
Fast Retinex Image Enhancement Using CUDA

言語: eng

出版者: 宮崎大学工学部

公開日: 2021-06-08

キーワード (Ja):

キーワード (En):

作成者: Kyi, Myo Zaw, Yamamori, Kunihito, Aikawa,

Masaru, Aye, Min Myat

メールアドレス:

所属:

メタデータ

http://hdl.handle.net/10458/00010208URL

Fast Retinex Image Enhancement Using CUDA
Kyi Myo Zawa), Kunihito YAMAMORIb), Masaru AIKAWAc), Aye Min Myatd)

Abstract

Image enhancement is an important preliminary step in many digital image processing and applications and
Retinex algorithm is one of the commonly used algorithm to enhance the image with uneven illumination condition.
But the computation of the Retinex is a very complex and time-consuming process. Therefore, we implement the fast
Retinex image enhancement algorithm using the CUDA (Compute Unified Device Architecture). Our experiments
show that we can gain 46× speed-up for image size 4,096 × 4,096 compared with the OpenCV CPU program.

Keywords: Retinex, NVIDIA CUDA, Image enhancement, Convolution theorem

1. INTRODUCTION

 Human Visual System (HVS) can recognize
objects and can see the true colour under varying
illumination condition, but the imaging devices cannot
fully capture the scene like the human eyes. Therefore,
the captured images need to be enhanced to get the
desired image. Retinex algorithm is commonly used to
solve this kind of problems. But the computation of
Retinex algorithm is a very intensive and time-
consuming process because the processing of the
image by Retinex image enhancement has to be
performed on each pixel. If this enhancement
operation has to be performed sequentially, it will take
too much time to complete the enhancement operation.
 Nowadays, with the advance in technology,
all kinds of image capturing devices can take very
high-resolution images and videos. And the
computation time of Retinex algorithm is directly
proportioned to the size of the image. If the image
becomes larger, then the time to perform enhancement
operation is increased as well.
 The aim of this work is to enhance the speed
of Retinex algorithm as fast as possible by using
CUDA (Compute Unified Device Architecture) which
is a parallel computing platform and application
programming interface (API) model created by
NVIDIA. Because of Retinex image enhancement can
be used as a pre-processing step in many images and
videos applications such as face recognition, object
detection, vehicle tracking, and other related
applications. To work out this, we need to identify
which parts of the algorithm could be run in parallel to
improve the processing speed and which parts couldn’t
and how we can improve the processing speed of the
algorithm.

 Our research is constructed as follows:
Section 2 expresses the related works and our own
methods to approach this problem. Section 3 explains
the detailed process of our work and how much speed-
up can be got by using our proposed method. Section
4 gives our experimental results and performance
analysis. And in Section 5, we conclude our approach
with the suggestion on future works and
improvements.

2. RELATED WORKS

In this section, there are two topics. Firstly, the
use of CUDA in some image processing algorithms
and the speedup could be achieved by using CUDA
are presented. And then the types of center/surround
retinex methods are reviewed one by one.

2.1 Image Processing algorithms using CUDA

CUDA is a parallel computing platform and
application programming interface (API) model
created by NVIDIA. It allows software developers and
software engineers to use a CUDA-enabled graphics
processing unit (GPU) for general purpose processing
— an approach termed GPGPU (General-Purpose
computing on Graphics Processing Units). With the
ease of its programmability, CUDA has been adopted
to use to accelerate many computationally intensive
tasks in image processing and computer vision
domains.

A parallel version of Canny edge detector using
CUDA was implemented1), including all algorithm
stages. They achieved 3.8 times acceleration on the
CUDA version with the image size of 3,936 × 3,936
resolution compared with an optimized OpenCV
version running on a PC. A real-time visual tracker
that targets the position and 3D pose of objects in
video sequences, specifically faces was implemented
by Lozano and Otsuka2) and their implementation can
achieve 10 times performance improvements as
compared with a similar CPU-only tracker.

a) Master DDP Student, Dept. of Computer Science and Systems
Engineering, University of Miyazaki (Master Student, University
of Technology (Yatanarpon Cyber City), Pyin Oo Lwin)

b) Professor, Dept. of Computer Science and Systems Engineering,
Faculty of Engineering, University of Miyazaki

c) Technical Staff, Faculty of Engineering, University of Miyazaki
d) Associate Professor, Dept. of Computer Engineering, Faculty of

Information and Communication Technology, University of
Technology (Yatanarpon Cyber City), Pyin Oo Lwin

Fast Retinex Image Enhancement Using CUDA 239

And according to the parallel image processing
based on CUDA3), as the image size increase,
histogram computation can get more than 40 times
speedup, removing clouds can get an about 79 times
speedup, DCT (Discrete Cosine Transform) can gain
around 8 times speedup and edge detection can get
more than 200 times speedup.

In the CUDA implementation of McCann99
retienx algorithm by Hyoseok Seo and Ohyoung
Kwon4) the sequential Matlab code takes 25.429
seconds in 1,024 × 1,024 image size, and sequential C
codes take 4.1 seconds, and the proposed CUDA
implementation takes only 0.760 seconds for the same
image. So, CUDA implementation can achieve 5.3
times speedup compared to the CPU implementation
written in C.

2.2 Center/surround Retinex

The Retinex algorithm was developed by
Edwin Land5) and is one of the most famous
algorithms that attempt to explain the human colour
constancy. Colour constancy is one of the most
important characteristics of human vision. Because it
ensures that the perceived colour to the eyes remains
unchanged under varying illumination conditions. The
Retinex algorithm is based on the HVS.
 There are many Retinex algorithms: path-
based Retinex, recursive Retinex, center/surround
Retinex and the PDE-based Retinex. Among them, the
center/surround Retinex is well suited for
parallelization because of the convolution operations,
log-domain processing, and normalization process in
the algorithm could be run in parallel.
 The input image I in the Retinex algorithm is
assumed to be formed by a product of the illumination
L and the reflection R, i.e., I = L ∙ R. The aim of the
Retinex algorithm is to estimate the illumination L
from the original image I to discard the effect of
nonuniform illumination from the image I to improve
visual quality of the image I.

The single-scale retinex (SSR) that uses a
Gaussian blur operation to compute the
center/surround information proposed by Rahman et
al.6). The extension of SSR is multi-scale retinex
(MSR) and that combines dynamic range compression
and colour/lightness rendition by using weighted three
SSRs with different spatial scales. Finally, the multi-
scale retinex with colour restoration (MSRCR) 7, 8) was
proposed to restore some colour loss in MSR process
using colour restoration factor.
 The basic form of single-scale retinex (SSR)
is as shown in Eq. 1:

 ,yxIyxFyxIyxR iii),(*),(log),(log, (1)

where x and y denote the coordinates of a pixel in
image, Ri (x, y) is the Retinex output, log Ii (x, y) is the

image distribution in i-th spectral band, the symbol
“∗’’ denotes the convolution operator, and F (x, y) is
the Gaussian surround function as Eq. 2.

 ,),(

22 / crKeyxF (2)

where c is the Gaussian surround space constant, and
K is also a constant such that,

 .dxdyyxF 1),((3)

The constant c is used for controlling the scale of
F (x, y). A small value of c provides a good dynamic
range compression, and a large scale provides better
colour rendition.

In order to combine the dynamic range
compression and the tonal rendition, SSR is extended
to multiscale Retinex (MSR). The result of MSR is a
weighted sum of the results of SSR with different
scales. The i-th spectral component of MSR output is
mathematically expressed by the following equation:

 ,
1

N

n
nnMSR RwR

i
 (4)

where, N : the number of scales,

inR : the i-th component of the n-th scale,

 wn : the weight associated with the n-th scale.

inR is defined by Eq. 5.

),(*),(log),(log),(yxIyxFyxIyxR inini
 ,

i = 1, …, S, (5)

where
22 /),(ncr

n KeyxF , cn is the constant of the n-
th scale. From Eq. 4 and Eq. 5,),(yxR

iMSR can be
rewritten as Eq. 6.

),(*),(log),(log),(
1

yxIyxFyxIwyxR ini

N

n
nMSRi

,

 i = 1, 2, 3, …, S, (6)

where),(yxR
in denotes a Retinex output associated

with n-th scale for an image, Ii(x,y) and Fn(x,y) denote
a surround function. S is the number of spectral bands
in the image.

A gain wn is set to satisfy the condition .1
1

N

n
nw

240 宮 崎 大 学 工 学 部 紀 要 第49号

The surround function is given by
222 /)(),(ncyx

nn eKyxF , where cn are the scales that

control the extent of the surround (smaller values of cn

lead to narrower surrounds, and larger values of cn lead

to wide surrounds), and the normalization factor is

),(
1

yxF
K

nyx
n .

MSR is good for gray images. But it could be
a problem for the colour images because it does not
consider the relative intensity of colour bands. This
can be seen from the formula of MSR, whose output is
the relative reflectances in the spatial domain.
Considering the images “out of the gray world”, whose
average intensity for three colour band are far from
equal, the output of MSR for three channels will be
more close, which makes it looks more gray. The
solution to this problem is to introduce weights for
three colour channels depending on the relative
intensity of the three channels in the original images.
To address the drawback of MSR with regard to colour
restoration, we introduced weights for three colour
channels depending on the relative intensity of the
three channels in the original images. The relative
intensity of the three channels is given by Eq. 7,

),(

),(),(

1

'

yxI

yxIyxI S

n
i

i
i

 (7)

where Ii is the i-th band of the input image and S is the
total number of colour bands. The colour restoration is
given as)],([),(' yxIfyxC ii .

The best overall colour restoration described
in7) is:)],(log[),(' yxIyxC ii , and then
becomes as Eq. 8,

S

i
iii yxIyxIyxC

1

),(log)],(log[),(, (8)

where β is a gain constant, and α is used for controlling
the strength of the nonlinearity, S is the number of
spectral channels.

The MSRCR is the most computationally
extensive among three center/surround retinex
algorithms because it requires to compute the three
large Gaussian blur convolutions on a large scale to
compute the center/surround information for each
spectral band.

In our work, we first determine which parts of the
algorithm could be implemented in parallel and which

parts could not be implemented. We compute the three
Gaussian convolutions in the Retinex algorithms in the
frequency domain as opposed to the conventional 2D
convolution to speed-up the Retinex enhancement
process.

3. PROPOSED ALGORITHM USING CUDA

Firstly, we load the image needed to enhance, and
classifies whether the image is colour or not, and then
apply the CUDA based Retinex algorithm to the
image.

We need to classify whether the image is gray
scale image or colour image. If the image is gray scale
image we only need to enhance the image with MSR.
If not, we need to apply the MSRCR algorithm to the
image as shown in Figure 1. And Figure 2 shows the
image processing operations done in GPU.

3.1 Using Convolution Theorem to Compute the
Gaussian Convolution
 The process of convolution (a rather messy
integral in the spatial domain) has a particularly simple
and convenient form in the frequency domain; this is
provided by the famous convolution theorem9).

Fig. 1. CUDA operations block diagram.

According to the convolution theorem, the

convolution of the two functions by Fourier transform

GPU

Original Image

Enhanced colour
Image

Convolve with Gaussian
Surround Function

Log-domain Processing

Normalization

Fast Retinex Image Enhancement Using CUDA 241

is equal to the product of the individual transforms.
So, the convolution in the SSR becomes as Eq. 9.

)},().,({log),(log, 1 wvIwvFFyxIyxR iii , (9)

where),(wvF

and),(wvIi

are the Fourier transforms

of F(x,y) and Ii(x,y) and F-1 denotes the inverse Fourier
transform.

Fig. 2. Overall system block diagram.

Steps for convolution in frequency domain are as
follows;

1. Calculate the optimal DFT size for padding.
2. Calculate the Fourier transform of the image

with padding.
3. Generate a filter function F, the same size as

the image.
4. Multiply the transformed image by the filter

(pixel-wise multiplication).
5. Inverse Fourier transform to get the

convolved image.
Finally, we get the appropriate block size to

implemented in the GPU.

3.2 Log-domain processing and normalization
 The log-domain processing incudes
computing natural logarithm of the original image
pixels and the convolved results pixels, addition,
subtraction and multiplication. After the computing of

the log-domain processing step as shown in Figure 2,
we need to normalize the processed pixels from log-
domain to display domain those value range is from 0
to 255 for 8-bit colour image because the processed
pixels value without normalization have both positive
and negative values.
 Mooer et al.10) proposed an automatic
treatment of the retinex output prior to display by Eq.
10.

),),((*),(min
minmax

max' ryxR
rr

d
yxR iMSRCRMSRCRi

 (10)

where dmax = 255 for 8-bit image, rmax and rmin are the
maximum and the minimum pixel value in the
processed image.

4. ANALYSIS AND EXPERIMENTAL RESULTS

The parallel implementations of the convolution,
log-domain processing, and normalization are
implemented to optimize Retinex image enhancement
algorithm. The computational experiments are carried
out to compare the performance of the parallel
implementation on GPU against the sequential
implementation on CPU by using OpenCV.

The computational experiments have been
carried out on the Dell Precision Tower 3620 with the
following characteristics:

 CPU: Intel (R) Core™ i7-7700 CPU @ 3.6
GHz, 16 GB DDR4 RAM

 GPU: NVIDIA Quadro M4000
 GPU Memory: 8 GB GDDR5
 Memory Interface: 256-bit
 Memory Bandwidth: 192 GB/s
 NVDIA CUDA Cores: 1,664
 System Interface: PCI Express

3.0x16
 Window 10 64-bit with Visual Studio 2017

and CUDA toolkit v10.0
Results of the experiments are shown in Table 1

and in Figure 3. We use six resolution of image size
for our experiments as shown in Table 1, and measure
the total execution time including the data transfer
time between CPU and GPU.

We test about 50 images with 10 iterations and
take an average to each image sizes to get the
execution for both the CPU and GPU. For CPU
implementation of the algorithm, we use OpenCV
optimized Gaussian blur and other optimized image
processing functions. For GPU, we implement it with
the combination of OpenCV and CUDA.

As shown in Figure 3, the execution for the
smallest image size in this experiment could not
achieve speed-up. But as the image size increased, the
execution time in CPU is longer and longer as
compared to CUDA. This is because the convolution

242 宮 崎 大 学 工 学 部 紀 要 第49号

in Fourier transform could only achieve speed-up for
the larger kernel size and image size.

In this experiment, we could not gain speed-up

for the 256 × 256 image size compares to other image
sizes. Our CUDA implementation for 4,096 × 4,096
resolution image achieved 46.3 times faster than CPU
program. So, the proposed algorithm is good for
computing large image sizes. Some of the resulted
images from the system are shown in Figure 4.

Fig. 4. Experimental results photos: top left and bottom left

are the original images and the top right and bottom right are
the MSRCR images.

 As we can see in Figure 4, the MSRCR
images are a little blur compare with the original
images, it is an innate flaw of MSRCR and we need
some colour balancing techniques to increase the
contrast of the image for future processing.

5. CONCLUSION

In this paper, we implemented the fast Retinex
algorithm using CUDA and it could achieve more
speed-up for the larger image sizes. So, it is well suited
for high-speed image enhancement steps for many
images and videos applications.

The analysis results could be summarized as
follows:
1) We can only get a benefit from the convolution in

frequency domain, if the image sizes and kernel
sizes are large enough.

2) The enhanced MSRCR images have a blurring

effect and that is needed to be solved in the future.

Acknowledgment
Foremost, I would like to express my deepest and

sincerest gratitude to my supervisor Prof. Kunihito
YAMAMORI for his patience, motivation, empathy,
and immense knowledge. His guidance helps me in all
time of research and writing of this paper. His
dynamism, vision and, sincerity have deeply inspired
me. And I would like to thank my friends for helping
me to collect the photos needed for experiments.

REFERENCES

1) Y. Luo and R. Duraiswami: Canny edge detection on

NVIDIA CUDA, 2008 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition Workshops,
2008.

2) M. Lozano and K. Otsuka, “Simultaneous and fast 3D
tracking of multiple faces in video by GPU-based stream
processing,” 2008 IEEE International Conference on
Acoustics, Speech and Signal Processing, 2008.

Table 1. The comparison of total execution time between CPU and
CUDA (GPU) in milliseconds.

No.

Image Size

(M x N)

Total Execution Time

(milliseconds)
Speed-

up (%)
CPU CUDA

1 256 × 256 463.9 1,501.6 0.31

2 512 × 512 1,786.1 1,550.3 1.15

3 1,024 ×1,024 7,362.7 1,773.0 4.15

4 2,048 × 2,048 45,184.1 2,352.2 19.21

5 3,072 × 3,072 94,698.2 3,242.4 29.21

6 4,096 × 4,096 210,630.0 4,545.5 46.34

Fig. 3. Total execution time comparison bar chart.

46
3.

9

1,
78

6.
1

7,
36

2.
7 45

,1
84

.1

94
,6

98
.2

21
0,

63
0.

0

1,
50

1.
6

1,
55

0.
3

1,
77

3.
0

2,
35

2.
2

3,
24

2.
4

4,
54

5.
5

2 5 6 ×
2 5 6

5 1 2 ×
5 1 2

1 , 0 2 4
× 1 , 0 2 4

2 , 0 4 8 ×
2 , 0 4 8

3 , 0 7 2 ×
3 , 0 7 2

4 , 0 9 6 ×
4 , 0 9 6

EX
EC

U
TI

O
N

 T
IM

E
(M

S)

IMAGE SIZE

CPU CUDA

Fast Retinex Image Enhancement Using CUDA 243

3) Z. Yang, Y. Zhu, and Y. Pu: Parallel image processing based
on CUDA, Proceedings of the 2008 International Conference
on Computer Science and Software Engineering, 3. 198-201.
10.1109/CSSE.2008.1448.

4) H. Seo and O. Kwon: CUDA implementation of McCann99
retinex algorithm, 5th International Conference on Computer
Sciences and Convergence Information Technology, Seoul,
2010, pp. 388-393. doi: 10.1109/ICCIT.2010.5711089

5) E. Land: An alternative technique for the computation of the
designator in the retinex theory of colour
vision., Proceedings of the National Academy of Sciences,
vol. 83, no. 10, pp. 3078–3080, 1986.

6) D. Jobson, Z. Rahman, and G. Woodell: Properties and
performance of a center/surround retinex, IEEE Transactions
on Image Processing, vol. 6, no. 3, pp. 451–462, 1997.

7) D. Jobson, Z. Rahman, and G. Woodell: A multiscale retinex
for bridging the gap between colour images and the human
observation of scenes, IEEE Transactions on Image
Processing, vol. 6, no. 7, pp. 965–976, 1997.

8 D. J. Jobson: Retinex processing for automatic image
enhancement, Journal of Electronic Imaging, vol. 13, no. 1,
p. 100, 2004.

9) C. Solomon, T. Breckon, Fundamentals of digital image
processing: a practical approach with examples in Matlab.
Chichester: Wiley-Blackwell, 2012.

10) A. Moore, J. Allman, and R. Goodman: A real-time neural
system for colour constancy, IEEE Transactions on Neural
Networks, vol. 2, no. 2, pp. 237–247, 1991.

244 宮 崎 大 学 工 学 部 紀 要 第49号

