
Formin homology 2 domain– containing 3 (Fhod3) controls
neural plate morphogenesis in mouse cranial neurulation by
regulating multidirectional apical constriction
Received for publication, August 21, 2018, and in revised form, December 19, 2018 Published, Papers in Press, December 20, 2018, DOI 10.1074/jbc.RA118.005471

X Hikmawan Wahyu Sulistomo‡, Takayuki Nemoto‡, Toshihiko Yanagita§, and X Ryu Takeya‡,1

From the ‡Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan and the
§Department of Clinical Pharmacology, School of Nursing, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan

Edited by Velia M. Fowler

Neural tube closure requires apical constriction during which
contraction of the apical F-actin network forces the cell into a
wedged shape, facilitating the folding of the neural plate into a
tube. However, how F-actin assembly at the apical surface is
regulated in mammalian neurulation remains largely unknown.
We report here that formin homology 2 domain– containing 3
(Fhod3), a formin protein that mediates F-actin assembly, is
essential for cranial neural tube closure in mouse embryos. We
found that Fhod3 is expressed in the lateral neural plate but not
in the floor region of the closing neural plate at the hindbrain.
Consistently, in Fhod3-null embryos, neural plate bending at
the midline occurred normally, but lateral plates seemed floppy
and failed to flex dorsomedially. Because the apical accumula-
tion of F-actin and constriction were impaired specifically at the
lateral plates in Fhod3-null embryos, we concluded that Fhod3-
mediated actin assembly contributes to lateral plate–specific
apical constriction to advance closure. Intriguingly, Fhod3
expression at the hindbrain was restricted to neuromeric seg-
ments called rhombomeres. The rhombomere-specific accumu-
lation of apical F-actin induced by the rhombomere-restricted
expression of Fhod3 was responsible for the outward bulging of
rhombomeres involving apical constriction along the antero-
posterior axis, as rhombomeric bulging was less prominent in
Fhod3-null embryos than in the wild type. Fhod3 thus plays a
crucial role in the morphological changes associated with neural
tube closure at the hindbrain by mediating apical constriction
not only in the mediolateral but also in the anteroposterior
direction, thereby contributing to tube closure and rhombom-
ere segmentation, respectively.

Neurulation involves three-dimensional changes in the
shape of the neural plate, where neuroepithelial cells tightly
interconnected as a sheet undergo dynamic cell shape changes

and reorganization of cell– cell junctions (1, 2). These morpho-
logical processes of neuroepithelial cells are controlled spatially
and temporally by rearrangement of the cytoskeleton, includ-
ing the apical junctional complex lined with F-actin (3, 4). Con-
traction of the F-actin network in the apical junctional complex
causes apical constriction of individual neuroepithelial cells,
leading to the localized bending and invagination of the neural
plate. The assembly of F-actin at the apical junctional complex
is regulated by multiple mechanisms, including Rho-family
small GTPases and their effectors (5–7). The Arp2/3 complex,
an actin nucleator activated downstream of Rac1 or Cdc42 sig-
naling to create branched F-actin, has been shown to play
important roles in the formation of F-actin at apical junctions
(8 –12).

Formins, another group of actin nucleators that promote the
formation of linear unbranched F-actin downstream of RhoA
signaling (13–16), also seem to participate in junctional actin
polymerization (7, 17). In Drosophila, the formin-family pro-
tein Diaphanous regulates F-actin assembly at apical junctions
of epithelial cells to direct diverse morphogenetic processes, i.e.
dorsal closure, germband retraction (18), and formation of epi-
thelial tubes including the tracheae, salivary glands, and hind-
gut (19). In zebrafish, the formin Fmnl3 is required for vessel
lumen formation during embryogenesis (20). In contrast, in
mammals, the roles of formins in the epithelium have been
investigated mainly by using in vitro model systems, i.e. mono-
layer cells cultured on two-dimensional dishes or spheroid cul-
ture models in three-dimensional matrices (21–25), which
mimic but are still different from in vivo morphogenetic pro-
cesses. Thus, the in vivo role of mammalian formins in epithe-
lial morphogenesis during embryonic development remains
unclear.

We have shown previously that Fhod3, a formin-family pro-
tein that is expressed abundantly in the heart and to a lesser
extent in the brain and kidney, plays an essential role in cardio-
genesis by organizing cardiac myofibrillogenesis (26). In that
study, Fhod3-null embryos died around E11.5 because of
defects in cardiac development but also showed defects in neu-
ral tube closure, and the transgenic expression of Fhod3 in the
heart sufficiently rescued the cardiac defects of Fhod3-null
embryos but did not restore defects in neural tube closure, lead-
ing to exencephaly at the late embryonic stage (26). Fhod3 is
therefore expected to play a crucial role also in neural tube
closure, although the detailed mechanisms remain unclear.
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In the present study, we examined the role of Fhod3 in neu-
rulation during mouse embryonic development. The Fhod3
expression was restricted to the lateral plate of the neural tube
at the level of rhombomeres 1 to 6 of the hindbrain. Fhod3-
mediated apical constriction at the lateral plate contributed not
only to mediolateral bending, to advance tube closure, but also
to the anteroposterior bending associated with rhombomere
bulging. The present findings provide direct evidence that a
mammalian formin participates in epithelial morphogenesis
during the embryonic developmental stage.

Results

Loss of Fhod3 prevents the rostrally directed closure of the
neural tube at the hindbrain

To clarify the role of Fhod3 during neural development in
mice, we examined the effect of Fhod3 deficiency on neurula-
tion. In mice, neural tube closure is initiated at several different
points (Fig. 1A). Around embryonic day E8.0, the initial closure
(closure I) starts at the hindbrain/spinal boundary and proceeds
both rostrally toward the head and caudally toward the tail.
Subsequently, closures II and III begin at the forebrain/mid-
brain boundary and the rostral end of the neural plate, respec-
tively. Closure II is sometimes absent, but closure III can pro-
ceed caudally instead of closure II (27). By E9.5, the caudally
directed closure II/III meets the rostrally directed closure I at
the midbrain/hindbrain boundary region, thus completing cra-
nial neural tube closure. In Fhod3-null embryos at E9.5 (Fig.
1B), when cranial neural tube closure is normally complete, the

caudally directed closure II/III and the rostrally directed clo-
sure I were aborted midway through the completion of the
closure.

We then examined the Fhod3 expression by lacZ staining of
heterozygous Fhod3�/� and homozygous Fhod3�/� embryos.
As shown in Fig. 1C, the Fhod3 expression in the neural tube
was restricted to the hindbrain, where closure I proceeds ros-
trally; no expression was observed in the midbrain or forebrain
region, suggesting that Fhod3 depletion primarily affects ros-
trally directed closure I at the hindbrain. In the magnified dor-
sal view (Fig. 1D), the Fhod3 expression in the hindbrain exhib-
ited a segmented pattern; lacZ staining was observed only in
rhombomeres but not in the inter-rhombomere boundaries.
Judging from the position of the otic vesicle, a morphological
landmark for rhombomere 5, we concluded that Fhod3 was
expressed specifically in rhombomeres 1 to 6. When compared
with heterozygous Fhod3�/� embryos, in which closure was
completed normally, the rostral closure in the Fhod3-null
embryos ceased among these rhombomeres, suggesting the
direct involvement of Fhod3 in rostrally directed closure I at the
level of rhombomeres.

Loss of Fhod3 causes the morphological changes in the shape
of the lateral neural plate

We next examined the Fhod3 expression in transverse sec-
tions of the hindbrain region and its relevance to the rostrally
directed closure I (Fig. 2). In heterozygous control embryos
(Fig. 2, A–C, left panels), Fhod3 was expressed robustly in the
closing neural plate. Notably, Fhod3 expression was restricted
to the lateral plate and completely absent from the floor and
roof plates of the neural tube. In Fhod3-null embryos (Fig. 2,
A–C, right panels), the distribution pattern was essentially the
same, but the shape of the neural plate was strikingly different

Figure 1. Fhod3 expression in rhombomeres 1– 6 within the hindbrain. A,
schematic representation of the cranial neural tube closure in mouse
embryos. Closure I occurs from the hindbrain/spinal boundary (red asterisk)
and proceeds bidirectionally. Closures II and III begin at the forebrain/mid-
brain boundary and the rostral end of the neural plate, respectively (green
asterisks). By E9.5, the caudally directed closure II/III meets the rostrally
directed closure I to seal the midbrain-hindbrain region. For details, see the
Result section. Fhod3 is expressed in the heart and rhombomeres within the
hindbrain region (green) during the neural tube closure. Fore, forebrain; Mid,
midbrain; Hind, hindbrain. B, whole-mount nuclear fluorescent staining of
Fhod3�/� (�/�) and Fhod3�/� (�/�) embryos at E9.5. The open regions of
the cranial neural tube are indicated by magenta dotted lines. Scale bar, 500
�m. C and D, whole-mount lacZ staining of Fhod3�/�, Fhod3�/�, and
Fhod3�/� embryos at E9.5. Open and closed regions are indicated by
magenta and green dotted lines, respectively. R1– 6, rhombomeres 1– 6; ov,
otic vesicle. Scale bars, 500 �m.

Figure 2. Fhod3 expression and morphological changes of the lateral
neural plates of the hindbrain in Fhod3�/� embryos. A–C, lacZ staining of
transverse sections of Fhod3�/� (�/�) and Fhod3�/� (�/�) embryos. Trans-
verse sections at the level of rhombomeres 4 and 5 of lacZ-stained embryos at
E8.5 (A), E9.0 (B), and E9.5 (C) are shown. Open and closed roof plates are
indicated by red and black asterisks, respectively. opl, otic placode; op, otic pit;
ov, otic vesicle; nc, migratory neural crest. Scale bars, 100 �m. D, schematic
representation of Fhod3 expression and morphological changes of the lateral
neural plates at the level of rhombomere 4. E, quantitative analysis of progres-
sion of rostral closure I. Open and closed regions are indicated by red and
black arrows, respectively. The number of embryos in which the rostral zip-
ping edge is present at each rhombomere level is shown. R1– 8, rhombom-
eres 1– 8.

Role of Fhod3 in neural tube closure

J. Biol. Chem. (2019) 294(8) 2924 –2934 2925

 at U
niversity of M

iyazaki on N
ovem

ber 24, 2020
http://w

w
w

.jbc.org/
D

ow
nloaded from

 

http://www.jbc.org/


from that of the controls (Fig. 2, A–C; represented schemati-
cally in Fig. 2D). In control embryos at E8.5, the neural plate at
the level of rhombomere 4 was folded at the midline, forming a
V-shaped neural groove. By E9.0, the bilateral neural plates
bent dorsomedially toward the midline; the ridges of the neural
plates were then flipped and fused. In null embryos at E8.5, the
bilateral neural plates were not straight but convex, with their
dorsal ridges orientated away from the midline. At E9.0, the
bilateral plates never bent toward the midline, leaving the dor-
sal ridges still separated from each other at E9.5. Although
Fhod3 was also expressed in migrating neural crest cells, migra-
tion from rhombomere 4 appeared to occur normally. We sum-
marized the failure of rostral progression of closure I in the
hindbrain of Fhod3-null embryos in Fig. 2E. The rostrally
directed closure occurred normally in rhombomeres 7– 8
where lacZ staining is negative. The closure was delayed in
rhombomeres 5– 6 and never proceeded further. Notably, as
shown in Fig. 2C, the fusion of the roof plate of Fhod3-null
embryos occurred at rhombomere 5 but not at rhombomere 4,
despite the fact that the lateral plate bending was impaired at
both rhombomeres. This is probably because the fusion of the
roof plate is an event that is independent from the bending of
the lateral plates (27). These phenotypes showed full penetra-
tion in all Fhod3-null embryos examined. It therefore seems
that Fhod3 depletion causes morphological changes in lateral
neural plates, thereby resulting in abortion of rostrally directed
closure I, which is most evident at the level of rhombomere 4.

Fhod3 is required for proper columnar organization of
neuroepithelial cells

To analyze morphological changes in the neural plates in
Fhod3-null embryos, we examined the cellular organization of
the neuroepithelium at the level of rhombomere 4 of E9.5
embryos, where the morphological changes are most evident.
Transverse sections were stained with wheat germ agglutinin
(WGA),2 which intensely labels the cellular surface of neuroep-
ithelial cells (28). As shown in Fig. 3A, the neural plate of WT
embryos formed a tightly packed pseudostratified columnar
epithelium with a flat apical surface. In contrast, the neural
plate of Fhod3-null embryos failed to form a columnar epithe-
lium, and the cells did not become compacted into a regular
packed pattern. The flatness of the apical surface was consider-
ably disturbed, and the height of the neural plate was signifi-
cantly shorter than in WT embryos (Fig. 3B). As such a shortage
in height has been observed in rat embryos exposed to cytocha-
lasin D (29) as well as mouse mutant embryos that show neural
tube defects due to affecting F-actin organization, such as
Shroom3, NUAK1/2, and Cofilin mutants (30 –32), Fhod3 is
expected to contribute to the organization of pseudostratified
neuroepithelial cells via the regulation of F-actin–mediated
constriction (33, 34). In addition, the nuclear shape of neuro-
epithelial cells was largely influenced by Fhod3 depletion (Fig.
3A), although there were no significant differences in cell num-
ber per length of basement membrane (WT, 90.25 � 8.56 cells;
Fhod3-null, 109.3 � 8.17 cells; p � 0.14). Nuclear positioning

and shaping in pseudostratified epithelia are also dynamically
controlled by actomyosin contractility in a cell cycle– depen-
dent manner (35). It thus seems likely that Fhod3-mediated
actin organization is involved in the columnar organization of
neuroepithelial cells.

Fhod3 is required for F-actin assembly at the apical surface of
neuroepithelial cells

To identify the effect of Fhod3 depletion on F-actin organi-
zation in neuroepithelial cells, we analyzed F-actin distribution
in neuroepithelial cells at the level of rhombomere 4 of E9.5
embryos. In WT embryos, F-actin was accumulated at the api-
cal surface of the lateral neural plates (Fig. 4A), which is evident
in pixel intensity quantification along an apicobasal trace of 30
�m in width (Fig. 4B). By contrast, the apical accumulation of
F-actin at the convex surface of bilateral neural plates of Fhod3-
null embryos was significantly decreased, although the inten-
sity at the lateral membranes was not substantially altered (Fig.
4C). The tight junction protein ZO-1 at the convex surface was
also decreased, although accumulation was detectable (Fig. 4, A
and B).

On the other hand, the adherens junction protein cadherin at
the apical surface and lateral contacts was not substantially
altered, suggesting that adherens junctions are better retained
(Fig. 5A). We then estimated the force in cadherin-mediated
junctions using the mAb �18, which recognizes the force-in-
duced active conformation of �-catenin, a linker molecule
between cadherin and F-actin (36). In WT embryos, activated
�-catenin was accumulated at the apical surface of the lateral
plate, where myosin heavy chain was also accumulated (Fig. 5B,
MHC IIB). In contrast, the accumulation of the �18 signal at the

2 The abbreviations used are: WGA, wheat germ agglutinin; PCP, planar cell
polarity; PFA, paraformaldehyde.

Figure 3. Abnormal organization of neuroepithelial cells in the lateral
neural plates of Fhod3�/� embryos. A, schematic representation of the ori-
entation of transverse sections used in B and in Figs. 4 and 5. Transverse
sections at the level of rhombomere 4 were defined by their position relative
to the otic vesicle (ov). B, confocal fluorescence micrographs of the hindbrain
of Fhod3�/� (�/�) and Fhod3�/� (�/�) embryos at E9.5. Transverse sections
at the level of rhombomere 4 were subjected to fluorescence staining for the
plasma membrane with WGA (green) and for the nucleus with Hoechst (blue).
Scale bars, 50 �m. C, quantification of neural plate height. The height (dis-
tance from apical to basement membrane) of lateral neural plates was mea-
sured at the cropped region of Fhod3�/� and Fhod3�/� embryos at E9.5 (n �
10 mice/genotype). Data are shown as mean (red line) � S.D. (green lines).
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apical surface was attenuated in null embryos. We further
investigated the subcellular localization of Fhod3 (Fig. 5C).
Although the Fhod3 antibody used cross-reacted significantly

with filamentous structures abundant in the basal region of
neuroepithelial cells, the apical accumulation of endogenous
Fhod3 was detected specifically in WT embryos. Thus, we con-

Figure 4. F-actin assembly at the apical surface of the lateral neural plates of Fhod3�/� embryos. A, confocal fluorescence micrographs of the hindbrain of
Fhod3�/� (�/�) and Fhod3�/� (�/�) embryos at E9.5. Transverse sections at the level of rhombomere 4 were subjected to immunofluorescence staining for ZO-1
(green) and phalloidin staining for F-actin (red). Scale bars, 50 �m. Two- and three-dimensional surface plots of the intensity of pixels of boxed regions were shown on
a pseudocolor scale. B, pixel intensity profiles of phalloidin (red) and ZO-1 (green) along apicobasal traces (boxed in A) of lateral neural plates of Fhod3�/� and Fhod3�/�

embryos at E9.5. C, quantification of the pixel intensities of the apical and lateral F-actin. The average fluorescence intensity at the apical domain (within 12 �m of the
apical surface) and lateral domain (12–42 �m from the apical surface) was calculated from pixel intensity profiles of Fhod3�/� (n � 4 images from 3 embryos) and
Fhod3�/� embryos (n � 4 images from 3 embryos) as shown in A. Data are shown as mean (red line) � S.D. (green lines). ns, not significant.

Figure 5. Formation of the apical junctional complex in the lateral neural plates of Fhod3�/� embryos. Confocal fluorescence micrographs of the
hindbrain of Fhod3�/� (�/�) and Fhod3�/� (�/�) embryos at E9.5. Transverse sections at the level of rhombomere 4 were subjected to immunofluorescence
staining for pan-cadherin (green) and phalloidin staining for F-actin (red) (A), for myosin heavy chain IIB (MHC IIB, red) and activated �-catenin (green) (B), and
for Fhod3 (green) and phalloidin staining for F-actin (red) (C). Scale bars, 50 �m.
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cluded that Fhod3 localizes to the apical surface of neuroepi-
thelial cell and its depletion causes the loss of F-actin preferen-
tially at the apical surface, thereby seemingly affecting the
apical surface tension.

Fhod3 is required for the organization of the apical junctional
complex of neuroepithelial cells

To further examine the apical junctional complex, transmis-
sion electron microscopic analysis was performed. In WT
embryos, electron-dense junctional complexes could be seen
(Fig. 6, A and B, upper panels) as reported in previous studies
(29, 37). In Fhod3-null embryos, cell– cell contacts (i.e. elec-
tron-dense membrane specializations) were retained (Fig. 6, A
and B, lower panels) but were sparsely distributed when com-
pared with those in WT embryos, suggesting the loss of con-
traction of the apical plane. This loosely organized pattern is
also observed in scanning electron microscopic images (Fig.
6C). In some areas, apical cell– cell contacts appeared to be
loosened in Fhod3-null embryos (the green arrow in Fig. 6A).
Because the linkage with F-actin is required for strong homo-
philic interactions of cadherins (38), the loss of F-actin might
affect the integrity of apical junctions, although lateral mem-
brane contacts are still retained. Fhod3 depletion thus causes
the loss of apical F-actin, thereby affecting the organization of
the apical junctional complex of neuroepithelial cells.

Loss of Fhod3 induces enlargement of the apical surface area
of the lateral neural plate

To clarify whether the loss of apical F-actin actually causes
the failure of apical constriction, we observed the apical surface
of the lateral neural plate using sections tangential to the apical
plane (Fig. 7A). Although phalloidin and ZO-1 signals were
considerably reduced in Fhod3-null embryos, ZO-1 was dis-
tributed circumferentially around the cell, allowing us to mea-
sure the area of the apical surface of the cell (Fig. 7B). The
surface area at the apical plane of the lateral neural plate, out-
lined by ZO-1 staining, in Fhod3-null embryos was more than
twice as large as that of WT embryos, indicating reduced apical
constriction (Fig. 7C). The reduction of apical constriction, i.e.
enlargement of the surface area, was also observed in the whole-
mount analysis of the lateral neural plate, in which we were able
to determine the axial orientation of the anteroposterior and
mediolateral axes (Fig. 7, D–F). It has been reported that, at the
floor plate of the bending neural tube in chicken embryos, neu-
roepithelial cells adopt rectangular shapes, with their long axes
lying along the anteroposterior axis of the embryo (39); this
shape seems to be the result of planar-polarized contraction of
junctional actomyosin toward the mediolateral axis, thereby
enabling the plate to bend along the anteroposterior axis of the
embryo. Remarkably, the apical junction pattern in rhombom-
ere regions of the lateral plate of the mouse neural tube showed
an almost isotropic honeycomb-like arrangement and not a
rectangular shape, although in boundary regions it appeared as
elongated shapes, with their long axes along the mediolateral
axis (Fig. 7, G and H) This isotropic pattern raises the possibility
that nonpolarized isotropic contraction occurs in rhombomere
regions at the lateral plate of the mouse neural tube.

Fhod3 is required for morphological segmentation of
rhombomeres

We therefore examined whether or not the apical constric-
tion occurs not only toward the mediolateral axis but also the
anteroposterior axis at the lateral plate of the mouse neural
tube. To this end, we optically sectioned the apical surface of
the lateral neural tube of the whole-mount embryos in the
anteroposterior plane by confocal microscopy (Fig. 8A). Apical
F-actin was accumulated in the center of rhombomeres (shown

Figure 6. The ultrastructure of the lateral neural plate of Fhod3�/�

embryos. A, transmission electron micrographs of thin sections of the apical
surface of the lateral neural plates in Fhod3�/� (�/�) and Fhod3�/� (�/�)
embryos at E9.5. Cell– cell contacts (i.e. electron-dense membrane specializa-
tions) are highlighted in magenta. The green arrow indicates a loosened apical
cell– cell contact. The orientation of the images in the left panels is shown as
white boxes in right panels. The outlines of neural plates are indicated by green
dotted lines. Scale bars, 10 �m (left panels) and 100 �m (right panels). B, exam-
ples of electron-dense membrane specializations are enlarged from images
shown in A. Scale bars, 1 �m. C, scanning electron micrographs of the apical
surface of the lateral neural plates in Fhod3�/� and Fhod3�/� embryos at E9.5.
The orientation of images in the left panels is shown as white boxes in the right
panels. Rhombomere 4 is indicated in magenta. Scale bars, 10 �m (left panels)
and 500 �m (right panels).
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in Fig. 8B), as observed in chick embryos in previous studies (40,
41). Notably, neuroepithelial cells in the central region of the
rhombomere constricted apically toward the center of the
rhombomere. In contrast, F-actin was distributed evenly in
Fhod3-null embryos, and no constriction pattern was observed.
It therefore seems that Fhod3 promotes anteroposterior-ori-
ented apical constriction by inducing the rhombomere-specific
accumulation of F-actin. Consistent with this idea, longitudinal
sections of the neural tube in WT embryos showed uneven
F-actin distribution along the anteroposterior axis; the inten-
sity of apical F-actin in the rhombomere regions was relatively
high compared with that in boundary regions (Fig. 8C). Nuclear
staining in WT embryos also exhibited a segmented pattern,
whereas such a pattern was not evident in null embryos. In
addition, whole-mount dorsolateral views of the hindbrain
showed that outward bulging of rhombomeres was less promi-
nent in Fhod3-null embryos than in the WT (Fig. 8, D and E).
Thus, contraction along the anteroposterior axis at the lateral
plate, caused by the Fhod3-dependent accumulation of apical
F-actin at the rhombomere centers, seems to be responsible for
the morphological segmentation of rhombomeres.

Discussion

In the present study, we identified the critical role of Fhod3 in
neurulation during mouse embryonic development. In neuro-
epithelial cells of the hindbrain, Fhod3 regulates F-actin assem-

bly at the apical junctional complex to promote apical constric-
tion, thereby bending the neural plate, as we expected from
previous in vivo studies of invertebrate and avian formins as
well as from findings in in vitro models of mammalian formins.
However, somewhat unexpectedly, Fhod3-mediated apical
constriction occurred only at the lateral plate, seeming to con-
tribute to both the mediolateral and anteroposterior bending
associated with tube closure and rhombomere bulging,
respectively. To our knowledge, this is the first study show-
ing that a mammalian formin contributes to epithelial mor-
phogenesis, especially rhombomeric organization, during
embryonic development.

Although neural tube closure is a paradigm for explaining
epithelial morphogenesis in vertebrates, the cellular mecha-
nisms involved seems to vary across species as well as across
axial levels (i.e. cranial versus spinal) (2). In rodents, it is known
that cranial neural tube closure is sensitive to the inhibition of
F-actin assembly, whereas spinal neurulation is relatively resist-
ant (29, 37). Accordingly, the shape of the closing neural tube in
the transverse plane differs among axial levels (2, 42). In the
upper hindbrain of rodent embryos, the lateral neural plates
undergo sequential changes in shape as follows: convex neural
folds are formed first, subsequently flattening into a V-shape
with an increase in cell height and then becoming concave prior
to neural tube closure (43). This sequence of changes in lateral

Figure 7. Apical constriction in the lateral neural plate of Fhod3�/� embryos. A, schematic representation of the orientation of sagittal sections tangential
to the apical plane used in B (B, boundary; R, rhombomere; a, apical; b, basal; A, anterior; P, posterior). B, apical view of the lateral neural plate at the level of
rhombomere 4 in the hindbrain of Fhod3�/� (�/�) and Fhod3�/� (�/�) embryos at E9.5. Sections were subjected to immunofluorescence staining for ZO-1
(green) and phalloidin staining for F-actin (red). Scale bars, 5 �m. C, quantification of apical cell surface area of sagittal sections. The apical surface area was
estimated by ZO-1 staining of sections prepared from Fhod3�/� (n � 630 cells from 4 embryos) and Fhod3�/� embryos (n � 758 cells from 4 embryos) shown
in A. D, whole-mount staining of embryo halves. E9.5 embryos bisected at the midline were subjected to immunofluorescence staining for phalloidin (red) and
ZO-1 (green). R4, rhombomere 4. E, apical view of whole-mount staining of ZO-1 at rhombomere 4 in the hindbrain from Fhod3�/� and Fhod3�/� embryos at
E9.5. Asterisks indicate inter-rhombomere boundaries. A7P, anterior to posterior; M7L medial to lateral. Scale bars, 25 �m. F, quantification of apical cell
surface area of whole-mount embryos. The apical surface area was estimated by ZO-1 staining of whole-mount Fhod3�/� (n � 844 cells from 3 embryos) and
Fhod3�/� embryos (n � 532 cells from 3 embryos) shown in E. G, the anisotropy of the apical junction pattern. Cell outlines defined by ZO-1 staining shown in
E were fitted to an elliptical shape, estimated by the ratio of the long to short radius (r) (rhombomere of Fhod3�/�, n � 224 cells from 3 embryos; boundary of
Fhod3�/�, n � 88 cells from 3 embryos; rhombomere of Fhod3�/�, n � 178 cells from 3 embryos; boundary of Fhod3�/�, n � 55 cells from 3 embryos). For
details, see “Experimental procedures.” R, rhombomere; B, boundary; ns, not significant. Data are shown as mean (red line) � S.D. (green lines). H, polar plots
representing orientation of long-axis angles of cell outlines defined by ZO-1 staining shown in E. (red, Fhod3�/�; green, Fhod3�/�). A7P, anterior to posterior;
M7L medial to lateral.
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plate shape is accompanied by a contraction of the apical F-ac-
tin network (29, 33, 34). In Fhod3-null embryos, the series of
shape changes is completely aborted, and both lateral plates
retain their convex curvature (Fig. 2). The Fhod3-mediated
F-actin assembly at the apical surface seems to be responsible
for this morphological process of the lateral plate by generating
tension at the apical junctions.

In chicks, Daam1, a member of the formin family, is
expressed in the ventral half of the closing neural tube (44) and
seems to be essential for its bending at the midline by promot-
ing apical constriction (39). In contrast, at least in mice, the
expression of Daam1 and Daam2 was not detected in the neural
tube until E10.5, when the neural tube closure was completed
(44). This suggests a dispensable role of Daam1 and 2 on neural
tube closure in mice, which is also supported by the lack of any
significant defects in neural tube closure in Daam1-deficient
mice (45). It therefore seems that different formins participate
in different shape changes in neural plates in different verte-
brates, although a formin-dependent mechanism is obviously
pivotal to neural tube closure in vertebrates.

It has recently been reported that in mouse mammary-gland
epithelial cells, Daam1 specifically localizes to lateral mem-
branes rather than the apical junctional complex and its deple-
tion causes loss of lateral F-actin but does not affect the apical
F-actin (24). Daam1 thus functions in regulating the lateral
F-actin, at least in mammary epithelium. By contrast, we
showed in the present study that Fhod3 localizes to the apical
region (Fig. 5) and its depletion induces the significant loss of
apical F-actin (Figs. 4 and 6); the specific localization of Fhod3
to the apical junctional complex has very recently been
reported also in Xenopus gastrula epithelium (46). Fhod3 thus
appears to control primarily the formation of the apical F-actin,
although it also may affect the lateral F-actin, as both networks
are expected to be mutually interdependent (47).

During embryonic development, the vertebrate hindbrain is
transiently divided into rhombomeres, a series of bulging seg-
ments of the neural tube along the anteroposterior axis (48, 49).
The segmental identity of rhombomeres is specified by the
combinatorial expression of selector genes, such as the Hox
genes (49 –51). By contrast, the morphological segmentation of

Figure 8. Effects of Fhod3 depletion in morphological segmentation of rhombomeres. A, schematic representation of the orientation of optical sectioning
of whole-mounted neural tubes embedded in an agarose gel used in B. B, orthogonal projection of Z-stack slices of whole-mounted neural tubes at rhom-
bomere 4 in the hindbrain of Fhod3�/� (�/�) and Fhod3�/� (�/�) embryos at E9.5. Whole-mount embryos were subjected to immunofluorescence staining
for ZO-1 (green) and F-actin (red) (B, boundary). Scale bars, 100 �m. C, schematic representation of the orientation of longitudinal coronal sections used in D. D,
longitudinal coronal sections of the hindbrain of Fhod3�/� and Fhod3�/� embryos at E9.5. Sections were subjected to fluorescence staining for F-actin (red)
and nucleus (blue). Inter-rhombomere boundaries are indicated by arrowheads. Scale bars, 100 �m. E and F, whole-mount images of Fhod3�/� (E) and Fhod3�/�

(F) embryos at E9.5 in lateral and dorsal views (left and right, respectively). Inter-rhombomere boundaries and rhombomere bulges are indicated by arrowheads
and arrows, respectively. Scale bars, 500 �m.
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rhombomeres seems to be regulated by the actin cytoskeleton
(51, 52). In the parasagittal plane of the chick hindbrain, neu-
roepithelial cells within the inter-rhombomere boundaries are
wedge-shaped, with their apical surface expanding outward,
whereas their basal ends, enriched with F-actin, are constricted
(40). Rhombomere regions, in contrast, display complementary
morphology; their apical surfaces are constricted with the
strong accumulation of F-actin, prompting invagination of the
apical region (40). Little is known, however, about the actin
regulator responsible for this rhombomere-specific accumula-
tion of F-actin. The present findings that rhombomeric distri-
bution of apical F-actin and segmental bulging of the neural
tube were attenuated in Fhod3-null embryos strongly support
the idea that physical force generated by apical constriction
along the anteroposterior axis is responsible for the morpho-
logical segmentation of rhombomeres and that Fhod3 is a key
regulator of the rhombomere-specific F-actin assembly. Con-
sistent with our observation, Filas et al. (41) suggest, using com-
putational modeling, that rhombomere bulging requires con-
tractile force along the anteroposterior axis at the apical surface
of rhombomeres. Fhod3-mediated apical constriction in the
anteroposterior axis therefore seems to contribute to the mor-
phological segmentation of rhombomeres.

Rhombomere segmentation in the hindbrain is precisely
controlled spatially and temporally. Although the entire hind-
brain can be divided into 11 rhombomeres, the caudal region of
the hindbrain (i.e. rhombomeres 7–11) is not overtly seg-
mented (53). The well-segmented rhombomeres 1– 6 in the
upper hindbrain become obvious only from approximately E8.5
and eventually disappear by E11.5. In accordance with this loca-
tion and time course, Fhod3 expression in rhombomeres 1– 6
becomes visible from E8.5 but subsequently disappears by
E11.5 (26), suggesting that Fhod3 is committed to the transient
appearance of rhombomeres. Tropomyosin, a coiled-coil actin-
binding protein (54), is expressed at inter-rhombomere bound-
aries in the developing hindbrain (55) in a manner complemen-
tary to Fhod3. Tropomyosin expression at boundaries also
disappears almost synchronously with the disappearance of
rhombomeres (55). These different types of actin regulators,
one specific to the rhombomere and one specific to the bound-
ary, might cooperate spatially and temporally to execute mor-
phological segmentation of rhombomeres.

It has been reported that, in chicks, the planar cell polarity
(PCP)– controlled anisotropic apical constriction, which
involves the polarized activation of ROCK and Daam1 of the
formin family, causes polarized bending of the cranial neural
tube toward the mediolateral direction at the midline (39). By
contrast, in the present study, we show that Fhod3-mediated api-
cal constriction of neural plate cells was polarized not only toward
the mediolateral axis but also the anteroposterior axis, causing
bidirectional bending along both axes. Thus, at least in the lateral
plates of the neural tube, apical constriction seems to occur mul-
tidirectionally. However, it is still possible that Fhod3-mediated
apical constriction is also controlled by PCP signaling, because
rhombomere morphogenesis requires precise coordination
between the neural plate bending and convergent extension move-
ment, which depends on the PCP signaling (39, 56). Future studies
are awaited to elucidate the detailed mechanism, including inves-

tigations into a molecular link between Fhod3-mediated F-actin
assembly and the PCP pathway.

Experimental procedures

Mice

The Fhod3 knockout mice were generated by replacing exon
1 with lacZ as described previously (26). To obtain timed preg-
nancies, paired female mice were checked daily in the morning,
and the day of vaginal plug formation was termed E0.5. Preg-
nant mice were sacrificed on a designated day, and embryos
were dissected from the uterus followed by PCR genotyping
using yolk sac DNA as described previously (26).

All experimental protocols were approved by the Animal
Care and Use Committee of Miyazaki University (permit No.
2014-526-3). All mice were housed and maintained in a specific
pathogen-free animal facility at the University of Miyazaki, and
all efforts were made to minimize the number of animals used
and their suffering. All experiments were performed in strict
accordance with the guidelines for Proper Conduct of Animal
Experiments (Science Council of Japan) and the Guide for the
Care and Use of Laboratory Animals published by the U. S.
National Institutes of Health.

LacZ staining

LacZ staining was performed as described previously with
minor modification (26, 57). Briefly, whole mice embryos were
fixed at 4 °C by immersion in PBS (137 mM NaCl, 2.68 mM KCl,
8.1 mM Na2HPO4, and 1.47 mM KH2PO4, pH 7.4) containing 1%
formaldehyde, 0.2% glutaraldehyde, 0.02% Nonidet P-40, and 1
mM MgCl2 for 3 h. The fixed embryos were incubated at 37 °C in
PBS containing 1 mg/ml X-Gal, 5 mM K3Fe(CN)6, 5 mM

K4Fe(CN)6, and 2 mM MgCl2. All embryos were post-fixed
overnight at 4 °C in 3.7% paraformaldehyde (PFA) in PBS and
then immersed at 4 °C in 30% sucrose. Cryosections were per-
formed at 30 �m thickness followed by counter staining with
1% Orange G (WAKO) in 2% phosphotungstic acid.

Whole-mount nuclear fluorescent staining

Whole-mount nuclear fluorescent staining was performed as
described (58). Briefly, mice embryos were fixed at 4 °C over-
night in 3.7% PFA in PBS and then incubated in Hoechst 33342
for 20 min at room temperature. Samples were washed with
PBS and observed under a BZ-9000 microscope. Images were
constructed by merging Z-stack frames into a single projection.

Antibodies

Rabbit polyclonal antibodies for Fhod3 (anti-Fhod3-(650 –
802)) were prepared as described previously (59). The rat anti-
�-catenin mAb �18 (36) was a kind gift from Dr. Akira Naga-
fuchi (Nara Medical University). The following antibodies were
purchased: mouse anti-ZO-1 clone ZO1-1A12 (Thermo Fis-
cher Scientific); mouse anti-pan-cadherin clone CH-19 (Santa
Cruz Biotechnology); rabbit anti-nonmuscle myosin heavy
chain IIB (Covance); Alexa Fluor 555– conjugated F(ab�)2 frag-
ment of anti-rabbit IgG (Cell Signaling Technology); Alexa
Fluor 488 – conjugated F(ab�)2 fragment of anti-mouse IgG
(Cell Signaling Technology); and Alexa Fluor 488 – conjugated
anti-rat IgG (Thermo Fisher Scientific). Actin filaments were
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stained with Alexa Fluor 555–phalloidin (Invitrogen). Nuclei
were stained with Hoechst 33342 (Dojindo). Cell membranes
were stained with FITC-labeled WGA (J-Oil Mills, Inc.).
Images were taken with a LSM700 (Carl Zeiss Micro Imaging)
or TCS SP8 (Leica) confocal scanning laser microscope.

Immunofluorescence staining

Immunofluorescence staining was performed as described
previously with minor modification (26). Timed pregnant mice
were euthanized by cervical dislocation, and embryos were col-
lected. Mice embryos fixed overnight at 4 °C in 3.7% PFA in PBS
followed by cryoprotection at 4 °C in 30% sucrose were embed-
ded in colored tissue freezing medium (Triangle Biomedical
Sciences). The blocks were frozen, and serial sections were
obtained from the level of rhombomere 4 (thickness, 12 �m)
using a cryostat CM3050S (Leica Biosystems). Sections were
washed with PBS containing 0.1% Triton X-100, and blocked with
PBS containing 3% BSA for 60 min at room temperature. Sections
were labeled overnight at 4 °C with primary antibodies diluted in
PBS containing 1% BSA, washed with PBS, and then labeled for 3 h
at 4 °C with fluorescently labeled secondary antibody mixture in
the same buffer. For staining with the �18 antibody, samples were
fixed in 10% TCA in Tris-buffered saline (TBS: 150 mM NaCl and
20 mM Tris-HCl, pH 7.4) and treated in TBS-based buffer solution.
Images were taken with a Zeiss LSM700 confocal microscope or
Leica TCS SP8 confocal microscope under the same conditions
between Fhod3-null and WT embryos.

Whole-mount staining was performed as described previ-
ously with minor modification (31). Briefly, the fixed embryos
were cut into two halves at the midline, permeabilized for 10 min
with PBS containing 0.1% Triton X-100, and blocked for 2 h with
3% BSA in PBS. The embryos were incubated with primary anti-
body overnight at 4 °C, washed three times for 30 min with PBS,
incubated overnight at 4 °C with secondary antibody, and then
washed five times with PBS for 30 min. Stained embryos were
embedded with 1% low-melting-point agarose in PBS and put on a
35-mm glass-bottom culture dish. Images were taken with an
LSM 700 confocal microscope under the same conditions
between Fhod3-null and WT embryos unless noted otherwise.

Image analysis and quantification

Quantification of neural plate height and apical surface area
was performed as described (32). Briefly, measurements of neu-
ral plate height were made by measuring distance from the api-
cal to the basement membrane of the lateral neural plate. To
estimate apical surface areas, sagittal sections tangential to the
apical plane were stained with ZO-1, traced manually, and mea-
sured using ImageJ (National Institutes of Health) with Fiji plu-
gins (60). The average number of cells/100 �m of neural plate
basement membrane was obtained from the number of nuclei
stained with Hoechst in transverse sections (five images from
five embryos of each genotype).

Pixel intensity along the apicobasal axis was determined on
confocal images acquired and processed under the same con-
ditions between Fhod3-null and WT embryos. Three-dimen-
sional surface plots and intensity profiles of pixel intensity were
made from apicobasal traces (30 �m wide) of lateral neural plates
using ImageJ. To quantify the apical and lateral F-actin, the average

fluorescence intensity in the apical domain (within 12 �m of the
apical surface) and lateral domain (12–42 �m from the apical sur-
face) was quantified from the pixel intensity profiles.

Cell outlines in confocal images were automatically identi-
fied using a plugin in Image J (Automated Multicellular Tissue
Analysis) developed by the Advanced Digital Microscopy Core
Facility at the Institute for Research in Biomedicine (Barcelona,
Spain). The outline of each cell was fitted into an ellipse, and the
longitudinal and transverse axes were calculated automatically
in ImageJ. The angles of each longitudinal axis with respect to
the AP axis were grouped into bins of 30° and represented in
polar plots symmetrically about the AP axis.

EM analysis

Transmission EM of thin sections was performed as
described previously with minor modification (61). Briefly,
timed pregnant mice were euthanized by cervical dislocation,
and embryos were dissected in HBSS buffer (138 mM NaCl, 5.33
mM KCl, 4.17 mM NaHCO3, 0.34 mM Na2HPO4, 0.44 mM

KH2PO4, 1.26 mM CaCl2, 0.49 mM MgCl2, and 0.41 mM

MgSO4). Mouse embryos were immersed in the fixative solu-
tion (2.0% PFA, 2.5% glutaraldehyde, and 0.1 M sodium cacody-
late, pH 7.4), and then the fixed tissue was rinsed in PBS, post-
fixed in 1% osmium tetroxide, dehydrated in ethanol and
propylene oxide, and embedded in epoxy resin. Thin sections
stained with uranyl acetate and lead citrate were then examined
with a HT7700 (Hitachi) transmission electron microscope.
For EM scanning, the post-fixed samples were treated with 1%
tannic acid and 1% osmium tetroxide for conductive staining
and then dehydrated in ethanol. The samples were dried,
mounted on aluminum stubs coated with gold/palladium using
sputter coating, and then examined with an S-4800 (Hitachi)
field emission scanning electron microscope.

Statistical analysis

Data were shown as mean � S.D. A t test was conducted to
determine the level of significance (p value of �0.05). Statistical
analysis was performed using GraphPad Prism 5.0 (GraphPad
Software Inc., San Diego, CA).
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