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1. INTRODUCTION

The followings are well known in the second order analysis of stochastic
process theory: (1) a homogeneous stochastic process is usually characterized
by its mean value and correlation function, (2) the correlation function
represents the variance and correlation structure of the process, (3)the
correlation function is related to the power spectral density function by means
of the Wiener Khintchine transform pair, and (4) if the process is Gaussian,
then all its characteristics are known only from its mean value and
correlation function or power spectral density function. Therefore, when the
stochastic process theory is applied to the analysis of observed field data, a
set of these observations is interpreted as a realization of a homogeneous
stochastic process. Then, the mean value and the correlation function or the
power spectral density function are usually estimated following routes 1 and
2 shown schematically in Fig. 1.1. Finally, the resulting correlation function
and power spectral density function are in general summarized in analytical
forms.

In the above procedures usually encountered in practical field data
analyses, the last step of modeling is, of course, based on not only the observed
data, but also physical understanding of the phenomena and engineering
judgement. Hence, the modeling task cannot be successfully achieved without
understanding the phenomena indicated by the observed data and without

taking into account the accuracy required for analyses.
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Fig. 1-1 Schematic Diagram Showing Relationship Between Stochastic
Process and Its Statistics

In addition to the correlation function, however, if simple statistics
(correlation scale) could be defined that are able to represent the correlation
structure of the stochastic processes and also can be directly estimated from
a set of observed field data without the correlation function or the power
spectral density function, these statistics for correlation could provide quite
useful information for capturing the essential phenomena indicated by the
observed data and eventually in the modeling of its stochastic process.
Consequently, it is asserted that three statistics (the mean, variance and
correlation scale) could be used as the fundamental parameters to
approximately characterize stochastic processes.

In fact, as briefly described in Section 1.1, instead of the correlation
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function, the correlation scales summarized in Table 1.1 have been
successfully used as the measures of correlation structure of stochastic
processes in studies of the turbulence, signal analysis and the stochastic
response analysis of mechanical systems to dynamic loading. However, since
these correlation scales are defined through the correlation function, they
cannot be evaluated before knowing the correlation function. From a
viewpoint of the statistical analysis of stochastic process data, it is desirable
to estimate the correlation scale directly from observed data without going
through the correlation function. Hence, the definitions for the correlation
scales indicated in Table 1.1 are quite useless from the point of view of the
statistical analysis of stochastic process data.

In this study, the two new definitions for the correlation scales A and C
in Table 1.1 are discussed which are suitable for statistical analysis of
observed data in the sense described above. Hence, the problem dealt with in
this study is to develop a practical procedure for estimating correlation scales
(Route 4 in Fig. 1.1). To do this, the variance behavior of an averaging process
previously studied by Panchev (1971), Bendat and Piersol (1971) and
Vanmarcke (1983) is analysed in a systematic way. The procedure used in
this study is especially similar to that used by Vanmarcke (1983). However,
the results and their interpretation are quite different from those of previous
studies, and the two different definitions for correlation scales are
reinterpreted in a consistent way from a viewpoint of the statistical analysis
of stochastic process data. In this study, a practical procedure utilizing a

graphical method as occasion demands, is presented to estimate the
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correlation scales from observed data. The procedure for one dimensional
stochastic process data is also extended to the two dimensional case and the
significance of the correlation scales for two dimensional stochastic process is
briefly discussed using numerically generated two dimensional stochastic
fields. In the final chapter, some new application examples of correlation

scales are described.

Table 1-1 Summary of Definitions for The Scale of Correlation

Items Definitions Authors
" Taylor (1935), Batchelor (1953), Tatarski (1961),
A —1—2 f R(&)d¢ Monin and Yaglom (1965), Panchev (1971),
7 Bendat and Piesol (1971), Lumley (1970),

Vanmarche (1983)

1 [o,0]
B | = [IRE)|de Stratonovich (1967)
a® LN
Tatarski (1961), Monin and Yaglom (1965),
C —%}?% Lumley (1970), Harada and Shinozuka (1979)

T EIEGIES

Lin, Fujimori and Ariaratnam (1979)

[ 1761 a¢

Note
P R(0): Variance, R(£): Correlation Function, R"(£) = dzR(E) / dg’




1.1 Brief Historical Note on Correlation Scales

Table 1.1 summarizes the definitions of correlation scales in the
literature available. In the study of turbulence, Taylor (1935) first proposed a
measure of the correlation scale to obtain low variance estimates of the mean
value of fluctuating velocities. The ratio of a finite sampling interval to the
correlation (A in Table 1.1) is used as the equivalent number of independent
observations from stochastic process data. Batchelor (1953), Tatarski (1961),
and Monin and Yaglom (1965) also used the same measure proposed by Taylor
(1921) in their studies of isotropic turbulence. In the study of random signal
analysis (Panchev (1971), Bendat and Piersol (1971)), the correlation scale A
in Table 1.1 was also used for the condition of ergodicity with respect to the
mean value. Stratonovitch (1967) used the other definition B as indicated in
Table 1.1 in the discussion of the condition of ergodicity with respect to the
mean value by considering the averaging process. A correlation scale C in
Table 1.1 was proposed to represent the inner scale of turbulence (Tatarski
(1961), Monin and Yaglom (1965), and Lumley (1970)).

In the study of stochastic response of mechanical systems to dynamic
loading (Lin at al. (1979)), the other definition of correlation scale D in Table
1.1 was used. This correlation scale is proposed in such a way that if the
correlation scale (time) of dynamic loading is much smaller than the
relaxation time of the mechanical system, the response can be approximated
by a Markov process. Thus, many convenient mathematical properties

related to the Markov processes can be used to solve the system response to



random dynamic loading (Statonovitch (1967), Lin (1979) and Wu (1985)).
Recently, Vanmarcke (1983) reinterpreted the correlation scale in A in
Table 1.1 from the viewpoint of the analysis of the variance of averaging
processes in a manner similar to the discussion of Stratonovitch (1963) and
Pancheve (1971), and represented many applications in civil and mechanical
engineering problems. Harada and Shinozuka (1985) recently proposed the
correlation scale C in Table 1.1 in their analysis of the spatial variations of
seismic ground motions by considering the variance of difference processes.
In conclusion, the previous definitions for correlation scales were all
based on the correlation function or the power spectral density function and
tend to vague in why they are defined as shown in Table 1.1, except the
studies of Vanmarcke, and Harada and Shinozuka. Thus, to obtain the
correlation scale, the correlation function or the power spectral density
function has to be given first. This kind of definition is not useful from the
viewpoint of the statistical analysis of observed data because it is desirable to
estimate the correlation scale directly from the observed data without using

the correlation function.



2. VARIANCE OF AVERAGING PROCESS AND

DIFFERENCE PROCESS

Since any continuous parameter homogeneous stochastic process with

mean m and variance o?f can be expressed as the sum of its mean and

homogeneous stochastic process f(z) with zero mean and variance 012, , We

consider a homogeneous stochastic process f(z) with zero mean and variance

afcf in the analysis that follows.
For a homogeneous stochastic process f(z), a family of the averaging

process f;,(z) may be defined such that,

z+D/2

@)= [ iy @.D

z—D /2

Introducing the following indefinite integral F(z) of f(z),

F(z)= [o f(y)dy Cor %S’) = f(z) (2.2)
Equation (2.1) is also written as,

6@=%%@ (2.3)
where,

F(z) = F[x+§] —F[a:—g] (2.9

The function F(z)is the finite difference process of F(z). In Egs. (2.1) and
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(2.3), the averaging process f,(z) and difference process F,(z) are always

homogeneous since the original process f(z)is homogeneous. However, the
indefinite integral process F(z) is not always homogeneous. The condition for

the homogeneity of F(z)is very closely related to the behavior of the power

spectral density functionS i (k)of f(z)at origink = 0.

Homogeneous Process
T(x)n dgf
- ’ r
Power Spectral Density Power Spectral Denslty
Function S,(0)=0 Functlon S¢(0)%0
Integral Process Averaging Process Integral P::cess
Homogeneous Homogeneous Non—-Homogeneous
F(6), of tp(X)=5Fp(x) F(x), of=oo
b ‘ |
1
Differance Process
Homogeneous
Fo(x)=F(x+%) - F(x—-g-)
oFp

Fig. 2.1 Schematic Diagram Showing Relationships Among Integral Process,
Averaging Process and Difference Process.

Figure 2.1 summarizes the above conclusion for the integral process

F(z), averaging process f,,(z) and difference process F} (z) . Explanation using

equations are shown in below.
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If F(z)is homogeneous, the power spectral density function S,,(x) of

F(z)is well known to be expressed due to Eq. (2.2) as,
K
Spp(k) = ( = Ll (2.5)

As is also well known, S ff(n) is in turn related to the correlation function

R, (§)through the Winer-Kintchine transform pair,

Sy = [ Ry(@ed
. P (2.6a)
Ry (8)= f S ()™ dr

Accounting for the symmetry of Rff(ﬁ) with respect to the origin

(Rff & =R " (—¢)), the Winer-Kintchine transform pair is also given such as,

sff(n)=2i7r [ Ry (€)cosnede (2.6b)

Using the asymptotic expansion ofcos k¢, S " (x)can be expressed as,

17 n (K™
5,0 == [ R©3 ) d¢
i —J B
Ml T e 0] 2.7
— L [ rou- L5 [ en -
Then, from Egs. (2.5) and (2.7), 8, (x)is also expressed as,
Sep(R) = QLM% [ R, (&) — = f ER, () +-- 2.8)
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Therefore, if §,.(0)=(1/2n) f R, (§)d§ = 0, then Sy, (k) is singular at the

origin. This means that the variance of F(z) becomes infinity and the process

F(z)1is no longer homogeneous.

It should be noted again that the difference process Fj,(z) of F(z) given by
Eq. (2.4) is always homogeneous even in the case where the process F(z) is
nonhomogeneous because the averaging process F,(z) is always homogeneous

(see Eq. (2.1)). More rigorous discussion concerning the homogeneity of the
integral and difference processes can be seen in the followings: Cramer and

Leadbetter (1967), Doob (1953), and Yaglom (1962, 1973).

Turning to the variance 012) of the averaging process f,(r), we first
consider the power spectral density function S I (k)of fr(z). S ; (k) is given as
D D

follows:

sinkD /2

YE ] S (k) (2.9)

SfD(K'):[

Above equation is derived from the following general well-known equations

in the filtering theory (for example, Papoulis (1984)),

:E+D/2 00

fplz) = % _jl; i fly)dy = f f)glx — y)dy
(2.10a)

1/D —-D/2<y<D/2

g(y) - 0 otherwise

where g(y) is the impulse response function of a system, and the power
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spectral density function of the response f,(z) to the input f(z)is given by

S 3 (k) =Gk S (%) (2.10p)

in which G(x)is the transfer function of the system that is related to g(y)such

as,
- _ ; pj2
G(x) = f 9(y)e™dy = f e "dy
e _D/2 (2.100)
_sin(kD /2)
(kD /2)

Substitution of Eq. (1.10c) into Eq. (2.10b) yields Eq. (2.9).

Utilizing the following relationship between the basic spectral window
and the triangle window,

sinkD /2 7 €] .
[mD/zl 5 o el

where, » (2.11)

it 2§ D

j A

The variance 012) of f,(z) is given following its definition such that,

o = E[fg(x)] =R, (0)= 7 8, (k)ds

B sinkD /2 c
f[ *D /2 ] ik

(2.12a)

or,
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Lo LEl T
of) =B‘£[1—3] LSJ,K&)COS&&dn]d&

N (2.12b)
. —1_ [1 - l § ' Rff(é')dﬁ

If F(z) is homogeneous (this means §,(0)=0), Eq. (2.12a) is also

expressed in terms of the correlation function R, (£) of the indefinite integral
process F(z) such as,

2
sinkD /2

\2
o Tl
f ff 51112 [KD]dh:
f Sff(n 2["”9]4& (2.13)

fS F(”)[ coqﬂD]

= (Rpp(0) — Ryp(D))

Uq”
I

SHISISTT blw t:lm é“-m?

~

—

l

Summarizing Eqgs. (2.12a), (2.12b) and (2.13), we obtained,

sinkD /2
I T

_ (2.14a)
LT (Ll
= 5:[)[ ] ff(f)dé-
and, when (0) = 0 (F(z)is homogeneous),
oo = %(RFF (0) — Ryp(D)) (2.14b)

The variance af, of the difference process F},(z)is related to 012) due to Eq. (2.3)
D
as follow,
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2 2 2 2 2
op =Dop =0, = BZ—UFD (2.15)
The relationships between the processes f(z), f,(z), F(z) and F},(z) may

also summarized schematically as shown in Fig. 2.1. In the case where the

power spectral density function at the origin S i (0) = 0, the indefinite integral
process F(z) of f(x) is nonhomogeneous, but otherwise F(z),F,(z) and f,(z)

are all homogeneous stochastic processes with variances U;F,af. and 012) ,
D

respectively. Equations (2.14) and (2.15) play a fundamental role in the new
interpretation of the definition of the correlation scale which is capable of
estimating directly from the observation data without recourse to the

correlation function.
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3. DEFINITION AND SIGUNIFICANCE OF

CORRELATION SCALE

We consider in this chapter the behavior of the variance 012) of fy(z) in

the two limiting cases where D — 0and D — oo, using Eqs. (2.14) and (2.15).
And then, we introduce new definitions for the correlation scales.
In the first case where D — 0, using Eq. (2.14a) together with the

relationship ofsinkD /2 = kD /2 for D — 0, we can easily show that,
012) = f Sy (k)dr = O';f as D —0 (3.1

If S ff(O) = 0, then the integral process F(z)1is homogeneous. Hence, we can

consider Eq. (2.14b). The correlation function R, (D) can be expanded into a
Taylor series around D = Osuch that,
1
R,;(D) = Ry, (0) + Ry, (0)D + aRgF (0)D? 4 --- (3.2a)

in which R;,.(0) = dR,,(€) / d¢ | ¢—o and similar definitions apply to R (0), ete.

And also, the correlation function R, (£) and its derivations are given by,

R, (€)= fSFF(K,)cosné"dn

R,.(6) = —f kS pp(K)sinkédk (3.2b)
R (€)= —f K28 o (5) cos kédk = —f S (k) cos k€dk
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Therefore, R,(0)=0.Then, using Eq. (3.2a), Eq. (2.14b) can be written as,

2
ol = F(RFF(O) — R,.(D)) as D — 0

00 (3.3)
= —Rpp(0) = [ Sy(w)k =0},

In the second case where D — oo, using the last equation of Eq. (2.14a),

we can easily obtain,

f (E)dE as D — oo (3.4)

If S,(0)=0, from Eq. (2.14b), we obtain,

2 2 2
oy = ERFF(O) = BEUFF as D —o oo (3.4b)

At this point, we define the variance 1612;, of wavenumber of integral

process F(z) such as,

o0

f k%S g (n)dm f r(K)dK 02
bij

K2 = 2. (3.5a)
[ 8pp()is f 8 o ()d R

"oy
o

The standard deviationxcan be interpreted as a predominant wavenumber

of the integral process F(z) of wavenumber domain, then the predominant

wavelength L, = 27 / k,0of F(z) can be given using Egs. (3.3) and (3.5a) such

as,
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o [ Sepl)an
Lp =2n £ TEF — o |- 2B _ o s (3.5b)
Oy Ry (0)
\ fSﬂ,(n)dn

By using the above predominant wave length, the Eq. (3.4b) is expressed as,

2
2
i

9 2

o, = —

D D2

L,

- as D — oo (3.6)
2m

o

In summary of the above expressions of variance a;, of the averaging
process f,(z)for D — 0and D — oo,

Case I (S #(0) = 0):

(3.72)

Case IT1 (5 ,(0) =

1 ,D—0

.,rf] il

The above Egs. (3.7a) and (3.7b) provide incentives of introducing the two

9p

%p (3.7b)

1
% |p

. * %
scales of correlation L , L such as,
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R_.(&)d
RAGLS 5,0)
L ==2— 2m — i for Sff(O):co
o
I fof(fc)dfc
L;,: Ly _ 1 o TEF (3.8)
’/T\/E {3 2 Uff
= . for§,(0)=0

Utilizing the above scales of correlation, Eqgs. (3.7a) and (3.7b) are written as

a simple expression,

Case I (Sff(O) =0):

1 ,D—0
% _| = (3.9a)
Oy L— ,D — oo

D

Case I (S,(0) = 0):

1 ,D—0
O'D *
2 =dr .9b
il LB L (3.90)
i D Do,

Although the scales of correlation L*,L; defined by Eq. (3.8) possess the

same forms as A and C in Table 1.1, which are defined by previous
investigators, the significance of the correlation scales in this study is quite

clear as follows.

19



The correlation scale L} defined by the second equation of Eq. (3.8) is
such that when the averaging distance D reaches the distance of the
correlation scale L;, , the standard deviationo ,, becomes \/50 rr | D according to
Eq. (3.9b). This is the same standard deviation ofo, when F(z + D) and F(z)
become completely uncorrelated asD — oo (see Egs. (2.14b) and (3.9b)).

Also, for the correlation scale L defined by the first equation of Eq. (3.8),

a similar consideration can be made using Eq. (38.9a) as follows. When the

averaging distance D reaches the distance of the correlation scale L, the

standard deviationo ,becomes o 7 in accordance with Eq. (3.9a). This is the

same standard deviation of the averaging process f,(z) and the original
process f(z) may be considered to be a perfectly correlated process, i.e.,

R, (D)= R, (D)= aﬁf forD — 0 (see Eqs. (2.14a) and (3.92)).

The definitions of the correlation scales L’ and L} are also interpreted on

terms of the wavenumber as follows: Since the wavenumberkis related to

the wavelength L such thatx =27 /L, we may define the (wavenumber)

spectral scalesx and kj corresponding to the correlation scales (correlation

distances) L and L;, , respectively such as,

K = 2—1r and n;, - 2*1 (3.10)
Ly

Then, Eq. (3.10) can be written using Eqs. (3.5b) and (3.8) together with the

20



Wiener-Kintchine relationship given by Eq. (2.6) as follows,

R 17
5@
(3.11)

j Sy (K)dr

\ 7 Spp(k)dr

where k., (see Eq. (3.5a) is the apparent (predominant) wavenumber of the

K,;. ZW\/E

=T 2/4:F

power spectral density function Sy (x) of indefinite integral process F(z) .

The significance of the spectral scales defined by Eq. (3.11) is illustrated
in Fig. 3.1. It may be observed from Fig. 3.1 that the spectral scales
represent a large wavenumber above which the power spectral density
function may be considered to be zero.

As demonstrated in the numerical example, the definitions of
correlation scales given by Eqgs. (3.8) and (3.9) are also useful for estimation

the correlation scales from the observed data since the standard deviations

T andooro,can be easily calculated by following their definitions from

the observed data.
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Spp (x)

>
S

- K;-ﬂnrp
(a) Cage I (b) Case II

Fig. 3.1 Schematical Illustration of Significance of the Spectral Scales ( (a)
Case I and (b) Case II)
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4. EXAMPLES OF CORRELATION FUNCTION,
POWER SPECTRAL DENSITY FUNCTION AND

THEIR CORRELATION SCALES

Before the practical estimation method and numerical examples using
the graphical representation of the correlation scales (Chapter 5,6), we
present here the several examples of correlation functions, or power spectral
density functions, and their correlation scales according to their definitions of

Chapter 3.

4.1 Example of Correlation Functions, Power Spectral
Density Functions, and Correlation Scale for Case I

(5,(0)=0)
Table 4.1-1 and Fig. 4.1-1 show the example of models of normalized

correlation functions and power spectral density functions for Case I
(S ff(O) =0).

The correlation scales for these models can be obtained from the

definition by the upper equation of Eq. (3.8) as follows for Table 4.1-1;

5 S..(0 . S..(0
Typel: L =2n ﬂ'( )=27ri-—-b Type2: L :2W—If—F—):2W£:2b
Ty = % o
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Type 3:

Type 5:

L'=on

L' =2n

S, (0
ff2( )=27r%:4b Type 4 :
g Vs
I
S (0
ff2( )=27TL=b\/;Type6:
O 2\/;

L =2

S..(0
7r——ff2( ) =27r§—b:§b
T .
. S..(0
L =2x ff2()=27r%=7rb

T

Table 4.1-1 Example of Models of Normalized Correlation Functions and
Power Spectral Density Functions for Case I (S ff(O) = 0)

Type 2 2 2
R(t) [ o%,0” = R(0) Sw)/o
1 [ 7] 1 (1— cosbw)
ek L o —_— )
1 |T7[<b = 2
0 otherwise
. (I b1
b
€ o 1 1 N2
™1+ (hw)
3
4 L0 6 —r—
b (1+@wy)
4
|7 8b 1
|7 1,72 -G —
1+ —+-=-(— b
[ v 3050 [° 3”(1+(bw)2)
5 Iz b
& b G
o
6 1 %be—blwl
T\2
1+
O
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R(t)(Type2)

. . :
g \\:\\ _R(t)(Typel)
< 2 ¥ INYSS ====R()(Type3) = = -R()(Typed)
B = ISR a» @ R(t)(Type5) e oo e R(t)(Typeb)
3 0.6 % —
o g ,
o 9
8 T 04
2 :
E ™ 02|
ZO \

0

0 1 2 3 4 5 6 7 8

Time lag t

(a) Correlation Functions for Case I (S,,(0) = 0) in Table 4.1-1

0.9
08 [ | ' :
0'7 “ e S (w) (Typel) e S (w) (Type2)
0.6 ~‘ ‘ - e a» a S(W) ('l'ype3) - e e S(W) (TYP64)
i5 4 \‘l‘ e em S(w)(Typed) eeee S(w)(Typet)

. ‘

function S(w)

Nolmalized power spectral density

Frequency w

(b) Power Spectral Density Functions for Case I (S,,(0) = 0) in Table 4.1-1
(28(w) for only Typel is shown)
Fig. 4.1-1 Diagrams of Example of Models of Normalized Correlation

Functions and Power Spectral Density Functions for Case I
(Sff(O) = 0) in Table 4.1-1
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Two examples of exact behavior of variance ratio af) / crf,f using Type 1

and Type2 of Table 4.4-1 are shown as follows,

Substituting the normalized correlation function of Type 1 of Table 4.4-

1to Eq. (2.14a), o} / olz,f is given such as,

Y AL

2
b

Q
v

<k

0 Ty

-5 o
(4.1-1a)

g o

The above integration in conjunction with the correlation scale gives the exact

%b

b!w

0
]
0

. 2 g, 2
behavior ofoy, / o L
, =ty Dxb=I
2 = - (4.1-1b)
— I 4 4.1-1b
Oy 5 1— L D>b=1L
D 3D
The above equation gives for the two extreme cases
o2 1 D—-0
__.D_ = Ls: (4.1'1C)
a? — D—-> oo
ff D

Similarly, for Type 2 of Table 4.4-1, af) / a;f 1s given by,
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2 D
9p _ Ef 1—£e-§/bd§
ol D D

i 0

2
=2 212 147500 (4.1-2a)
D b
— £. _lL_(l._e—QD/[“)’ L*:2b
D 2| D

In deriving above equation, a following indefinite integration was used.

e
f ze™dr =

a

ar

= (aa: - 1) (4.1-2b)

Using the Eq. (4.4-2a) gives for the two extreme cases,

1 D-0
=1 (4.1-2¢)
— D =00

[l

a

e l

T

In derivation above equation, the following approximate equation was used.

1 5, 1 3
e—:C: 1 $+§$ —5—'1' cee r—0 (4.1_2(1)

0 T — 00
4.2 Example of Correlation Functions, Power Spectral
Density Functions, and Correlation Scale for Case II
(s,0)=0)

Table 4.2-1, Table 4.2-2 and Fig. 4.2-1, Fig. 4.2-2 show the example of

models of normalized correlation functions and power spectral density

functions for Case II (S #(0) = 0).

27



Table 4.2-1 Example of Models of Normalized Correlation Functions and
Power Spectral Density Functions for Case II (S ff(O) =0)

(Type 1is Case I)

Type
R(1) / 0%,0% = R(0) S(w)/a®
} 52 1 ot
- 0!
TR 20!
2
bi(b? — 37%) L'b:“w?e""“'
——a 22!
o +7°)
3 674 2.2 4 L .5 4 bl
(b2 +T2)5 i
4 8 /1.6 4_2 2 4 6 - 1 .7 6 bl
b°(b° —216°7° + 35b°T" —77") 2—6'bwe
© + 72 .
5 10,8 6_2 4_4 2,6 8 1 0 8 —bll
b (b° —36b°7° + 126" 7" — 84b"1° +97°) 2—8—'bwe
(2 + 72 :
0 1 [610 — 556872 + 3306574 — 4626*r° + Ly 0t
" 652 — 1170 2101
(b2 +7_2)11
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HEHE(L H CHHEIBIER (1)

0 0.5 1 1.5 2
R
e R (t) (Typel) R(t)(Type2) m===- R(t)(Type3)

= = =R(t)(Type4) am am R(t)(Type5)e e @ ® R(t)(Typeb)

(a) Correlation Functions for Case II (S,,(0) = 0) in Table 4.2-1

(Type I is Case I)
0.15

B[ 7 — 27 b LEERAE

S(w)(Type2) =====S(w)(Type3)
= = = S5(w)(Type4) am am S(w)(Type5)e o e o S(w)(Type6)

S (W) (Type 1)

(b) Power Spectral Density Functions for Case II (S ,(0) = 0) in Table 4.2-1
(Type Iis Case I)

Fig. 4.2-1 Diagrams of Example of Models of Normalized Correlation
Functions and Power Spectral Density Functions for Case II

(8,,(0) = 0) in Table 4.2-1
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Table 4.2-2 Example of Models of Normalized Correlation Functions and
Power Spectral Density Functions for Case II (S, (0) = 0)

(Type I is Case I)
Type
R(1) / 0%,0* = R(0) S(w)/ a*
1 T\2 bw
e_(i) b e—(?)2
2N
2 (o S
[1—2(1)2]e b 1.0 2 'z
b 2T
’ T 4,74 “CF 1
14+ e —i—mufie 2
Y 3%b 2 194x
! T T4 8 7| G 1 b g
1-6()° +4()" ——()°fe ok we 2
b b 15°b 2 12047
” T Ta 3,76 16 74| GF | 1 ¥ -2y
1-8) +8) == (D +——() e ¥ | we 2
b b 150 105 b 2 1680vm
6 T 40 7 16 ,7 11 bw 2
1- 10(_)2 + —(—)4 - _(_’)6 =+ &y l b— 10~ ?)
b’ 30 3b | % 5 Jeve
_1_6(_7;)8 _£(1)10 30240V
216" 945°b

30




EE(L B CHBIBIER ()

e R (t) (Typel) R(t)(Type2) mm==- R(t)(Type3)
= = =R(t)(Type4) am @ R(t)(Type5) e ¢ @ ¢ R(t)(Typeb)

(a) Correlation Functions for Case II ($,,(0) = 0) in Table 4.2-2

(Type I is Case I)

0.3
£
i 0.25 |
4
S 0.2 i
Q 1
o’ 0.15
N ~
¢« B 01
X @
| 0.05
N
a( 0
) 0 1 2 3 4 5 6 7 8
o R

e S (w) (T'ypel) S(w)(Type2) m===- S(w)(Type3)

= = =S(w)(Type4) em @ S(w)(Type5)e e @ o S(w)(Typeb)

(b) Power Spectral Density Functions for Case II (S,(0) = 0) in Table 4.2-2
(Type I is Case )

Fig. 4.2-2 Diagrams of Example of Models of Normalized Correlation
Functions and Power Spectral Density Functions for Case II

(8,,(0) = 0) in Table 4.2-2
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The correlation scales for these models can be obtained from the
definition by the lower equation of Eq. (3.8) as follows for Table 4.2-1 and
Table 4.2-2;

For the models of Table 4.2-1;

S..(0
Type 1: L*=27r#:27rg:7rb

Oy

Type2: L, = 1 rzw“"'F o 2ﬂi]zb
d ‘?T\/i Uff TF‘\IE\ \/5

* b b
Type3: L, = 2 = =
d ?T'\/i Uff TT\/§ \ \/E] \/g

Type4: L, = o —LE | = 2T =

P 7'('\/5 Jff ™ \/5 \/% J 15
Typed: L, = g I 2T ==

B T \/5 Uff ™ \/5 \/% \/%

g
o —LE | — 21

1 b b
71'\/5 Jff 71'\/5 \/% —\/E

For the models of Table 4.2-2;

Type6: L, =

ey ¥

. S.(0
Typel: L =2nw ff()=27ri=b\/;

7 2
* 1 o 1 b
Type2: L, = o —LE | = Ir—| = b
d 71'\/5 Uff W\/E \/5
* 1 o 1 b b
Type3: L, = o —FE | — M | = ——
"o \/5 T T \/5 \/g \/5
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1 1
Type 4: L, = o —EE | =
F 71'\/—2_ Oy 71'\/5

N

)
2]

Il
&=

Il

S

1 . 1
Type5 L, = o —LE | =
a 7!'\/2_ 9y 7('\/5

* o Opp | _

1 1
Type6: L, = = 27
d 71'\/5 9y 1r\/2—

_b
Jis) o
Two examples of exact behavior of variance ratio 012) / 0]25, using Type 2

and Type 3 of Table 4.2-1 and Table 4.2-2 are shown as follows,
In the case of Type 2 of Table 4.2-1, the power spectral density function
of f(z) and the correlation function of F(z) are given by,

o
Sy(k) = %bg’nze_bl”l

(4.2-1a)
% Sy(r) o b
R = i dr = Lo
FF({) lo " cos kEdK 5 b2+§2

Substituting the above correlation function of Type 2 of Table 4.2-1 to Eq.

(2.14b), o2 / a?f is given such as,

2
o 2
_f: D22 (RFF(O)‘RFF(D))
T ‘f)ff
= i] 1——1—2 (4.2-1b)
D 1+ (D /b)
. \2
- L_I‘ ____1_*, L} =b
D 1+(D/ L,y

The above equation gives for the two extreme cases,
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1 D—0
2
b (4.2-1¢)

i D — o

In the case of Type 3 of Table 4.2-2, the power spectral density function

of f(z) and the correlation function of F(z) are given by,

2

1 ¢ 2

S (ﬂ):___f[_b5ﬁ4e—(bﬁ/2)
i 2 194/

28 22 9
Ry (6) = f J:,;gfi) cosk€dk = [%] [1 - 2[%]

Substituting the above correlation function of Type 3 of Table 4.2-2 to Eq.

(4.2-2a)
o (E/)

(2.14b), o3 / a}ch is given such as,

0'% 2
o D22 (RFF(O)_RFF(D))
Ty T
2
_A'ArL o 2\\ —(D/b) ]
= 3[0] (1 (1-2D/0) ))e (4.2-2b)
LY L(/L},) b
2 * — ; *
=|Z|1-n-2D/L)|le® ™, L,=—f4
D [ [ 3( / F) ] € F \/g

The above equation gives for the two extreme cases using Eq. (4.1-2d),

1 D—0
2
o _ (Y (4.2-20)
o’ & D — oo
If D

Table 4.2-3 summarize the correlation scales for various correlation

functions and power spectral density functions in Table 4.1-1 (Case I

§;(0)=0), Table 4.2-1 (Case II S,(0)=0) and Table 4.2-2 (Case II

S ,;(0) = 0).
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Table 4.2-3 Scale of Correlation of f(z) for Correlation Functions in Table 4.1-1, Table 4.2-1 and Table 4.2-2

*

*

Type of Table4.1-1 L Type of Table4.2-1 I g Type of Table4.2-2 | [ .
LF LF
1[1] b 1[1] mh 0 1 [1] 0
N
2 [1] 2b 2 [11] 0 b 2 [11] 0 b
301 4b 3 [11] 0 " 3] 0 ;
Je J3
41 411 0 4 [11] 0
(1] % b (] b 3
V15 J5
511 5[II 0 5 (11} 0
M ! [11] ; »
J28 J7
6 [1] b 6 [11] 0 g 6[11] 0 ;
Ja5 J

[1] and [II] mean Case I and Case II. Zero of scale of correlation means that correlation scale is not defined.




5. GRAPHICAL REPRESENTATION

A graphical representation of Eqs. (3.9a) and (3.9b) as shown in Fig. 5.1
may be more useful for estimating the correlation scale L or L} from a set of

observed data. Figure 5.1 is constructed in the following way.

Plottingo,, / o P for the two limiting cases indicated in Eqs. (3.9a) and

(3.9b) as a function of D / L or D / L} in log-log scale, we can obtain a diagram

(heavy solid lines) as shown in Fig. 5.1: From Eq. (3.9a),

log1 D< L
log~2=1 1 p " (5.1a)
O —=log— D>1L
2 L

Also, from Eq. (2.15), the deviation o, of the difference process Fy(z)is
D

expressed and its logarithmic expression as,

% 1% _L %5
v Pop Doyl (5.1b)
o
loga—D = —logB* + log FD*
Uff L O'!fL

From Eq. (3.9b),

logl D<L,
log—£ = (5.2a)

D
o, |-ls= D> E.

F

By usingL} = J;UFF /oy (see Eq. (3.8)), the deviationoFD of the difference
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process F} (z)is expressed and its logarithmic expression as,

9 _1%, _Ly % _Ly %
op Doy Do, Do, (5.2b)
o Oy
log—2 = —log ]'3 + log .
T F GFF\/-
10 T T KT TIVR AN
1y . = . - V \\
o Difference Deviation (B axis) e v N :
T ;g e 4
N o () —B_a\
L - L
7 L O pp V2 N
L = = : R
b | b Y / N
\\ \\
N A N
2 4 <\ N\ A
g ; u
e 1 Case Iy
S it
.S N\ /._/Case I
g Sa—7 R "
z \ i “\A ) I \\
Q “ " “v
& \— Case | \ s,
& newenn Case | (Type 1)
§ v Case | (Type 2) N
< e (Casc [l \\
----- Case Il (Type 2)
--------- CnseI\IIT\([Tpc 3) \
N | [ 1]
Averaging or Relative Distance LQ*( 1) Ll') ( I )

r

Fig.5.1 o0, — D Diagram
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Due to Eqgs. (5.1a) and (5.2b), along a straight line making a 45 degree

with the horizontal axis logD / L or logD / L; in Fig. 5.1, the value ofo
D

is constant and hence, the axis of B of log op /oy L or log op / O'FF\/E can

be constructed.

A set of eight samples of the exacto,, — D relationships are also plotted

in Fig. 5.1 (dashed curves) using the particular forms of the correlation
function for the original process f(z) which are designated as Types 2 and 3,
respectively in Tables 4.2-1 and 4.2-2 for Case II, and as Types 1, 2, 5 and 6
in Table 4.1-1 for Case I.

It can be observed from Fig. 5.1 that all these curves asymptotically
approach the heavy solid lines in the ranges where D — 0and D — oo, and
that in the intermediate range of D, the heavy solid lines tend to represent

the average or upper bound trend of all the dashed curves. Using a diagram
as shown in Fig. 5.1, the correlation scale L or L} can be determined from the

length D at the intersection of heavy slid lines in Fig. 5.1 if such a diagram is
constructed as a function of D using the variances (or deviation) estimated
from observed data (see Chapter 6) .

It should be noted here that all the pairs of correlation functions and
power spectral density functions indicated in Tables 4.1-1, 4.2-1 and 4.2-2
except Types 1 and 2 in Tables 4.2-1 and 4.2-2 have at least first order
derivative processes. Hence, they are used as the correlation function or

power spectral density function of the homogeneous process not only F(z) but
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also f(z). The correlation scale L} are obtained by interpreting the correlation

functions as those of the integral process F(z) .

As shown in this example (Table 4.2-3), we must classify the original
process f(z) into two cases (Case I and Case II) to obtain a physically
meaningful correlation scale for the stochastic process f(z). In this sense, a
real phenomenon may be modeled by the Case I process, the case II process
or the combined process of the Case I and Case II process. By appropriately
combined process of the Case I process and Case II process, we can construct
a more sophisticated homogeneous stochastic process model (two dimensional
stochastic fields, Chapter 7) which may be able to more accurately represent

real phenomena.
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6. PRACTICAL ESTIMATION PROCEDURE

AND NUMERICAL EXAMPLE

In this chapter, to illustrate the most important aim of this study that
the correlation statistics (correlation scale) is estimated from observed data
without using the correlation function (Chapter 1), we describe a practical
procedure for estimating the correlation scale from finite length observed

data with numerical example.

6.1 Practical Estimation Procedure

The procedure is as follows (see Fig. 6.1):
(1) From a set of observed data, estimate the mean value % and variance
3
T >
(2) Obtain a set of averaging process data for several large values of D
and calculate the variance 512) from them,

(3) Plot a set of averaging deviation ratio G, /7 pona log-log scaled graph

as a function of D,

(4) If the estimated deviation ratio G,/ 6ff follows straight line I,

determine the correlation scale L from the length D of the intersection

between horizontal line and straight line I.  Ifthe ratios,, / & . follows
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straight line II, determine the correlation scale L;, from the length D

of the intersection between the horizontal line and straight line II.

Step
. "
p—
[ | [ TR —— : !mq 7 q‘m 4'1' ﬂ
for(X)  Ton foz(X) B2 tos(X) Fos
(2)- - M ANMARA,  moniomn e
lo oD
' Oaff H
(3)osuceeree. g fon(Z)=26.0°
SRR
0 L il o © logD
L® D, DeDs
CASE1T
(4)----------- IFCASE| —L® IF CASE Il L3

Fig. 6.1 Practical Estimation Procedure of the Correlation Scale

6.2 Numerical Example

A numerical example is based on digitally simulated stochastic data

using the following equation (Shinozuka and Yang (1972)):

N
flz) = \/2_2 25 (r, )dr cos(fcnx + Bn) (6.2-1)
n=1

where 6 is the random phase angle uniformly distributed between 0 and 2w,
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dk =k, / N,k =nds and k_ is upper cut-off wavenumber where § ff(k;u) is

approximately zero.

For numerical example, the following data are used:

Type 1 in Table 4.2-2 (Case I) with b = 31.636m,

k, =1rad/m and U?f =1m.
By using these data, a sample function of f(z)is shown for the distance of

2,000 m in Fig. 6.2-1.

1.0

-100

1000 2000
Distance in M

Fig. 6.2-1 Sample Function of f(z)

For D=200, 300, 400, 500 m, the variances &z are calculated and the

resulting deviation ratioség, /& 5 are plotted in Fig. 6.2-2. From Fig. 6.2-2,

L is estimated to be about 56 m. In fact, in this numerical example, the true

correlation scale ' = b\/; =56.07m.
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Fig. 6.2-2 Numerical Example for Graphical Estimation of the Scale of

Correlation

6.3 Statistical Assessments of Correlation Scale

Estimates

To establish the quality of the estimator, we will use two principal

factors in this study: “unbiased” and “consistent”, that is,

E[q;] =¢ unbiased (6.3-1a)

and

lim E [(q? - ¢)2‘ =0 consistent (6.3-1b)
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where E[¢]is expectation of$ being an estimator for the parameter¢. The
analysis procedures that follow are basically based on those by Bendat and

Piersol (1971).

(1) Mean Values
Consider the sample record f(x) from a homogeneous stochastic process

over a finite lengthD;. The mean value can be estimated by

DO
m= i‘l‘]?(:r:)dar; (6.3-2a)
D, A

and true value is
m = E|f(z)| (6.3-2b)

Then, the expected value of m is,

D
RN G i
E[m} = D—O‘[E[f(x)]da: =m (6.3-3a)
Hence, 7 is an unbiased estimate of m in accordance with Eq. (6.3-1a).

The variance ofm is expressed as,
Var 1) = E[(m . m)2] = E[mz] — m? (6.3-3b)
Introducing the covariance function C';(¢) of f(z)as,
C7(&) = E[(F(z + & —m)(F(z) - m)
= Ry(€)—m" (6.3-3¢)
Rz(6) = E[f(z + &)J (@)

Then, the variance ofm is written in terms of the covariance function as

44



follows,

Var = —? jl f ( f (51)f (fg )d§1d£2
Dy <5 %

D, D,

- [ [ cze —&)gde, (6.3-3d)
DO 00
1, _Lel

=— | |1- 7(8)d¢
a5l

0
In deriving the above last equation, we change the region of integration from
(£,&) t0 (£,6,) by & =¢ —¢&, d€ = d¢, . Then, the integration yields,

D, D, o D,
[ [ ez -&xeds, = [ [Cpenede, +
00

-D, ¢

Do DU_E
[ | cpened,
. 0 0
- f (D, +€)C5(6)dé + (6.3-3e)
-D

DO
[ (D, - ¢)c5)de

D(J
=, [ 1~ '] (6
gl Du 0
For D, — oo, the above equation is written as,
Var |1 f Cp(e)de (6.3-30)

Hence, Var[rh]approaches zero as D, — oo, indicating thatiis a consistent

estimate of the mean valuem .
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(2) Variance

Since the mean value can be estimated unbiasedly and consistently by

Eq. (6.3-2a), we consider the stochastic process f(z) with zero mean and

variance o2 . The variance of f(z)and the true variance a}%f may be estimated

If
by,
2 1 72
o =D—0ff (z)dz
0
(6.3-4)
U?f . E[f2($)]
The expected value of the estimate 5)2,f is,
1%
L] 22 _ 2 ;
E[aff]—D—OfE[f (x)]dm—off (6.3-5)
0
Hence, 62, is an unbiased estimate ofo;f in accordance with Eq. (6.3-1a).

The variance of&?f is expressed as,

bl I

(6;, — a;f)z = E[64 }— ot

D, D,
= — ] J[E[P@PE)]- o) pea

0 00

Var [6}2?] =F

(6.3-6a)

Assume now that f(z)is a Gaussian stochastic process. Then the expected
value in Eq. (6.3-6a) can be expressed in terms of second order statistics such

as (Bendat and Piersol (1971)),
B|P©)F(6)] = 2B} (6 — &) + o (6.3-6b)
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Substitution of Eq. (6.3-6b) into Eq. (6.3-6a) yields,
D, D,

Var[&%,] = Dig [ '[ R%c‘(ﬁ - 52)d€1d§2

D, (6.3-6¢)

2 1€ 1|52

=— 1——="|R%(&)d
D £ o, [
For large D, — oo, the variance becomes,
i 2

var[o—;f]=D—0 [ RE(©ae (6.3-6d)
Thus the 6)%}, estimated by Eq. (6.3-4) is a consistent estimate ofa}%f because

Var [6}27] approaches zero as D, — oo assuming a finite value of the integral.

(3) Correlation Scale
For the reason that the mean value and variance estimatorsm and 5}%}.

of f(z)are unbiased and consistent estimates of f(z)as shown in prior items

(1) and (2), we restrict our attention here to processes with zero mean and
unit variance. Then the correlation scales L and L} may be estimated from

Eqs. (3.9a) and (3.9b) as,

L =D& (6.3-7a)
and
L, =Dé, (6.3-7b)

where 612) i1s a variance estimate of the averaging process fD(x) of f(z). It is
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estimated by,

Dy+D/2
& = f P (z)dw ~ — f f2(2)d (6.3-8)

D -D/2

In Egs. (6.3-7) and (6.3-8), L orL, < D < D,is assumed.

The expected value of 612) 1s,

DL B @z = o} (6.3-92)

ot

where af) is the true variance of the averaging process f,(z). Hence, the

expectation of L' and E; are given by,

*

E|L|=DE|s}|= Do} =1L (6.3-9b)

and

*

B|L|=DE[s,]= Do, = I, (6.3-9¢)
Therefore, L andf;, are the unbiased estimates of L' and L;, , respectively.

Next, the variance of 612) is given by,

2
Var|63 | = B|(% - o3 ) (6.3-10)

Then the variances of L andf; are expressed such that,
Var|L'| = D*Var |5 (6.3-11a)

and

Var| I | = D? Ivm[ag} (6.3-11b)
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Similar to Eq. (6.3-6d), Eq. (6.3-10) can be written for large D, — oo,
2] _ 2 T o2 )
Var[o—D]_ s JEAG (6.3-122)

where R f (§)is the correlation function of f; () given by

R, (€)= E[fy(a + &)f,(@)]
z+€+D/2z—-D/2

== [ [ E[fa)i@}d

D z+&-D/2z-D/2

1 D D
= f f Ry (€ + € — §)d6,dE,

:_f |§0|

If the infinite integral process F(z) of f(z) is homogeneous, R A (&) 1s given by

iy F[z+g+g]_p[x+g__§_]]x
F[Hg]_p[m_g]

= #(QRFF(O — Ryp(§+ D) — Rpp(€ — D))

(6.3-12b)

(6 + €)dE,

RfD (5) =
(6.3-12¢)

where R, (£)is the correlation function of F(z) . For L' orf;, <D<k Dy, Egs.

(6.3-12b) and (6.3-12c) may be written as,

an(g)=% [ B+ &), (6.3-13a)
and
R, (&) = — Bpp(§) (6.3-13b)

From Eqgs. (6.3-12a), (6.3-13a) and (6.3-13b), the variance of&l?) is given by

49



2
Var[5 ‘_ f f (§+§0)d§0] d¢ for S,(0)=0  (6.3-14a)
and
Var|gh| = R (6)d6  for §,(0)= (6.3-14b)

Hence the variances of the correlation scale estimates are from Eqgs. (6.3-11a)

and (6.3-11b),

2
Var|L' :Dlo_f _fRff(§+§0)d§0] d¢ for §,(0) = 0 (6.3-152)
and
Var[ij;] - \jpi [ R2p()ae for §,,(0) =0 (6.3-15b)
0 —00

Thus, L andf} given by Eqgs. (6.3-7a) and (6.3-7b) are consistent estimates

of L' and L;, since Var [ff ] and Var[f;} approach zero as Dy — oco. Equation

(6.3-15a) is identical with that derived by Vanmarke (1983). It should again
be noted that Eqgs. (6.3-15a) and (6.3-15b) are derived from the assumption

that f(z) is homogeneous Gaussian processes with zero mean and unit

variance. Hence the correlation function R " (¢)in Eq. (6.3-15a) is normalized

w1thR (O) = 0 = L.
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7. CORRELATION SCALES OF TWO DIMENSIONAL

FIELDS

In this chapter, we briefly discuss the correlation scales of two
dimensional stochastic fields by extending the procedures developed in the
previous chapters. And also, numerical examples of two dimensional
stochastic fields and correlation scales using the 3 separable two dimensional
power spectral density functions in order to visually illustrate the correlation

scales and patterns of two dimensional stochastic fields.

7.1 Variance of Averaging Process

For the original homogeneous stochastic field f(z,y) with zero mean and
variance a;f , the averaging field f, (z,y) may be defined as,

D D

2
fA(%y):% f f f(u,v)dudy (7.1-1)
D

T——L gy ¥

2 2

where A = DD, and DI,Dy are the averaging distances of the z and y

coordinates, respectively.

Introducing the following indefinite integrals,
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OF (z, _j)

F(5,y)= [ f(z,y)dz or f(z,9)

Oz
F(z y)=ff(:v y)dy or n = f(z,y) (7.1-2)
y ¢ b dy ) =
2
Fg)= [ S o T2 fay)

If they are homogeneous, the power spectral density functions of F, (z,y),

F, (z,y)and F(z,y) are given by,

S (k5K )
S g (5,08,) = 20
K’z
S.(k_,k
G 1y = ) (7.1-2
vy K
Y
(Fya55,)
Spplgty) =——5— Sy 2.2
Bo"y

where S (k, ) is the power spectral density function of f(z,y). As is well
known, S ﬂ(nx, ny) is related to the correlation function Rff (£.s §y) through the

Wiener Kintchine transform pair,

(o Ol e o]

Sylkyik,) = @ f fRff(Ez,ﬁ) TS g dg,

(7.1-3a)

(K 6, 4+5,€,)
ff(€$7§ ) f f ff( ) y)e dﬂzdl’iy

-0 —0

wherers K, and¢ ¢, are the wavenumbers and the separation distances of the

z and y coordinates, respectively. By taking into account the relations,
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R,(§,,€,) = Ry(—€,.¢€)
7%et) =Ry (65, (7.1-3b)
Rff(&,;)_éy) . Rff(—§z7§y)

Eq. (7.1-3a) is also expressed as,

o0 00

Sy k) = — [ [ Ry,.€,)c08(r,8, + 8, g, de,

27)" *o0 200

(7.1-30)

Ry (§,.€,) = T T S (5,55, cos (’%éz - nyﬁy)inxdmy

-0 =00

Similar to the discussions in chapter 2, the integral processes F, (z,y),

F; (z,y)and F(z,y) are not always homogeneous. The conditions of homogeneity

of the integral processes depend on the behavior of the power spectral density

function S ff(K’x’K’y) of the original process f(z,y) at the originx_= K, =0.
Using asymptotic expansion of cos(k & + nyﬁy), S ff(nw,ny)can be expressed

as,

1
S A

(7.1-4a)

b
@2n)? ffRff(fmvgy) . 6(’%62%%)2 n ¢ dg,
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If the process is quadrant symmetry, i.e., R, (Ex,f )= ff(ﬁz,—ﬁy), Eq. (7.1-

4a) is expressed as,

1_%[( x£a:)2 +(K'y£y)2]+
Sy(s,m) = —— [[Ry(€,.€) . dg, d¢

7% oy AR MY (Hzém) +(K:y£y) Y (T14b)
41 6(Hz£x'€y§y)2

To simplify the analysis that follows, we will consider the quadrant symmetric

process.

From Egs. (7.1-2) and (7.1-4b), the conditions of homogeneity of the

integral processes F (z,y), E (z,y)and F(z,y) are summarized as follows,

Case 10 5,(0,0)=0 F,(z,y), F,(sy) and F(z,y) are all nonhomogeneous.
Case 2: 5,(0,0) = 55/(0,0) = §3/(0,0) = F(z,y) is homogeneous.

Case 3: §,(0,0) = S3(0,0) = 0,and S77(0,0) = 0 F(z,y) is homogeneous.
Case 4° 5,(0,0) = 5;(0,0) = 0,and S#(0,0) = 0 F (z,y) is homogeneous.
where S“(O 0) and S”’(O 0)are the second derivative values of S (Kix,/iy) at the

origin given by
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d%S f(ﬁ:w, ny)
K2

&

§2(0,0) =

EI=Ky=0

oo 00

@)t f ffz Ry (€, €, ME,dE,

—00 —00

(7.1-5)
0’8 (k)

OK>
Y

$1(0,0) =

Ky =ty =0

o0 00

[ [ &R (e, ¢ 0e,de,

-0 —0Q

7r)2
Similar to Eq. (2.14a), the variance ai of f,(z,y) is given such that,
9 2

T 2 2
= f f — — Sy (5,6, Mk drs,
memse) === Ly (7.1-6)

e 1
f[l— Dz [1_ Dy ﬂff(ﬁw,fy)dﬁxdfy
-D

For Case 2 where F(z,y)is homogeneous, Eq. (7.1-6) becomes

o0 o0

(,;I,n i ;
2 f ff 2 ]

2

. nyDy

Sll'l—-2— dnxdrzy
f f (5..5) 1~cosnxDx 1—COSf'€yDy i e

bl 2 2 “Y (1.1-7a)

—00 —00 \ -
__4_7 b (1—-cosnxDx —cosrsyDy -

cos h:sz cosk D

vy

K dK
z 'y

N :2 ( Fr(O 0) + Bypp(D,s D,) = Ry (D, 0) = Ry (0, Dy))

In the derivation of Eq. (7.1-7), the following Wiener Kintchine relationships

for a quadrant symmetric stochastic fields is used,
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[o. ol o}

f f Ry (£ fy) cosk £ cos myfyd{zdfy

—00 =00

1

S (Iﬁ?z,ﬂy = s

(7.1-7b)

R, (£,€,) = f f Sy (k,,k, ) cosk £ cosk £ dr dk,

For Case 3 where F, (z,y)is homogeneous, the variance ai given by Eq. (7.1-6)

18

2 2| ﬂyDy
00 00 KK p ) |sin
ol = l f f ff( = y) sin’% z 2| dk dx
A\ K2 2 K ol
Ed —00 —00 T ¥y ¥y
2
2
\/— 2 o0 00 SinK/yDy
_ |22 2 (7.1-8)
= (= f fSFze(K/z,n )(1—cosn D ) = dk, dr, A
2

For Case 4 where F;/ (z,y)is homogeneous, the variance ai given by Eq. (7.1-6)

18
2 3 EID:L' 2
2 \/5 o5 168 Sin
o = . f fsﬂp;(nx’my)(l—COS&yDy) D | dk,dr, (7.1-9)
o) B i
2
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7.2 Definitions of Correlation Scales of Two Dimensional

Processes
WhenD_ = Dy — 0, the variance ai given by Eq. (7.1-6) approaches o?f

since the window function in Eq. (7.1-6) approaches one. That is,

ai = f f Sff(nw,ny)dnzdny = a;f for D, = Dy -0 (7.2-1)

On the other hand, for D= Dy — 00, the variance ai takes the following
forms depending on the behavior of the power spectral density function
] ff(lﬁ',z, h:y) of f(z,y)at the origin.

For Case 1! from Eq. (7.1:6) when D, =D, — oo,

zq—,Q—deudv
D
s Yy

0o 00 2 2
9 4 sinu | [sinv
= S
74 Dfo[u][v]ﬁD

T Y —00—0

4 00 . 2 00 . 2
=ﬁy_sﬁ (o,o)f[s‘zu] duf[Sl:)w] dv

} —o00 -0 (72'2a)
_ (2m)
DD Sff (O’ 0)
Ty
1 oo 00
) _[0 [o Ry (€,¢,)d¢,de,
For Case 2: from Eq. (7.1-7a),
oy = %RFF(O,O) =t ~0pp forD, =D —oco  (7.2:2b)
(0.0,) (0.0,)

2 ” .
where o7, is the variance of F(z,y) .

For Case 3: from Eq. (7.1-8),
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3 (\/5?2 2 % % sin v
o, = b—J D—f fSF;F; » (1—cosnxDx) »
x Y —o0—0 Y
\/5\2 9 00 .
i D_y_{)s% ( ,0)(1—cosnxD$)dnx£[Slzv
\2 -
= Dii %:—OOSQF; (fa:x,O)(l—cosnxDz)dkc
2
=D£j ;_7; . (0) forD, =D — oo

where RFI F (€,)is defined such that,

1 [0 0]
Bep &) =5 [ Rop (665,
then
1 o
SFLF, (k,,0) = E;[o Rpsz (&,)cosk & dE.
The inverse transform reclaims
RFsz €)= f SFze (k,,0)cosk & dk_

For Case 4: from Eq. (7.1-9),

V2

D
Y

2
2w
D_RE«/Fy(O) for D, =D — oo

2
04

where R . (§y) is defined by,
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(7.2-2d)

(7.2-2¢)

(7.2-20)

(7.2-2g)




1 o0
= f SFyF; (O,ny)cosmy&ydny
and

1 00
Sp (05,) =5 f Ry (6, ) cosr &, de,

(7.2-2h)

(7.2-2i)

Summarizing the above Eqgs. (7.2-1) and (7.2-2), the correlation scales of

f(z,y)can be defined as follows.

For Case 1:
| D =D —0
iz_ - A ’ !
> —_— D =D — 00
5 |A=D,D,) d

where 4" is the correlation scale of for Case 1 defined by

4" = ij TRff (gz,gy)dgzdgy - @Sﬁ (0’0)

T —o0—o0 T
For Case 2:
; 1 D,=D,—0
ay < \2
2 W%l b =p -
i A z y

where A; 1s the correlation scale of for Case 2 defined by
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A =2-FE =94,
Uﬁ (271’)

o
Ap = (27r)2 —

Ty
R,.(0,0
R, (0,0)
TT (7.2-4b)
f f SFF(ﬂm,fcy)dﬁ,xdny
— (27r)2 oo_":o‘oo
\ f f fc:n;SFF(mz,/cy)dnzdﬁ,y
4
R (0,0) = O Rerl8n§y)
" DE20E”  |e,~¢=0
For Case 3:
1 D =D —0
o *3 : !
a? P L ;
= ' D, =D, - o0 (7.2-5a)
¥ | DD (= D )
7y oy
where L;y is the correlation scale of for Case 3 defined by
1/3
* 2
L, =5 [ Rer 08,
Tp —oo
\1/3
T (7.2-5b)
f Ryp (k,,0)dxK,
f f niSF;Fw (nz,my)dnwdmy
\ —00 —00
For Case 4:
1 D—0
2
Ta L? :
= - . (7.2-6a)
7 |p,p:(=D} )
sy \T Tz
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where L;x is the correlation scale of for Case 3 defined by

1/3

. 2 7
Ly:l; = 9 f RFF (fz,O)dfw
o vy
If -
T (7.2-6b)
f RFyF;, 0,x, Jdr,

4 —
o0 00
f f /csS PF (K, k0, ks, drs,

—00 —00 /

If we consider the special case where D = D, =D, the above results

become so simple that the following results may be useful for the estimation

of the correlation scales of f(z,y) using the graphical method indicated in

chapter 6 for one dimensional stochastic processes.

For Case 1:
) 1 D—0
Za =Y (7.2-7a)
% = Do

where L is the equivalent correlation distance of the correlation scale A* of

f(z,y) defined by

I =+a" (7.2-7b)
For Case 2:
1 D—0
2
Za Y (7.2-8a)
o2 —E, D — oo
bid D

where L;, is also the equivalent correlation distance of the correlation scale A;
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of f(z,y)defined by

L, = Ay (7.2-8b)
For Case 3:
1 D—0
0'2 « \3
_54 =l (7.2-9)
O ? D — o0

where L:y is the correlation scale of for Case 3 defined by Eq. (7.2-5b).

For Case 4:
1 D—0
(7.2-10)

where sz is the correlation scale of for Case 4 defined by Eq. (7.2-6b).

Although Egs. (7.2-9) and (7.2-10) have the same form with respect to

the separation distance D, it is easy to distinguish them. In fact, if we select
a rectangular area where D= 4Dy = D for example, from Egs. (7.2-5a) and
(7.2-6a), a difference appears between Egs. (7.2-9) and (7.2-10) such that
4(szy / D)? for Case 3 anle(LZz / D)? for Case 4. By this difference, we can
distinguish between Case 3 and Case 4.

In Fig. 7.2-1, the approximate relationships betweeno ,and D given by

Eqgs. (7.2-7) to (7.2-10) are shown by solid lines. In the same figure, three
examples of exact relationships Eqs. (7.2-11b), (7.2-12b) and (7.2-13b) are

plotted (dashed curves) using the following particular forms (separable types)
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of the correlation function or power spectral density function which satisfy
quadrant symmetric condition.

It can be observed from Fig. 7.2-1 that all these curves asymptotically
approach the solid lines in the ranges where D — 0 and D — oo, and also that
in the intermediate range of D, the solid lines tend to represent the upper

bound of all the dashed curves.

=]
~
P
)
o 1 F
ol —
+ .
& -
o
§ 0.5 |—
)
u p——
o
-~
2 -
Q
o
o
[ = —
-
o
©
¥
S
< 0.1 Lo Lol L
0.2 0.5 4 5 10
D D D D
i - . - 4
Distance (1) .- (2) LE, (3)1.;., ( )L;

Fig. 7.2-1 o,—D Diagram for Two Dimensional Process Where
D=D, =D

(Solid Lines: Approximation, Dashed Curves: Exact Solutions )
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In the following examples, we assume D_ = D, =Db =b =b.

Power spectrum for Case 1:

Sy (K, Féy) = a;fS(k.:z)S(ny)

2 2 2
ol b bk (7.2-11a)
=L p? exp| - B I ki)
41 2 2

The exact variation is obtained from Eq. (7.1-6) such that

2
[ A ]

If

r2 D ¢ 4
5{[1 _B]Rf_f(g)d‘f

2D b]z
o | o] |

i

: J;[i]g

D

e

)

(7.2-11b)

\
*

g . L
R (§)=e/M b=

o
=2<1>@ =1

o[

where the standard normal distribution ®(z) is used as,

1 ¢2 11 '

O(z) = — f exp[——}it ==+ —fexp[——]dt

2 2 2

V2T Zo VAT g (7.2-11¢)
1 T 7 z! 7

6
SRR [ £ — e
2 x| 3-2-11 5.22.21 7.2%.3 ]

and
T ~(&/of g — b e /244
[e §—$ [ e
_ Wr (2D, (7.2-11d)
2 b
2 b
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Power spectrum for Case 2:

2 2
s bk bk
il 8. 8.3 125 | _ 2%
Sff(fi‘,z,fi:y)— 161Tb Kk, €XP [ = ] 5
S (k.,x5) o2 oo Y (b i
g e Y ST I 18 x| — 2| _ [
o) == = Tor” P 2

=y

” 2
% 4 oxp| [ e | —| %
Rpp(§,08,) = 4 b exp [ D) ] [ 2 (7.2-12a)

* 2 * *
A =0 L, = A, =b

The exact variation is obtained from Eq. (7.1-7a) such as

2
ol _ 4 Ryp(0,0) + Ryp(D,, D) —
7, A2 |Rpp(D,,0) — Rpp(0,D)
g 2 (7.2-12b)
LF

1—exp|—

2
2]
*
Ly
Power spectrum for Case 3:

Splhpm) =0 ffSF,F, ()5 (5,)

2 2 b 2
= 2f—b“»cz exp|— s I
8r ° 2 2

y 2 2
b3 bk b bk
Spp(K)= exp|— —'“’] , 8, (k)= —=-exp|—|—=L| | (7.2-182)
o= ol 5] | = el

2 b 2 ¢ 2
Ry (€)= Zexp| - i] Ry (€)= exp —[Ty]

*

L

xY

G

The exact variation is obtained from Eq. (7.1-8) such as
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[ZT;]Z N %(RFIF, ©0)— Ry (D))] [%j:[l - %} R, (E)dg]
_ [%2 g fg] 5
E o)sfe22] 2 [[_]] —
B @ =2 ﬁbﬂ ~1

Power spectrum for Case 4:

This Case is same form of case 3 by changing the coordinates z,y. However,

since D= D,=Db, =b = bis assumed in this example, The exact variation

is same to Case 3.

o’ (1 ; bk ’
DK,
sG] 5]

2 2

5 (o) 3 bﬁ}y : S () b bfﬁx "

K )= —=exp|—|—| |, k,) = ——exp|—

EETY W In 2 i - 2
. (7.2-14)
b? b¢, £, 2
Rp;p;(gy) = *é'exP i —2— ) Rﬂ(é'x) = exp|— ?
b= yT - ny
1/3
\a
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7.3 Numerical Examples

In order to visually illustrate the correlation scales and patterns of

spatial variation of f(z,y) , we present in this section some numerical
examples simulated by the following equations for quadrant symmetric

processes (Shinozuka and Harada (1986)).

flz,y) = \Ei i J?Sff (mxm Ky )dnzdr.:y X

m=1n=1
cos (Iiz_m:lf + K, Y+ 91mn) +
; : ; 7.3-1
cos (K,zmﬂ, —5, Y 4 B.Zmn) ( )
K
dk_ = -2, dx =L,
M i N
k, =mds, Kk =ndk
z y

m Yn

where 6, ~and 6, ~are independent random phase angles uniformly
distributed between 0 and 27.The parameterss_, andfsyu are the upper cut

off wave numbers ofx_and K, respectively.

Example 1: This example is for case 1 using the power spectrum given by

Eq. (7.2-11a) together with following data;

0,=1m, b =1m, b =1/2m
M=N=64, k 6=k, =27rrad/m
yu

A sample function of f(z,y) and the size of the correlation area A" in this

example are shown in Fig. 7.3-1. In Case 1, the correlation area A" defined by
Eq. (7.2-3b) may signify that the correlation of is extremely high within the

size of this area A" (= wh b = 2.22 m?).
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Fig. 7.3-1 Sample Function of f(z,y) for Case 1

Example 2: For Case 2 using the power spectrum of Eq. (7.2-12a) in

conjunction with the following data;

o,=1m, b =b =m/5m
M=N=64, k_ =&k =47rad/m
TU yu

In Fig. 7.3-2, the size of the correlation area A; (=bb, =04 m?) in this
example and a sample function are shown. For Case 2, the correlation area
A; defined by Eq. (7.2-4b) may also be useful for representing the size of area

within which highly correlated observations are made.
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Fig. 7.3-2 Sample Function of f(z,y) for Case 2

Example 3: This is an example for case 3 using the power spectrum given
by Eq. (7.2-13a) with following data;

o, =124cm, b =1.131x10%m, by:3.012x103m
M=N=64, k ,=10/b =884x10°rad /m

K, =10/b =3.32x10rad / m

* 1/3 . .
The size of the correlation distance L, (= (x/;bjby) =1897.4 m) in this

example and a sample function of f(z,y) are shownin Fig. 7.3-3. In this case,

relatively rapid variation along the z axis is observed, compared with the
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variation along the y axis. To represent this variation along the z axis, the
correlation distance L;y defined by Eq. (7.2-5b) may be appropriate. However,
the correlation distance along the y axis is not defined, and the size of
correlation area A*(= LZ) is quite vague in Case 3.

For the separable power spectrum of this example, the correlation

distances along the z,y axes can be defined such as,

L, =b =1131x10°m, I =+mb =5448x10°m  (7.3-2a)

T

Using the above definition, the correlation distance L;y is expressed as,

1/3 v 4 \1/3
(Vmo2,) " = (121
Ty » My

1/3
((1132)2 X 5448) ~1897.4m

L*
2 (7.3-2b)

The correlation distance Lzy is about 1.7 times longer than the correlation
distance L; . By observing the variation in Fig. 7.3-3, it may be suitable to

use the correlation distance L} along thez axis and the correlation distance

Lz along they axis, respectively.
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Fig. 7.3-3 Sample Function of f(z,y) for Case 3
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8. SOME NEW APPLICATION EXAMPLES OF

CORRELATION SCALES

In this chapter, we will show three examples of application of correlation
scales; (1) Peak mean factor, (2) Seismic relative ground displacement
between two locations (Seismic ground root mean square values between two

points), (3) Upper cut off wavenumber of power spectrum density function.

8.1 Peak Mean Factor

As briefly described in Section 1.2, the correlation scale has been
successfully used in many engineering fields as a measure of approximately
obtaining the equivalent number of independent observations from stochastic
process data with finite intervals. In the context of this interpretation of
correlation scale, we present here a new approximate observation of the
probability distribution of maximum values of stochastic processes.

In many applications of stochastic process theory to the analysis and
design of structures, a central question is as follows: What is the absolute
maximum value of f(z) with zero mean over the range0 < z < L where the

correlation function or the power spectral density function is known. If the

absolute maximum valueY is expressed as po L where Ty is the standard

deviation of f(z), and p is the peak stochastic factor, the mean and standard

deviation of p is given by Davenport (1964) as,
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2L 0 577215

21n
2L
(8.1-1a)
2]ln ]
Lf
where L r is the apparent wave length defined by
S (k)
L, =2nr—-=2n ” =27 [—=2 (8.1-1b)
f K8 (k)dr

Equations (8.1-1a) and (8.1-1b) assume the existence of L ;defined by Eq.

(8.1-1b). However, the derivative f'(z) of f(x) over does not exist when

S ff(O) = 0 (Case I process). In this case, the above equations are useless.

Hence, we need another stable expression for the peak factor. The following
equations for peak factors are based on the combination of the largest value
distribution function (the first type) and the correlation scales A an C in Table
1-1.

For the probability density function of the local maxima X (local points
of a homogeneous Gaussian process, the general expression is well known as

(Cartwright and Languet-Higgins (1956)).

2
-+

‘20_2

' €
F.(y)= exp|—
X \N27o
1— ¢ y 2 1—
Wie of -2 |r yi-¢®
o 2(7 age

] (8.1-2)
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Where F)I(V (*)is a normal distribution function and e¢is the irregularity factor

and lies between 0 and 1. For ¢ =0 (completely narrow band process), the
first term vanishes and Eq. (8.1-2) reduces to the Rayleigh distribution such

that

2
fyy) = eXp [~ i;] (8.1-32)
with distribution function

Fi(y)=1—exp .
X 207

— i] (8.1-3b)

For ¢ =1 (completely wide band process), only the first term remains and

Eq. (8.1-2) becomes a Gaussian distribution with zero mean and variance o

such that

@)=

exp [— y_] (8.1-4a)

2o

with distribution function

Fe(y) = \/—U}exp yz]dv (8.1-4b)

The relationship between the local peak probability density function f, (y)

and the homogeneous (ergodic) process f(z)is schematically illustrated in Fig.

8.1-1.
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Fig. 8.1-1 Schematic Illustration of Sample Functions and Peal Value
Distributions

On the other hand, using the exact distribution function F (y)for the
greatest peak values among (X, X,,---X )that are statistically independent

and identically distributed with F (y) as the initial variate such that

F,(y) = Pr(Y < y)
=PI‘(X1 Sanz Sy)"',Xn Sy) (81-5)

= (Fy(v))’

We may have an approximate distribution function for the “greatest peaks” of

the stochastic process f(z) over the range 0 < z < L when in Eq. (8.1-5) we

interpret F, (y) as the distribution function of the distribution density function

given by Eq. (8.1-2) withn given as follows:
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n=£ or L (8.1-6a)

Ly

where L and L} are the correlation scales (A and C in Table 1-1 or Eq. (3.8))

such that
L= [ R (eue (8.1-6b)
T —c0
and
* 1 1 a
L, =—1, =—|2r-£&
R \/EW[ "ff]
S (k)dk (8.1-6¢)
1 R;;'F(U) 1 _Ll‘ FF( )
= ——|2nm, |——5 = 2r =2
\/571' R”.(O) \/5?1’ o
\ f Sy (k)dr
e |

In Eq. (8.1-6a), the numbern signifies the equivalent number of independent
observations contained in the interval I since the correlation scales L and

L} are the measures of the highly correlated length of f(z).

Finally, taking into account the fact that the peaks and troughs

generally tend to appear as the same number over a finite length, the
approximate distribution functionF;l(y) for the absolute maximum value of

f(z)over the range 0 < z < L may be given by Eq. (8.1-5) with the following 7

instead of the n given by Eq. (8.1-6a):

n=— or - (8.1-7
L LF
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As 1s well known, for large n and exponential type initial function

F. (y), Eq. (8.1-5) has the Type I asymptotic form classified by Gumbel (1958)

such that

F,(y) = exp (—e_a"(y_u")) (8.1-8a)

where u_ = the characteristic largest value of the initial variate X and o,

an inverse measure of the dispersion of Y which are determined by

Fo(u)=1-2, o =nf(u) (8.1-8b)
n

The mean value E(Y') and standard deviationo,, of Y are also given such that

E(Y)=u_+ 0.577215

“n (8.1-8¢)

™

o —
YY a\/g

n

As the two extreme cases where F, (y) = F)f(y) and Fy (y) = F)I(V (), Eq. (8.1-8¢)
becomes as follows.

For a Rayleigh distribution F,(y) = F)f (v):

| =4  —
By = W] _ i, 0577215
Tr V2Inn (8.1-9a)

™ 1
0 =
- JE \V2Ilnn
When n =1, F,(y)=Fg(y) from Eq. (8.1-5), then from the mean value and

standard deviation of a Rayleigh distribution, the mean peak factor and its

standard deviation are given by
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b (8.1-9b)
_ %y T
Ry e
i

For a normal distribution F\(y) = F. )I(V (v):

i) = BY] _ i, _Inlnntlndrw | 0577215
Uff \/2 Inn \/2 Inn (81_10a)

Oyy 7T

1
g = —_— =
. Uff \/E \/ 2Inn
When n=1, F,(y)=Fy(y) from Eq. (8.1-5), then from the mean value and

standard deviation of a normal distribution, the mean peak factor and its

standard deviation are given as

_ EY]

Elp]=—=0
oaff (8.1-10Db)
Top = UYY a
ff
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B —— Approximation
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Fig. 8.1-2 Relationships between Mean Peak Factor and Independent Sample
Size

The mean peak factors given by Eqgs. (8.1-9a) and (8.1-10a) are plotted
by solid curves as a function of n in Fig. 8.1-2. The dashed curves in Fig.
8.1-2 are the results from Eq. (8.1-5). From Fig. 8.1-2, Eqs. (8.1-9a) and (8.1-
10a) may be used for n >10. For small value of n, Egs. (8.1-9a) and (8.1-
10a) tend to give a larger value of E[p]. Since, for the intermediate values
of the irregularity factor, the value of E[p] may lie between the two extreme
cases (two solid curves and dashed curves in Fig. 8.1-2) with the Rayleigh
distribution and normal distributions as the initial distribution, a simpler

approximation may be appropriate for the mean value of peak factor:

E[Y] Vlnn n >1.65

Efp| =" = (8.1-11)

o i othewise
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E[p]=+2Inn in Eq. (8.1-11) is also plotted by a solid curve in Fig. 8.1-2

indicating the approximate behavior of E[p].
It 1s observed from the above discussion that the mean vale and

standard deviation of the peak factor p derived by Davenport (Eqgs. (8.1-1a)

and (8.1-1b)) are identical with those of Eq. (8.1-9a) with that

L, o L, 4443[,
The scaling factor 1/ 2 in Eq. (8.1-12) is due to the fact that, for narrow
band process, the peaks and troughs tend to appear twice within the apparent

wave length L which is longer than the correlation distance L} (LF = \/2_7rL;)

as shown in Fig. 8.1-1. However, the effect of n on E[p| is not so sensitive
that the difference is small between E[p] with n given by Egs. (8.1-7) and

(8.1-12) as shown in Fig. 8.1-2. In fact, for example, for n = 40 in Eq. (8.1-7),

Eq. (8.1-12) gives n, =40/4.443=9.0. From Fig. 8.1-2, the corresponding
mean peak factors are read as E[p] = 2.9 forn = 40 and E[p] =24 forn, =9.0
indicating little difference.

In turn, for a wide band process where L’;, cannot define, the number

B =2L] L' may tend to give smaller values than the true number of peak

values. In fact, for pure wide band processes (e = 1) where the correlation

function is expressed by the Dirac delta function, the correlation scale

becomes a finite value of 2xS ff(O) / J;f. However, within this interval
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L =2nS ff(O) / a;f, true peaks may tend to occur more than one. Hence, the

mean value of the peak factor given by Eq. (8.1-10a) with n = 2L / L' may give

a lower value of E[p].

In conclusion, for practical use of the peak factor of the absolute
maximum value of f(z) over the range 0 < z < L, as a conservative mean peak
factor, Eq. (8.1-9a) may be appropriate with n given by Eq. (8.1-7), and Eq.
(8.1-10a) with n given by Eq. (8.1-7) as a lower value of the mean peak
factor. For more simplicity, Eq. (8.1-11) may be useful with n given by Eq.

(8.1-7).

8.2 Seismic Ground RMS Estimate

In contrast to the earthquake resistant design of above ground
structures where the inertial forces induced by ground acceleration are the
main consideration, the spatial variation of the ground displacement is of
primary importance for buried lifeline structures such as pipelines and
tunnels. Consequently, the ground strains and relative displacements
between two locations along pipelines play main roles in the seismic design
of such buried lifeline structures.

Since the seismic ground motion displacement at a time instance along

pipe axis (z) varies with location, it is expressed asu(z). Therefore, the
relative ground displacement u,(z) and the averaging ground strain e,(z)

between two points with separation distance D are given by
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uy(@)=uwz+D/2)—ulz—D/2)
p() = —Hfms(y)dy - Lo &2
e-D/2
where the relationship e(z) = du(z) / dzbetween ground strain and ground
displacement is used.
By comparing the averaging process and difference process in Eqs. (2.1)

and (2.3) with Eq. (8.2-1), the following correspondences are clearly observed;

g(z) < f(z),u(z) < F(z). From this analogy and Eq. (2.14), the deviations
o, ,0, of ground straine,(z) and the relative ground displacement u,(z) are
D D

given by
1

0' :—O'

—J2 (R,,0) - R,.(D)) (8.2-22)

0, =2(R,,(0) -, (D)
Also, from the relationship between apparent wavelength and correlation

distance of Egs. (3.5b) and (3.8), the apparent wavelength L and the

correlation scale (distance) L:; of u(z) are given by

=2l = 1o (8.2-2b)

u
O e \/_7T

whereo  ando__are the deviations of ground displacement u(z)and ground
straine(z).

Applying stochastic process theory, we can estimate the rms (root mean
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square) values o, ando_ of the relative displacements between two locations
D D

on a ground surface and the ground strain along the pipe axis at time instance

from the following equations:

o, \/— D D<L‘
2 — | (8.2-33)

T \/_ D>L

&

p - D<I,
o _ | L, (8.2-3b)
= ﬁ D>
| B

At now, two examples of exact solution ofo, /o, are shown as follows:
D

Type 1 of Table 4.2-1: For a power spectrum of strain, we use

o
( )__ T an 2e—b]nl
(8.2-4a)
f S_(k)dr fm
Then,
2
S, (k)= eegﬁ) 0"“'be"’|”|
K ; 2-2! (8.2-4b)
R (&) =o>
uu( ) U b2 +£2

The correlation scale of L:; 1s given by

* 1 g 1 b
L = 2 | = 2r—|=0b (8.2-4¢)
. ‘/EW [ oes ] ‘/571' [ \/-2_]

As a result, the exact solution of Ty, / 0,18 given by
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2 = h(1-R,(D)/ R, 0)

Type 2 of Table 4.2-2: For a power spectrum of strain, we assume

2 3
S.ole) = T e
2N

f S, (F&)dl‘&— iu

Then,

2 3
Suu(n) - SES(K') — Uuu . b K;2e—(bn/2)2

K2 2 2\/;
R, (&) =02, (1-2(¢ / b?)e €/

The correlation scale of L: is given by

% 1

Luzﬁ[z”a"] pu e b

As a result, the exact solution ofouD / o, 1s given by

> = (1~ R, (D)/ R, 0)

:J2[1—[1—§(D/L’;)2J

exp[—%(D/LZ)z]

(8.2-4d)

(8.2-5a)

(8.2-5b)

(8.2-5¢)

(8.2-5d)

From Eq. (8.2-1), o, ando_ are related with the following equation.
D D

Hence,
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UuD _ Do > _ 2 O'ED
uu Uuu Lu, (Uuu / L’u) (8.2'6b)
o
log—2- = log - + log——2——
Tou L, (0 /L)

The above logarithmic expression is useful for graphical representation of
relationship among the values ofauD Iy L: and T [ (o, / LZ) as shown
in Fig. 8.2-1. The solid lines in Fig. 8.2-1 are the approximation given by Eqgs.
(8.2-3a) and (8.2-3b). The two dashed curves are the exact solutions of Egs.

(8.2-4d) and (8.2-5d) by using the type 1 of Table 4.2-1 and the type 2 of Table

4.2-2 for the power spectrum of ground strain.
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To constructing Fig. 8.2-1, the parameters are only o, of ground

displacement, the correlation distance Lz and the relative distance D

between two points on ground surface. More detail and field data analysis can

be seen in the paper by Harada and Shinozuka (1986).
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8.3 Miscellanea
In a digital time (spatial) series analysis and simulation, we must

determine the upper cut-off frequency w, (upper cut-off wavenumber K?u) above

which the power spectral density function is considered to be zero. For this

upper cut-off wavenumberx_, the spectral scales defined by Eq. (3.11) can be

used as a measure ofw (x,)such that

(8.2-7)

In a stochastic finite element analysis where the material properties or
boundary conditions are assumed to be stochastic, we face the determination
of the finite element size corresponding to the randomness of the material
properties in space. For this problem, the correlation scales may be useful as
a measure of the relationships between the element size and the material

randomness in space.
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9. CONCLUSIONS

In this study, we reinterpret the correlation scales previously defined in
the literature from the viewpoint of the statistical analysis of observed field
data. By considering the averaging process and the difference process, two
typical definitions for correlation scales are consistently derived, and also new
definitions for the same correlation scales are obtained which make it possible
to estimate the correlation scales from variances easily calculated from
observed field data. The statistical assessments of the estimation of
correlation scales from the variances are also briefly presented.

By extending the procedure for one dimensional stochastic process to
two dimensional stochastic processes, the correlation scales (area) of two
dimensional processes are defined and visually illustrated using a digital
simulation technique. An estimation procedure for these correlation scales for
two dimensional processes is presented.

Finally some new application examples of correlation scales defined and
reinterpreted in this study are briefly presented. They are the applications of
correlation scales into (1) the approximate distribution of the maximum
values of stochastic processes over a finite length, (2) the estimation of the
seismic ground rms (root mean square) strain, (3) a measure of the upper cut
off frequency in the digital time series analysis and simulation, and (4) a
measure of the relationships between the finite element size and the material

randomness in stochastic finite element analysis.
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