (22747.60 m) in Fig. 6.2-3, the apparent wave length along the x  axis 
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is estimated to be about 2.5 km. Hence, the pattern in Fig. 6.2-3 indicates that 

a single wave with a wavelength of approximately 2.5 km propagates in the  

x  direction. In fact, for Event 5 data, the other study shows that a strong 

portion of the records consist of a wave with frequency of approximately 1.2 

Hz and that it propagates in the x  direction with a speed of about 3 km/s 

(Bolt, et.al. (1982)) indicating a wavelength of 2.5 km (3/1.2). This result is 

quite consistent with the variation pattern shown in Fig. 6.2-3. 

     In Fig. 6.2-3, the correlation distance (1897.4 m) means the length 

where the correlation of stochastic fields is very high (Harada and Shinozuka 

(1986)).  

 

 

Fig. 6.2-3  A Sample Function of ( , )u x y  (Event 5, SMART-1 Array ) 
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6.3 Spatially Two Dimensional Homogeneous 

Non-Stationary Stochastic Wave 

     By extending the two-dimensional power spectral density function 

( , )uu x yS  given by Eq. (6.2-1b) in conjunction with the wave propagation, 

the power spectral density function of ( , , )u x y t  may be modelled such that 

2 2

( , , ) ( , ) ( ( , ))

( , )

uu x y uu x y x y

x y x y

S S g

g C C
                   (6.3-1) 

where C  is the speed of wave propagation and we assume here 640m/sC  

for an example of simulation of ( , , )u x y t . Due to the wave propagation, the 

frequency is related with the wave numbers such as C  that is, the 

frequency is determined by the wave numbers. In this model, the 

predominant frequency is approximately 0.26Hz (=640/2500) because the 

wavelength of x  direction is about 2.5km from Section 6.2 or Fig. 6.2-3.  It 

is noted here that if we assume 3,000m/sC , the predominant frequency is 

about 1.2Hz (3000/2500) as the observed data of Event 5.  

     We introduce the evolutionary power spectrum ( , , , )uu x yS t  of a 

spatially two-dimensional homogeneous, non-stationary stochastic wave as 

2( , , , ) | ( , ) | ( , , )uu x y uu x yS t A t S                      (6.3-2a) 

For this example, the modulating function ( , )A t  is assumed as 

* *

exp( 0.25 ) exp( (0.3765 0.251) )
( , )

exp( 0.25 ) exp( (0.3765 0.251) )

t t
A t

t t
          (6.3-2b) 
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where *t  indicate the time instant at which assume a maximum value as a 

function of time; 

* ln(0.3765 0.251) ln0.25

0.3765 0.001
t                            (6.3-2c) 

Figure 6.3-1 shows the modulating function used in this numerical example 

indicating the higher frequency is predominant in the early time, while the 

lower frequency is involved in the later time. 

     

Fig. 6.3-1 Modulating Function ( , )A t  

 

     Similar to Eq. (6.1-1), the spatially two-dimensional homogeneous non-

stationary stochastic wave can be simulated using the following expression, 

2

1
1 1

1

2 | ( , ( , )) | ( , )

( , , ) 2 cos( ( , ) )

cos( ( , ) )

xn ym uu xn ym x yN M

xn ym xn ym nm
n m

xn ym xn ym nm

A t g S d d

u x y t x y g t

x y g t

 (6.3-3) 

where the same parameters given by Eq. (6.1-1c) are used.  

     The stochastic wave is now simulated, using Eq. (6.3-3), over a 10 km 

by 10 km area as shown in Fig. 6.3-2.  
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Fig. 6.3-2 Simulated Area 

 

Fig. 6.3-2 Simulated Stochastic Wave at 4 Equispaced Time Instants 

 

The simulation is performed at 12 equispaced time instants, 0.5 sec 
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apart from each other, and shown in Fig. 6.3-3 at 4 equispaced time instants.  

     It is clearly observed in 4 plots that there is relatively rapid variation 

along the x  axis compared to the variation along the y  axis, as shown in 

Fig. 6.2-3 previously. From the number of peaks (4) along the x  axis, the 

apparent wave length along this axis is estimated to be around 2.5 km similar 

to that of Fig. 6.2-3. 
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7. ESTIMATION OF SPECTRAL DENSITY FUNCTION 

 

     In the previous Chapters 5 and 6, the spectral representation of 

stochastic fields and the numerical examples are presented if the power 

spectral density function are given. Hence the estimation of the power 

spectral density function is necessary to simulate the stochastic fields. In this 

Chapter, the estimation method of the power spectral density function from a 

set of discrete data equally spaced (1) one-dimensional case, (2) two-

dimensional case, and (3) a set of discrete time space data not equally spaced 

such as a seismic array data where the many seismographs are usually 

installed on the ground surface not equally spaced. 

  

7.1 Bi-Variate, One-Dimensional Case 

     We consider the estimation of a spectral density function from the finite 

length real valued records ( )f x  and ( )g x  with zero mean defined in the 

range 0 x L . 

     The finite range Fourier transform can be defined such that (Bendat and 

Piersol (1971)), 

0

*

( , ) ( )e , ,

1
( ) ( , )e

2

( , ) ( , )

L
i x

j

i x
j

j j

F L j x dx j f g

j x F L d

F L F L

                           (7.1-1) 

Assuming that ( )f x  and ( )g x  are sampled at N  equally spaced points with 
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distance /dx L N  apart, then ( )f x  and ( )g x  can be expressed as 

( ) ( ) 1,2, ,j n j ndx n N                                (7.1-2a) 

For arbitrary , the discrete version of Eq. (7.1-1) is 

1

( , ) ( )e
N

i ndx
j

n

F L dx j n                                 (7.1-2b) 

The usual selection of a discrete wave number for the computation of ( , )jF L  

is  

2 2
, 1,2, ,p p p pd p N

L Ndx
               (7.1-3a) 

At these wave numbers, Eq. (7.1-2b) can be written as 

2

1

( , ) ( )e , 1,2, ,
pnN i
N

j p
n

F L dx j n p N                   (7.1-3b) 

     On the other hand, for large L , the covariance function may be 

estimated by 

0

1
( ) ( ) ( ) , 0

1
( ) ( ) ( ) , 0

L

jk

L

jk

R j x k x dx L
L

R j x k x dx L
L

                    (7.1-4a) 

Recalling the Wiener Khintchine relationships, the power spectral density 

function ( )jkS  may also be estimated by 

1
( ) ( )e

2

L
i

jk jk
L

S R d                                    (7.1-4b) 

Equation (7.1-4b) is also written substituting Eq. (7.1-4a) into Eq. (7.1-4b) as 



 

59 

 

0

0 0

1
( ) ( ) ( ) e

2

1
( ) ( ) e

2

L
i

jk
L

LL
i

S j x k x dx d
L

j x k x dx d
L

                  (7.1-4c) 

By changing the region of integration as shown schematically in Fig. 7.1-1 

from (0 , )x L L L  to (0 ,0 )x L L  where x , and 

,d d  the above integral can be expressed as 

0

0 0 0 0

LL L L L

L

dxd dxd dxd                             (7.1-5) 

   

 

 

 

 

    

(a)  ( , )x  Region                  (b) ( , )x  Region 

Fig. 7.1-1  Region of Integration 

 

Hence, Eq. (7.1-4c) becomes, accounting from Eq. (7.1-5), such that 

0 0

1
( ) ( )e ( )e

2

L L
i i x

jkS j d k x dx
L

                     (7.1-6a) 

Recalling Eq. (7.1-1), Eq. (7.1-6a) can also be expressed as 

*1
( ) ( , ) ( , )

2jk j kS F L F L
L

                               (7.1-6b) 

 

L  

L  

L  

 

x  

 

L  

 

0  
L  

x  
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     At the discrete wave number, Eq. (7.1-6) is expressed using Eq. (7.1-3b) 

as follows: 

2 2

1 1

1 1 1
( ) ( )e ( )e

pn pnN Ni i
N N

jk p
n n

S pd j n k n
d N N

  (7.1-7a) 

If j k , Eq. (7.1-7a) reduces to 

2
2

1

1 1
( ) ( )e

pnN i
N

jj p
n

S pd j n
d N

                     (7.1-7b) 

Equation (7.1-7) are suitable for the estimation of the power spectral density 

function via finite Fourier transforms using the Fast Fourie Transform (FFT) 

technique. 

 

7.2 Bi-Variate, Two-Dimensional Case 

     Using the procedures similar to those for the bi-variate, one-

dimensional case described in the previous section, we describe the 

estimation of the power spectral density function for the bi-variate, two-

dimensional, real valued stochastic fields ( , )f x y  and ( , )g x y , defined in the 

finite regions 0 xx L and 0 yy L . 

     Finite range Fourier transform for the two-dimensional case can be 

defined such that 
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( )

0 0

( )

2

*

( , , , ) ( , )e , ,

1
( , ) ( , , , )e

(2 )

( , , , ) ( , , , )

yx

x y

x y

LL
i x y

j x y x y

i x y

j x y x y x y

j x y x y j x y x y

F L L j x y dxdy j f g

j x y F L L d d

F L L F L L

         (7.2-1) 

and, at discrete wave numbers and locations, Eq. (7.2-1) can be expressed as 

2 2

1 1

( , , , ) ( , )e

pn qm
N M i

N M
j xp yq x y

n m

F L L dxdy j n m           (7.2-2a) 

where 1,2, , , 1,2, ,p N q M  and 

,

2 2

2 2

yx

xp x
x

yq y
y

LL
dx dy

N M

p p pd
L Ndx

q q qd
L Mdy

                                  (7.2-2b) 

     For large ,x yL L , the covariance function ( , )jk x yR  may also be 

estimated by 

For 0 x xL  and 0 y yL : 

0 0

1
( , ) ( , ) ( , )

y yx x
LL

jk x y x y
x y

R j x y k x y dxdy
L L

         (7.2-3a) 

For 0x xL  and 0 y yL : 

0

1
( , ) ( , ) ( , )

y yx

x

LL

jk x y x y
x y

R j x y k x y dxdy
L L

           (7.2-3b) 

For 0x xL  and 0y yL : 
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1
( , ) ( , ) ( , )

yx

x y

LL

jk x y x y
x y

R j x y k x y dxdy
L L

             (7.2-3c) 

For 0 x xL  and 0y yL : 

0

1
( , ) ( , ) ( , )

yx x

y

LL

jk x y x y
x y

R j x y k x y dxdy
L L

          (7.2-3d) 

     Recalling the Wiener Khintchine relationships, the power spectral 

density function ( , )jk x yS  may be estimated by 

( )

2

1
( , ) ( , )e

(2 )

yx

x x y y

x y

LL
i

jk x y jk x y x y
L L

S R d d          (7.2-4) 

Substituting Eq. (7.2-3) into Eq. (7.2-4) and taking into account the following 

relationship similar to Eq. (7.1-5) with ,x x y yx y , 

0 0 0 0 0 0 0 0

0 0

0 0 0 0

0 0

y y y yx x x x

y y y yx x x x

x x y y

yx

x y x y

L L L LL L L L

x y x y

L L LL L L

x x y y
L L

LL

x y x y
L L

dxdyd d dxd dyd

dxd dxd dyd dyd

dxdyd d dxdyd d
0

0 0

0

0 0 0 0 0 0

y y yx

x y x

y y y yx x x x x x

y y

L LL

L

L L LL L L L

x y x y
L

dxdyd d dxdyd d

     

(7.2-5) 

Equation (7.2-4) is also expressed as 
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( )

0 0
2

( )

0 0

( , )e
1

( , )
(2 )

( , )e

yx

x x y y

yx

x y

LL
i

x y x y

jk x y LL
i x yx y

j d d

S
L L

k x y dxdy
  (7.2-6a) 

Substitution of Eq. (7.2-2a) into Eq. (7.2-6a) yields 

*

2

1
( , ) ( , , , ) ( , , , )

(2 )
jk x y j x y x y k x y x y

x y

S F L L F L L
L L

       (7.2-6b) 

At the discrete wave number, Eq. (7.2-6b) is expressed using Eq. (7.2-2) 

as follows: 

2 2

1 1

2 2

1 1

1
( , )e

1
( , )

1
( , )e

pn qm
N M i

N M

n m

jk xp yq pn qm
N M ix y N M

n m

j n m
NM

S
d d

k n m
NM

   (7.2-7a) 

If j k , Eq. (7.1-7a) reduces to 

2
2 2

1 1

1 1
( , ) ( , )e

pn qm
N M i

N M
jj xp yq

n mx y

S j n m
d d NM

       (7.2-7b) 

By utilizing Eq. (7.2-7) together with the FFT technique, the power spectral 

density function ( , )jj xp yqS  can be efficiently estimated from a set of 

discrete data equally spaced / , /x ydx L N dy L M  in the region 

0 xx L and 0 yy L . 
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7.3 One-Variate, Time Space Ground Surface Array Data 

     We consider now the time space function (1)( , , )( ( , , ))f x y t f x y t  as the 

observed seismic array records. These records are not usually observed in equally 

spaced array. Herein, we describe the two estimation methods of the power 

spectral density function from the array data; (1) Conventional method and (2) 

High resolution method by Capon (1969, 1973).    

     In this section, the real valued continuous time space function 

( , )( ( , , )), ( , )f t f x y t x yx x  of finite time 0 ,t T  and finite space regions 

0 ( 0 ,0 )x yx L y Lx L  where ( , )x yL LL  are expressed such as 

0 0, 0

( , , ) ( , ) 0 ,0

0 ,
T

t

f x y t f t t T

T t
L

x

x x L

L x

                   (7.3-1a) 

and the frequency wave number spectrum of ( , )Tf tL x  is defined as 

( )

( )

3

( , ) ( , )e

1
( , ) ( , )e

(2 )

i t
T T

i t
T T

F f t d dt

f t F d d

k x
L L

k x
L L

k x x

x k k

                 (7.3-1b) 

where ( , )x yk  and  mean the wavenumber vector and frequency, and 

x yx yk x . By the above definitions, the complex conjugate Fourier 

spectrum is given by 
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* ( )

* ( )

3

( , ) ( , )e

1
( , ) ( , )e

(2 )

i t
T T

i t
T T

F f t d dt

f t F d d

k x
L L

k x
L L

k x x

x k k

                 (7.3-1c) 

 

(1) Conventional Method 

     Denoting the observed seismic data ( ) ( , , )n n nf t f x y t from seismograph 

located on ground surface ( , ), 1,n nx y n N . Then, these Fourier spectra can 

be estimated by 

0

*

0

( ) ( )e

( ) ( )e

T
i t

n n

T
i t

n n

F f t dt

F f t dt

                                        (7.3-2a) 

     By defining the vector of these Fourier spectra such as 

*
11
*

*2 2

*

( )( )

( ) ( )
( ) , ( )

( ) ( )N N

FF

F F

F F

F F                           (7.3-2b) 

Then the frequency wave number spectrum of continuous time space function

( , , ) ( , )Tf x y t f tL x  is given approximately by the weighted sum with complex 

weight nW  such as 
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1

* * *

1

( , ) ( )e

( , ) ( )e

N
i

T n n
n

N
i

T n n
n

F W F

F W F

k x
L

k x
L

k

k

                                  (7.3-3) 

By extending Eq. (7.2-6b) of two-dimensional function, the power spectral 

density function ( , )TS L k  of time space function ( , )Tf tL x  is given by 

*

3

( )* *

3
1 1

* *

3

1
( , ) ( , ) ( , )

(2 )

1
( ) ( )e

(2 )

1
( ) ( ) ( )

(2 )

m n

T T T

x y
N N

i
m n m n

m nx y

T T

x y

S F F
L L T

W W F F
L L T

L L T

L L L

k x x

k k k

WU k S U kW

  (7.3-4a) 

where ( )U k  means the array wave number vector as 

1 1

2 2

1 2

1

*2

*

e e

e e
, ( ) , ( )

e e

( ) (e e e )

N N

N

i i

i i

i i
N

i i iT

W

W

W

k x k x

k x k x

k x k x

k x k x k x

W U k U k

U k

            (7.3-4b) 

and ( )S  is the cross power spectral density function matrix defined by 
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*

1

* * *2
1 2

11 12 1

21 22 2

1 2

( ) ( ) ( )

( )

( )
( ( ) ( ) ( ))

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

T

N

N

N

N

N N NN

F

F
F F F

F

S S S

S S S

S S S

S F F

                 (7.3-4c) 

By the definition, ( )S  is the Hermitian matrix. 

     Now the conventional estimation of power spectral density function is 

obtained as follows, by using the wight 1/nW N , 

*

3 2

1
( , ) ( ) ( ) ( )

(2 )

C T
T

x y

S
L L TN

L k U k S U k                     (7.3-5) 

 

(2) High Resolution Method 

     This method proposed by Capon (1969, 1973) uses the different weight 

( , ) ( )n nW Wk as a function of frequency wave number from the 

conventional method. To show the derivation of this method, the power 

spectral density function ( , )TS L k  given by Eq. (7.3-4a) is rewritten as, 
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( )* *

1 1

( )*

1 1

*

( , ) ( ) ( ) ( ) ( )e

( ) ( ) ( )e

( ) ( ) ( )

m n

m n

N N
i

T m n m n
m n

N N
i

m n mn
m n

T

S C W W F F

C W W S

C

k x x
L

k x x

k

W S W

     (7.3-6a) 

where 

( )

3

1
, ( ) ( )e

(2 )
m ni

mn mn

x y

C S S
L L T

k x x
            (7.3-6b) 

     The weight ( , ) ( )n nW Wk  is determined by the satisfying the 

following two conditions; 

  (a) *
0 : Min( ( ) ( ) ( ))Tk k W S W                            (7.3-7a) 

(b) 0 0
1

: ( , ) ( ) ( ) ( ) 1
N

T
n b b

n

W F Fk k k 1 W          (7.3-7b) 

where 0k  is the wave number vector of the direction of wave propagation and 

( )bF is the Fourier spectrum of the beam formed signal ( )bf t  obtained by the 

weighted delay and sum beamformer method (Capon (1969, 1973), Harada 

and Motohashi (2021)). 

     By employing the method of Lagrange multiplier, the weight satisfying 

Eqs. (7.3-7a) and (7.3-7b) can be obtained by minimizing the Lagrange 

function as follows: 
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* *

1 1 1

* *

( ) ( ) ( ) ( ) ( ) 1

( ) ( ) ( ) ( ( ) 1)

N N N

mn m n m
m n m

T T

L S W W WW

W S W 1 W

       (7.3-8a) 

and 

*

( )
0

l

L

W

W
                                                 (7.3-8b) 

In Eq. (7.3-8a) we use the relationship that the condition given by Eq. (7.3-

7b) is also written as *( ) 1T1 W  for complex conjugate weight. 

     From Eqs. (7.3-8a) and (7.3-8b), the weight can be obtained as follows. 

* *

* * *
1 1 1

1

1

( )

( )

( ) ( ) 0 ( ) ( )

N N N
m m

mn n
m n nl l l

N

ln n
n

W WL
S W

W W W

S W

W

S W 1 W S 1

           (7.3-9a) 

In deriving the righthand side of Eq. (7.3-9a), we use the relationship as 

follows. 

*

*

1

0
m

l

m lW

m lW
                                           (7.3-9b) 

Substitution of the weight obtained in the last term of Eq. (7.3-9a) into Eq．

(7.3-7b) yields the unknown parameter as 

1 1( ( ) )T1 S 1                                           (7.3-9c) 

It is noted here that 1( )T1 S 1 is a scalar quantity.  



 

70 

 

From Eqs. (7.3-9a) and (7.3-9c), the optimal weight is obtained such as 

 

1

1 1 1

( ) ( )

( ( ) )( ( ) )
opt

T

W S 1

S 1 1 S 1
                          (7.3-10a) 

When we represent the element of the inverse of power spectral density 

function matrix 1( )S  as ( )mnq , then Eq. (7.3-10a) can be expressed such 

as 

1

1 1

( )

( )

( )

N

mn
m

nopt N N

mn
m n

q

W

q

                                 (7.3-10b) 

The above equation for the optimal weight is the same of that derived by 

Capon (1969, 1973). 

     By substituting Eq. (7.3-10a) into Eq. (7.3-6a) and taking account for the 

scalar quantity 1( )T1 S 1 , the high resolution of frequency wave number 

power spectral density function can be obtained such as 

*

* 1 1

* 1 1

1 1

* 1 1

( , ) ( ) ( ) ( )

( ( )) ( )
( )

( ( )) ( )

( ( ) )

( ( ) ( ) ( ))

T
T

T T

T T T

T

T

S C

C

C

C

L k W S W

1 S S 1
S

1 S 1 1 S 1

1 S 1

U k S U k

                 (7.3-11a) 

In deriving the above equation, we use the following relationship, 
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( )1 1

1 1

* 1

( ) ( )e

( ) ( ) ( )

m n

N N
iT

mn
m n

T

S k x x1 S 1

U k S U k

                      (7.3-11b) 

From Eq. (7.3-11a), the high resolution of frequency wave number power 

spectral density function can be written such as 

* 1 1

3

1
( , ) (| ( ) ( ) ( ) |)

(2 )

HR T
T

x y

S
L L T

L k U k S U k                (7.3-12) 
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8. SUMMARY 

 

     A new version of the simulation equations for bi-variate two-

dimensional stochastic processes is described which is consistent with the 

spectral representation of homogeneous stational stochastic fields. The new 

version is taken account for the concept of quadrant symmetry. Also, the 

characterization of bi-variate spatially two-dimensional time-space stochastic 

processes is presented with a numerical example based on the analysis of 

seismic array records in Taiwan (SMART-1). Finally, the essentials for 

estimating the power spectral density function of bi-variate two-dimensional 

stochastic processes from a set of measured data in finite regions are 

presented. Also, the estimation method of the frequency wave number power 

spectral density function from the seismic array records.  

     For simplicity in this study, we discuss bi-variate one-dimensional 

processes, bi-variate two-dimensional processes and bi-variate spatially two-

dimensional time-space processes. However, the results may be easily 

extended to multi-variate multi-dimensional processes by following the same 

procedures as those used in this study. In fact, Shinozuka (1987) presented 

the simulation equations for the multi-variate multi-dimensional processes. 
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