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Fast Retinex Image Enhancement Using CUDA  
Kyi Myo Zawa), Kunihito YAMAMORIb), Masaru AIKAWAc), Aye Min Myatd) 

 

Abstract 

Image enhancement is an important preliminary step in many digital image processing and applications and 
Retinex algorithm is one of the commonly used algorithm to enhance the image with uneven illumination condition. 
But the computation of the Retinex is a very complex and time-consuming process. Therefore, we implement the fast 
Retinex image enhancement algorithm using the CUDA (Compute Unified Device Architecture). Our experiments 
show that we can gain 46× speed-up for image size 4,096 × 4,096 compared with the OpenCV CPU program. 
 
Keywords: Retinex, NVIDIA CUDA, Image enhancement, Convolution theorem 
 

1. INTRODUCTION 
 
 Human Visual System (HVS) can recognize 
objects and can see the true colour under varying 
illumination condition, but the imaging devices cannot 
fully capture the scene like the human eyes. Therefore, 
the captured images need to be enhanced to get the 
desired image. Retinex algorithm is commonly used to 
solve this kind of problems. But the computation of 
Retinex algorithm is a very intensive and time-
consuming process because the processing of the 
image by Retinex image enhancement has to be 
performed on each pixel. If this enhancement 
operation has to be performed sequentially, it will take 
too much time to complete the enhancement operation.  
 Nowadays, with the advance in technology, 
all kinds of image capturing devices can take very 
high-resolution images and videos. And the 
computation time of Retinex algorithm is directly 
proportioned to the size of the image. If the image 
becomes larger, then the time to perform enhancement 
operation is increased as well. 
 The aim of this work is to enhance the speed 
of Retinex algorithm as fast as possible by using 
CUDA (Compute Unified Device Architecture) which 
is a parallel computing platform and application 
programming interface (API) model created by 
NVIDIA. Because of Retinex image enhancement can 
be used as a pre-processing step in many images and 
videos applications such as face recognition, object 
detection, vehicle tracking, and other related 
applications. To work out this, we need to identify 
which parts of the algorithm could be run in parallel to 
improve the processing speed and which parts couldn’t 
and how we can improve the processing speed of the 
algorithm. 

 Our research is constructed as follows: 
Section 2 expresses the related works and our own 
methods to approach this problem. Section 3 explains 
the detailed process of our work and how much speed-
up can be got by using our proposed method. Section 
4 gives our experimental results and performance 
analysis. And in Section 5, we conclude our approach 
with the suggestion on future works and 
improvements. 

 
2. RELATED WORKS 
 

In this section, there are two topics. Firstly, the 
use of CUDA in some image processing algorithms 
and the speedup could be achieved by using CUDA 
are presented. And then the types of center/surround 
retinex methods are reviewed one by one. 

 
2.1 Image Processing algorithms using CUDA 

CUDA is a parallel computing platform and 
application programming interface (API) model 
created by NVIDIA. It allows software developers and 
software engineers to use a CUDA-enabled graphics 
processing unit (GPU) for general purpose processing 
— an approach termed GPGPU (General-Purpose 
computing on Graphics Processing Units). With the 
ease of its programmability, CUDA has been adopted 
to use to accelerate many computationally intensive 
tasks in image processing and computer vision 
domains. 

A parallel version of Canny edge detector using 
CUDA was implemented1), including all algorithm 
stages. They achieved 3.8 times acceleration on the 
CUDA version with the image size of 3,936 × 3,936 
resolution compared with an optimized OpenCV 
version running on a PC. A real-time visual tracker 
that targets the position and 3D pose of objects in 
video sequences, specifically faces was implemented 
by Lozano and Otsuka2) and their implementation can 
achieve 10 times performance improvements as 
compared with a similar CPU-only tracker.  
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And according to the parallel image processing 
based on CUDA3), as the image size increase, 
histogram computation can get more than 40 times 
speedup, removing clouds can get an about 79 times 
speedup, DCT (Discrete Cosine Transform) can gain 
around 8 times speedup and edge detection can get 
more than 200 times speedup. 

In the CUDA implementation of McCann99 
retienx algorithm by Hyoseok Seo and Ohyoung 
Kwon4) the sequential Matlab code takes 25.429 
seconds in 1,024 × 1,024 image size, and sequential C 
codes take 4.1 seconds, and the proposed CUDA 
implementation takes only 0.760 seconds for the same 
image. So, CUDA implementation can achieve 5.3 
times speedup compared to the CPU implementation 
written in C. 
 
2.2 Center/surround Retinex 

The Retinex algorithm was developed by 
Edwin Land5) and is one of the most famous 
algorithms that attempt to explain the human colour 
constancy. Colour constancy is one of the most 
important characteristics of human vision. Because it 
ensures that the perceived colour to the eyes remains 
unchanged under varying illumination conditions. The 
Retinex algorithm is based on the HVS. 
 There are many Retinex algorithms: path-
based Retinex, recursive Retinex, center/surround 
Retinex and the PDE-based Retinex. Among them, the 
center/surround Retinex is well suited for 
parallelization because of the convolution operations, 
log-domain processing, and normalization process in 
the algorithm could be run in parallel. 
 The input image I in the Retinex algorithm is 
assumed to be formed by a product of the illumination 
L and the reflection R, i.e., I = L ∙ R. The aim of the 
Retinex algorithm is to estimate the illumination L 
from the original image I to discard the effect of 
nonuniform illumination from the image I to improve 
visual quality of the image I.  

The single-scale retinex (SSR) that uses a 
Gaussian blur operation to compute the 
center/surround information proposed by Rahman et 
al.6). The extension of SSR is multi-scale retinex 
(MSR) and that combines dynamic range compression 
and colour/lightness rendition by using weighted three 
SSRs with different spatial scales. Finally, the multi-
scale retinex with colour restoration (MSRCR) 7, 8) was 
proposed to restore some colour loss in MSR process 
using colour restoration factor. 
 The basic form of single-scale retinex (SSR) 
is as shown in Eq. 1: 
 
        ,yxIyxFyxIyxR iii ),(*),(log),(log,     (1) 

where x and y denote the coordinates of a pixel in 
image, Ri (x, y) is the Retinex output, log Ii (x, y) is the 

image distribution in i-th spectral band, the symbol 
“∗’’ denotes the convolution operator, and F (x, y) is 
the Gaussian surround function as Eq. 2. 
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where c is the Gaussian surround space constant, and 
K is also a constant such that,  
 

                         .dxdyyxF   1),(                            (3) 

The constant c is used for controlling the scale of 
F (x, y).  A small value of c provides a good dynamic 
range compression, and a large scale provides better 
colour rendition.  

In order to combine the dynamic range 
compression and the tonal rendition, SSR is extended 
to multiscale Retinex (MSR). The result of MSR is a 
weighted sum of the results of SSR with different 
scales. The i-th spectral component of MSR output is 
mathematically expressed by the following equation: 

 

              ,
1




N

n
nnMSR RwR

i
                           (4) 

where, N : the number of scales, 
 
          

inR : the i-th component of the n-th scale, 

           wn  : the weight associated with the n-th scale. 

inR  is defined by Eq. 5. 
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th scale. From Eq. 4 and Eq. 5, ),( yxR
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rewritten as Eq. 6. 
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where ),( yxR
in denotes a Retinex output associated 

with n-th scale for an image, Ii(x,y) and Fn(x,y) denote 
a surround function. S is the number of spectral bands 
in the image.  

A gain wn is set to satisfy the condition .1
1




N

n
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The surround function is given by 
222 /)(),( ncyx

nn eKyxF  , where cn are the scales that 

control the extent of the surround (smaller values of cn 

lead to narrower surrounds, and larger values of cn lead 

to wide surrounds), and the normalization factor is 
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MSR is good for gray images. But it could be 
a problem for the colour images because it does not 
consider the relative intensity of colour bands. This 
can be seen from the formula of MSR, whose output is 
the relative reflectances in the spatial domain. 
Considering the images “out of the gray world”, whose 
average intensity for three colour band are far from 
equal, the output of MSR for three channels will be 
more close, which makes it looks more gray. The 
solution to this problem is to introduce weights for 
three colour channels depending on the relative 
intensity of the three channels in the original images. 
To address the drawback of MSR with regard to colour 
restoration, we introduced weights for three colour 
channels depending on the relative intensity of the 
three channels in the original images. The relative 
intensity of the three channels is given by Eq. 7, 
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where Ii is the i-th band of the input image and S is the 
total number of colour bands. The colour restoration is 
given as )],([),( ' yxIfyxC ii  . 

The best overall colour restoration described 
in7) is: )],(log[),( ' yxIyxC ii  , and then 
becomes as Eq. 8, 
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where β is a gain constant, and α is used for controlling 
the strength of the nonlinearity, S is the number of 
spectral channels. 

The MSRCR is the most computationally 
extensive among three center/surround retinex 
algorithms because it requires to compute the three 
large Gaussian blur convolutions on a large scale to 
compute the center/surround information for each 
spectral band. 

In our work, we first determine which parts of the 
algorithm could be implemented in parallel and which 

parts could not be implemented. We compute the three 
Gaussian convolutions in the Retinex algorithms in the 
frequency domain as opposed to the conventional 2D 
convolution to speed-up the Retinex enhancement 
process.  
 
3. PROPOSED ALGORITHM USING CUDA 
 

Firstly, we load the image needed to enhance, and 
classifies whether the image is colour or not, and then 
apply the CUDA based Retinex algorithm to the 
image. 

We need to classify whether the image is gray 
scale image or colour image. If the image is gray scale 
image we only need to enhance the image with MSR. 
If not, we need to apply the MSRCR algorithm to the 
image as shown in Figure 1. And Figure 2 shows the 
image processing operations done in GPU. 

 
3.1 Using Convolution Theorem to Compute the 
Gaussian Convolution 
  The process of convolution (a rather messy 
integral in the spatial domain) has a particularly simple 
and convenient form in the frequency domain; this is 
provided by the famous convolution theorem9). 
 

 
Fig. 1. CUDA operations block diagram. 

 
According to the convolution theorem, the 

convolution of the two functions by Fourier transform 

GPU 

Original Image 

Enhanced colour 
Image 

Convolve with Gaussian  
Surround Function 

Log-domain Processing 

Normalization 
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is equal to the product of the individual transforms. 
So, the convolution in the SSR becomes as Eq. 9. 

  






 )},().,({log),(log, 1 wvIwvFFyxIyxR iii , (9) 

where ),( wvF


and ),( wvIi


are the Fourier transforms 

of F(x,y) and Ii(x,y) and F-1 denotes the inverse Fourier 
transform. 
 

 
 

Fig. 2. Overall system block diagram. 
 

Steps for convolution in frequency domain are as 
follows; 

1. Calculate the optimal DFT size for padding. 
2. Calculate the Fourier transform of the image 

with padding. 
3. Generate a filter function F, the same size as 

the image. 
4. Multiply the transformed image by the filter 

(pixel-wise multiplication). 
5. Inverse Fourier transform to get the 

convolved image. 
Finally, we get the appropriate block size to 

implemented in the GPU. 
 
3.2 Log-domain processing and normalization 
 The log-domain processing incudes 
computing natural logarithm of the original image 
pixels and the convolved results pixels, addition, 
subtraction and multiplication. After the computing of 

the log-domain processing step as shown in Figure 2, 
we need to normalize the processed pixels from log-
domain to display domain those value range is from 0 
to 255 for 8-bit colour image because the processed 
pixels value without normalization have both positive 
and negative values. 
 Mooer et al.10) proposed an automatic 
treatment of the retinex output prior to display by Eq. 
10. 
 

  ),),((*),( min
minmax

max' ryxR
rr

d
yxR iMSRCRMSRCRi




 (10) 

 
where dmax = 255 for 8-bit image, rmax and rmin are the 
maximum and the minimum pixel value in the 
processed image. 
 
4. ANALYSIS AND EXPERIMENTAL RESULTS 
 

The parallel implementations of the convolution, 
log-domain processing, and normalization are 
implemented to optimize Retinex image enhancement 
algorithm. The computational experiments are carried 
out to compare the performance of the parallel 
implementation on GPU against the sequential 
implementation on CPU by using OpenCV.  

The computational experiments have been 
carried out on the Dell Precision Tower 3620 with the 
following characteristics: 

 CPU: Intel (R) Core™ i7-7700 CPU @ 3.6 
GHz, 16 GB DDR4 RAM 

 GPU: NVIDIA Quadro M4000 
 GPU Memory: 8 GB GDDR5 
 Memory Interface: 256-bit 
 Memory Bandwidth: 192 GB/s 
 NVDIA CUDA Cores: 1,664 
 System Interface: PCI Express 

3.0x16 
 Window 10 64-bit with Visual Studio 2017 

and CUDA toolkit v10.0 
Results of the experiments are shown in Table 1 

and in Figure 3. We use six resolution of image size 
for our experiments as shown in Table 1, and measure 
the total execution time including the data transfer 
time between CPU and GPU.  

We test about 50 images with 10 iterations and 
take an average to each image sizes to get the 
execution for both the CPU and GPU. For CPU 
implementation of the algorithm, we use OpenCV 
optimized Gaussian blur and other optimized image 
processing functions. For GPU, we implement it with 
the combination of OpenCV and CUDA. 

As shown in Figure 3, the execution for the 
smallest image size in this experiment could not 
achieve speed-up. But as the image size increased, the 
execution time in CPU is longer and longer as 
compared to CUDA. This is because the convolution 
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in Fourier transform could only achieve speed-up for 
the larger kernel size and image size. 

  
In this experiment, we could not gain speed-up 

for the 256 × 256 image size compares to other image 
sizes. Our CUDA implementation for 4,096 × 4,096 
resolution image achieved 46.3 times faster than CPU 
program. So, the proposed algorithm is good for 
computing large image sizes. Some of the resulted 
images from the system are shown in Figure 4. 
 

 

 
Fig. 4. Experimental results photos: top left and bottom left 

are the original images and the top right and bottom right are 
the MSRCR images. 

 
 As we can see in Figure 4, the MSRCR 
images are a little blur compare with the original 
images, it is an innate flaw of MSRCR and we need 
some colour balancing techniques to increase the 
contrast of the image for future processing. 
 
5. CONCLUSION 
 

In this paper, we implemented the fast Retinex 
algorithm using CUDA and it could achieve more 
speed-up for the larger image sizes. So, it is well suited 
for high-speed image enhancement steps for many 
images and videos applications. 

The analysis results could be summarized as 
follows: 
1) We can only get a benefit from the convolution in 

frequency domain, if the image sizes and kernel 
sizes are large enough. 

 
2) The enhanced MSRCR images have a blurring 

effect and that is needed to be solved in the future. 
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