2	Ghrelin alleviates paclitaxel-induced peripheral neuropathy by reducing oxidative stress
3	and enhancing mitochondrial anti-oxidant functions in mice
4	
5	
6	Nobuyuki Ishii ^a , Hironobu Tsubouchi ^{a,*} , Ayako Miura ^a , Shigehisa Yanagi ^a , Hiroaki Ueno ^a ,
7	Kazutaka Shiomi ^a , Masamitsu Nakazato ^a
8	
9	^a Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal
10	Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
11	
12	* Corresponding author: Hironobu Tsubouchi
13	Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal
14	Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
15	Tel: +81-985-85-2965 Fax: +81-985-85-1869
16	E-mail address: hironobu_tsubouchi@med.miyazaki-u.ac.jp
17	

19 Abstract

20	Paclitaxel is an effective chemotherapeutic agent, but has some treatment-limiting adverse
21	effects that markedly decrease patients' quality of life. Peripheral neuropathy is one of these,
22	and no treatment for it has been established yet. Ghrelin, an endogenous ligand for the growth
23	hormone secretagogue receptor, is secreted from the stomach and has widespread effects on
24	multiple systems. We investigated the pharmacological potential of ghrelin in preventing
25	paclitaxel-induced peripheral neuropathy using wild-type mice, ghrelin-null mice, and growth
26	hormone secretagogue receptor-null mice. In wild-type mice, ghrelin administration alleviated
27	mechanical and thermal hypersensitivity, and partially prevented neuronal loss of small
28	unmyelinated intraepidermal nerve fibers but not large myelinated nerve fibers. Moreover,
29	ghrelin administration decreased plasma oxidative and nitrosative stress and increased the
30	expression of uncoupling protein 2 (UCP2) and superoxide dismutase 2 (SOD2) in the dorsal
31	root ganglia, which are mitochondrial antioxidant proteins, and peroxisome proliferator-
32	activated receptor gamma coactivator 1-alpha (PGC-1a), a regulator of mitochondrial number.
33	Both ghrelin-null mice and growth hormone secretagogue receptor-null mice developed more
34	severe nerve injuries than wild-type mice. Our results suggest that ghrelin administration exerts
35	a protective effect against paclitaxel-induced neuropathy by reducing oxidative stress and
36	enhancing mitochondrial anti-oxidant functions, and that endogenous ghrelin has a

37	neuroprotective effect that is mediated by ghrelin/growth hormone secretagogue receptor
38	signaling. Ghrelin could be a promising therapeutic agent for the management of this intractable
39	disease.
40	
41	
42	Keywords
43	Ghrelin, Growth hormone secretagogue receptor, Paclitaxel, Chemotherapy-induced peripheral
44	neuropathy, Peripheral neuropathic pain, PC12
45	
46	
47	

1. Introduction

49	Paclitaxel is a taxane-derived anti-neoplastic agent that is commonly used for solid
50	tumors such as ovarian, breast, and lung cancers. It is highly effective against these cancers but
51	has several treatment-limiting adverse effects (reviewed in (Rowinsky and Donehower, 1995)).
52	Clinical symptoms of paclitaxel-induced peripheral neuropathy include numbness, tingling, and
53	burning pain in a glove-and-stocking distribution, leading to markedly decreased quality of life
54	(Tofthagen, 2010). However, prophylactic therapies for paclitaxel-induced neuropathy have not
55	been established thus far.
56	
57	Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor, is
58	secreted from the stomach. It acts on the pituitary to stimulate growth hormone release, and on
59	the hypothalamus to enhance food intake (Kojima et al., 1999; Nakazato et al., 2001). Ghrelin
60	also has widespread effects on multiple systems, influencing glucose metabolism, cell
61	proliferation, and gastrointestinal, cardiovascular, and immune function (reviewed in (Kojima
62	and Kangawa, 2006)). In addition, ghrelin has been reported to exert a neuroprotective effect on
63	the peripheral nervous system against conditions such as diabetic neuropathy (Kyoraku et al.,
64	2009; Tsuchimochi et al., 2013) and cisplatin-induced peripheral neuropathy (Garcia et al.,
65	2008). However, it remains unclear whether ghrelin attenuates paclitaxel-induced neuropathy

66	and which portions of the peripheral neurons it protects. Moreover, the mechanism by which
67	ghrelin exerts a neuroprotective effect on the peripheral nervous system is unclear.
68	
69	In this study, we examined ghrelin's effects in a murine model of paclitaxel-induced
70	peripheral neuropathy, focusing on histology and neuroprotective mechanisms in the peripheral
71	nerves. We further investigated the neuroprotective effect of the endogenous ghrelin/growth
72	hormone secretagogue receptor system using ghrelin-null and growth hormone secretagogue
73	receptor-null mice.

75 **2. Methods and materials**

76 2.1. Animals

77	Male 8- to 10-week-old C57BL/6J mice (wild-type [WT] mice) were purchased from
78	Charles River Japan (Yokohama, Japan). Eight-week-old ghrelin-null (Sato et al., 2008) and
79	growth hormone secretagogue receptor-null mice (Sun et al., 2004) were generously provided
80	by Dr. M. Kojima (Kurume University, Fukuoka, Japan) and Dr. R. G. Smith (Baylor College of
81	Medicine, Houston, TX), respectively. Growth hormone secretagogue receptor-enhanced green
82	fluorescent protein (eGFP) reporter mice were obtained from Mutant Mouse Resource &
83	Research Centers at University of California, Davis. All mice were housed under controlled
84	temperature (21–23°C) on a 12-h light (08:00–20:00)/12-h dark cycle, and fed standard
85	laboratory chow with ad libitum access to food. All experimental procedures were approved by
86	the Animal Care and Use Committee of the University of Miyazaki.
87	
88	2.2. Administration of paclitaxel and ghrelin
89	Paclitaxel 2 mg/kg (Nippon Kayaku, Tokyo, Japan) or vehicle (Cremophor EL and
90	99.9% ethanol at a 1:1 ratio) were administered to mice intraperitoneally (i.p.), in a volume of
91	0.2 ml, once per day for 5 consecutive days (cumulative dose of 10 mg/kg) (Masocha, 2014).

92 Concurrently with paclitaxel or vehicle administration, 300 nmol/kg/0.2 ml ghrelin or 0.2 ml

93	PBS were intraperitoneally injected into the mice once per day for 5 consecutive days. This
94	ghrelin administration protocol was modified from that of our previous work (Kyoraku et al.,
95	2009; Tsuchimochi et al., 2013). WT mice were divided into three groups: "control" (vehicle +
96	PBS), "PTX + PBS" (paclitaxel + PBS), and "PTX + ghrelin" (paclitaxel + ghrelin). Ghrelin-
97	null and growth hormone secretagogue receptor-null mice were injected with paclitaxel 2 mg/kg
98	and PBS for 5 consecutive days. Body weights and behavioral analyses were evaluated on day 1
99	before drug administration and on day 7. In addition, histological analysis, measurement of
100	oxidative and nitrosative stress, and quantitative PCR were conducted after mice were
101	euthanized on day 7.
102	
103	2.3. Cell culture and administration of paclitaxel and ghrelin
104	Rat pheochromocytoma PC12 cells were obtained from the RIKEN Cell Bank
105	(Ibaraki, Japan), and maintained in Dulbecco's modified Eagle's medium (DMEM)
106	supplemented with 10% fetal bovine serum, 10% horse serum, and 1% penicillin-streptomycin
107	at 37°C in humidified 5% CO ₂ . These cells were exposed to paclitaxel (1 μ M) in the presence or
108	absence of ghrelin (10 μ M) for 24 h, as described previously (Liu et al., 2013; Konaka et al.,
109	2017), followed by immunocytochemistry and western blotting.

111 2.4. Behavioral analyses

112	Mechanical and thermal sensitivities were measured on day 1 before paclitaxel
113	administration and on day 7. Mechanical sensitivity was assessed by measuring the 50%
114	mechanical withdrawal threshold with calibrated von Frey filaments (Muromachi Kikai, Tokyo,
115	Japan) using the up-down method (Chaplan et al., 1994; Sommer and Schafers, 1998). Briefly,
116	mice were placed in plastic cages with an elevated wire mesh floor, and allowed to acclimate for
117	15 min before testing. Increasing strengths (0.4–8.0 gram) of von Frey filaments were applied
118	sequentially to the plantar surface of the hind paw of each mouse. The strength of the filament
119	that caused paw withdrawal in 3 of the 6 applications was defined as the 50% mechanical
120	withdrawal threshold.
121	Thermal sensitivity was evaluated by measuring the thermal withdrawal threshold
122	using the hot plate test, as described previously (Kyoraku et al., 2009; Tsuchimochi et al., 2013;
123	Masocha et al., 2016). Briefly, mice were placed on a hot plate (Muromachi Kikai, Tokyo,
124	Japan) with the temperature maintained at 55 ± 1 °C after a 15-min acclimation period. The
125	response latency to either a hind paw lick or to a jump was recorded. A cut-off time of 20 s was
126	chosen to prevent tissue damage.

127

128 2.5. Immunohistochemistry

129	Mice were anesthetized by a mixed anesthetic agent (0.4 mg/kg of medetomidine, 2.0
130	mg/kg of midazolam, and 2.5 mg/kg of butorphanol) (Kawai et al., 2011) and transcardially
131	perfused with ice-cold PBS followed by 4% PFA solution. Lumbar dorsal root ganglia and hind
132	paw footpads were immersed in 4% paraformaldehyde/PBS overnight at 4°C, and subsequently
133	cryoprotected in 0.1 M phosphate buffer (PB) containing 20% sucrose. The dorsal root ganglia
134	and footpads were embedded in Tissue-Tek OCT compound (Sakura Finetek Japan, Tokyo,
135	Japan) and were cut into 8-µm slide sections and 30-µm free-floating sections, respectively,
136	using a cryostat (Leica CM3050S; Leica, Nussloch, Germany).
137	Dorsal root ganglia sections were blocked in Serum-Free Protein Block (Dako,
138	Carpinteria, CA) for 10 min, and then incubated overnight at 4°C with rabbit anti-activating
139	transcription factor 3 (ATF3) (1:500; Santa Cruz Biotechnology, Dallas, TX), a neuronal injury
140	marker (Tsujino et al., 2000), and Alexa Fluor 488-conjugated mouse monoclonal anti-neuron
141	specific nuclear protein (NeuN) (1:500; Merck Millipore, Billerica, MA), a neuronal marker to
142	confirm that dorsal root ganglia sections actually contain neurons.
143	Footpad sections were incubated in blocking solution (0.01 M PBS containing 5%
144	normal donkey serum, 2% bovine serum albumin, and 0.25% Triton X-100) for 1 h, then
145	incubated overnight at 4°C with rabbit anti-protein gene product 9.5 (PGP9.5) (1:2000; Abcam,
146	Cambridge, UK).

147	Both dorsal root ganglia and footpad sections were treated with Alexa Fluor 594–
148	labeled anti-rabbit secondary antibody (1:500; Invitrogen, Carlsbad, CA).
149	For quantification, 4 dorsal root ganglia sections per animal were randomly selected,
150	and ATF3- or NeuN-positive cells in these sections were examined with a Confocal Microscope
151	C2 (Nikon, Tokyo, Japan). The number of ATF3-positive cells was expressed as the percentage
152	of the number of NeuN-positive cells. Intraepidermal nerve fibers were quantified by the
153	method described previously (Ko et al., 2002). Briefly, nerve fibers crossing the basement
154	membrane were counted as one. The density was determined as the number of nerve fibers per
155	epidermal length.
156	
157	2.6. Immunocytochemistry
158	After the plated PC12 cells were washed with PBS, they were fixed in 4%
159	paraformaldehyde in 0.1 M PBS for 20 min. The cells were blocked with Serum-Free Protein
160	Block (Dako, Carpinteria, CA) for 10 min, then incubated overnight at 4°C with rabbit anti-
161	superoxide dismutase 2 (SOD2) (1:500; Cell Signaling Technology, Danvers, MA). The cells
162	were treated with Alexa Fluor 488-labeled anti-rabbit secondary antibody (1:500; Invitrogen,
163	Carlsbad, CA). The sections were counterstained with 4'-6-diamidino-2-phenylindole (DAPI;
164	Dojindo, Kumamoto, Japan). Images were obtained with a Confocal Microscope C2 (Nikon,

165	Tokyo, Japan). The quantification method was developed using ImageJ software (National
166	Institutes of Health, Bethesda, MD), and involved assigning a value for green fluorescence
167	intensity to every pixel in a cell area, and calculating the average fluorescence intensity in eight
168	cells across each slide.
169	
170	2.7. Morphometry of sciatic nerves
171	The sciatic nerves were dissected, postfixed in 3% glutaraldehyde, osmicated in 1%
172	osmium tetroxide, dehydrated, and embedded in epoxide resin. The embedded nerves were cut
173	into 1-µm sections, which were stained with toluidine blue. The sections were examined with an
174	OLYMPUS AX-7 fluorescence microscope (Olympus, Tokyo, Japan). Only the axons
175	surrounded by myelin were counted. Morphometrical analysis was performed with the NIH
176	ImageJ software (National Institutes of Health).
177	
178	2.8. Extraction of mRNA and quantitative real-time PCR
179	The dorsal root ganglia were dissected on day 7, preserved in RNA-later (Ambion,
180	Austin, TX), and stored at 20 $^{\circ}$ C until the analysis. RNA isolation was performed using the
181	RiboPure Kit (Ambion, Austin, TX). First-strand cDNA was generated by reverse transcription
182	using a High-Capacity RNA-to-cDNA Kit (Life Technologies Japan). Quantitative real-time

183	PCR was performed using TaqMan Fast Universal PCR Master Mix (Life Technologies Japan,
184	Tokyo, Japan) and a Thermal Cycler Dice Real Time System II (Takara Bio, Kusatsu, Japan).
185	The levels of mRNA were determined using cataloged primes (Applied Biosystems, Foster City,
186	CA) for mice (uncoupling protein 2 [Ucp2], Mm00627599_m1; peroxisome proliferator-
187	activated receptor gamma coactivator 1-alpha [Pgc-1a], Mm01208835_m1; Sod2,
188	Mm01313000_m1; glyceraldehyde 3-phosphate dehydrogenase [Gapdh], Mm999999915_g1).
189	UCP2 and PGC-1 α are regulators of mitochondrial reactive oxygen species production
190	(Andrews et al., 2005) and of mitochondrial number, respectively, and SOD2 is a key
191	mitochondrial antioxidant enzyme. Expression of these genes was normalized to the expression
192	of Gapdh mRNA, and the results were expressed as relative fold change.
193	
194	2.9. Western blotting
195	Cytoplasmic and nuclear proteins were extracted from whole cells by RIPA buffer
196	(Nacalai Tesque, Kyoto, Japan), and the extracts were transferred to a new prechilled tube and
197	stored at -80°C until used. The protein contents of the extracts were determined by a Bradford
198	assay. Equal amounts of proteins were fractionated by 10% SDS-PAGE and transferred to
199	Immobilon-P Transfer Membranes (Merck Millipore). After blocking with 5% skimmed milk
200	dissolved in 20 mM Tris–HCl buffer (pH 7.5) containing 137 mM NaCl and 0.05% Tween 20

201	for 1 h, the membrane was incubated with rabbit antibodies to SOD2 (1:5000; Cell Signaling
202	Technology) or β -actin (1:5000; Sigma-Aldrich, St. Louis, MO) overnight at 4°C, followed by
203	incubation with an anti-rabbit IgG antibody (1:2500; Cell Signaling Technology) conjugated
204	with peroxidase. Proteins reactive to these antibodies were individually detected by the
205	enhanced chemiluminescence method using an Immunostar Reagent (Wako, Osaka, Japan) and
206	a Lumino image analyzer (LAS-1000; Fujifilm, Japan). To quantify protein expression, we used
207	densitometry with ImageJ software on the lanes.
208	
209	2.10 Oxidative and nitrosative stress measurements
210	At the end of the experiments, blood was obtained for the assessment of oxidative and
211	nitrosative stress, as described previously (Tsuchimochi et al., 2013; Giuliani et al., 2014).
212	Concentrations of 8-isoprostane and malondialdehyde, used as markers of lipid peroxidation,
213	
	were measured with an 8-isoprostane EIA kit (Cayman Chemical, Ann Arbor, MI) and a
214	were measured with an 8-isoprostane EIA kit (Cayman Chemical, Ann Arbor, MI) and a colorimetric commercial kit (Sigma-Aldrich), respectively. The concentration of nitric oxide
214 215	were measured with an 8-isoprostane EIA kit (Cayman Chemical, Ann Arbor, MI) and a colorimetric commercial kit (Sigma-Aldrich), respectively. The concentration of nitric oxide was also measured with a colorimetric commercial kit (Enzo Life Sciences, Farmingdale, NY).
214215216	were measured with an 8-isoprostane EIA kit (Cayman Chemical, Ann Arbor, MI) and a colorimetric commercial kit (Sigma-Aldrich), respectively. The concentration of nitric oxide was also measured with a colorimetric commercial kit (Enzo Life Sciences, Farmingdale, NY).

Data are expressed as means \pm standard error of the mean (S.E.M.). Differences

218

- among multiple groups were determined via one-way analysis of variance (ANOVA) with
- 220 Dunnett's post-hoc t-tests. When 2 mean values were compared, the analysis was performed
- with an unpaired *t*-test. *P*-values less than 0.05 were considered statistically significant.

222	3. Results
223	
224	3.1. Ghrelin administration ameliorated paclitaxel-induced sensory disturbance
225	The PTX+PBS group showed decreases in both mechanical (Fig. 1A) and thermal
226	(Fig. 1B) withdrawal thresholds on day 7 compared with the control group. These thresholds
227	were significantly increased when ghrelin was administered concurrently with paclitaxel
228	(PTX+ghrelin group).
229	
230	3.2 Drug administration did not change mouse body weight
231	In the experimental protocol, the body weights of mice on day 7 were no different in
232	the presence or absence of paclitaxel or ghrelin administration (Fig. 1C).
233	
234	3.3. Growth hormone secretagogue receptor located in peripheral neurons in dorsal root
235	ganglia
236	Immunohistochemistry with anti-GFP antibody revealed that growth hormone
237	secretagogue receptor was expressed in dorsal root ganglia neurons in growth hormone
238	secretagogue receptor-eGFP mice (Fig. 1D).
239	

241 rather than large and myelinated nerve fibers

242	To assess the extent of neuronal injury in peripheral nerves, we examined the
243	expression of ATF3 in lumbar dorsal root ganglia by immunohistochemistry. At day 7, the
244	number of ATF3-positive neurons in the PTX+PBS group was significantly higher than that in
245	the control group, while ghrelin administration significantly suppressed ATF3 expression
246	compared with the PTX+PBS group (Fig. 2A, B). We morphologically evaluated the sciatic
247	nerve and intraepidermal nerve fibers. The number of myelinated fibers in the sciatic nerve was
248	not significantly different between the 3 groups (Fig. 2C, D). In the PTX+PBS group there were
249	significantly fewer intraepidermal nerve fibers, and ghrelin administration prevented their loss
250	(Fig. 2E, F).
251	
252	3.5. Ghrelin administration reduced paclitaxel-induced oxidative and nitrosative stress, and
253	increased mRNA expression levels of Ucp2, Pgc-1 α , and Sod2 in the dorsal root ganglia
254	The plasma levels of 8-isoprostane, malondialdehyde, and nitric oxide were increased
255	in paclitaxel-treated mice, and ghrelin significantly decreased these values (Fig. 3A-C). Ghrelin
256	administration also increased the mRNA expression levels of Ucp2, Pgc-1a, and Sod2 in the
257	PTX+ghrelin group compared with the PTX+PBS group (Fig. 3D).

259	3.6. Ghrelin administration increased protein levels of SOD2 in paclitaxel-exposed PC12 cells
260	Immunocytochemistry with anti-SOD2 antibody and western blotting demonstrated
261	that ghrelin significantly increased the protein level of SOD2 in paclitaxel-exposed PC12 cells
262	compared with paclitaxel-exposed PC12 cells without ghrelin treatment (Fig. 3E, F).
263	
264	3.7. Paclitaxel-induced peripheral nerve injuries were more severe in both ghrelin-null and
265	growth hormone secretagogue receptor -null mice
266	On day 7, both ghrelin-null and growth hormone secretagogue receptor-null mice
267	developed intense mechanical hypersensitivity following paclitaxel administration (Fig. 4A). In
268	addition, both types of null mice demonstrated significant increases in the expression levels of
269	ATF3 in their dorsal root ganglia compared with WT mice (Fig. 4B).

4. Discussion

271	In this study we demonstrated that ghrelin administration ameliorated experimental
272	paclitaxel-induced neuropathy by preventing loss of intraepidermal nerve fibers. We suggest
273	that ghrelin maintained mitochondrial function by increasing mitochondrial number and
274	suppressing mitochondrial reactive oxygen species production, leading to decreased oxidative
275	stress and to prevention of nerve injuries. In addition, we showed that endogenous ghrelin
276	exerted a neuroprotective effect through ghrelin/ growth hormone secretagogue receptor
277	signaling.
278	
279	In rodent models of paclitaxel-induced neuropathic pain, sensory disturbances are
280	caused by intraepidermal nerve fiber injuries, and are improved by preventing loss of
281	intraepidermal nerve fibers (Boyette-Davis et al., 2011; Zhang et al., 2013; Ko et al., 2014;
282	Zhang et al., 2016). Myelinated large fibers are much less impaired than intraepidermal nerve
283	fibers in the paclitaxel-induced neuropathic pain model (Polomano et al., 2001; Bobylev et al.,
284	2015). Ghrelin's neuroprotective effects have already been demonstrated in diabetic peripheral
285	neuropathy (Kyoraku et al., 2009; Tsuchimochi et al., 2013) and cisplatin-induced peripheral
286	neuropathy (Garcia et al., 2008). Our results showed that ghrelin administration lowered ATF3
287	expression and prevented loss of intraepidermal nerve fibers rather than large sciatic nerves,

suggesting that ghrelin ameliorated the neuropathy in this experimental model by protectingagainst intraepidermal nerve fiber injuries caused by paclitaxel.

290

305

291	Paclitaxel affects mitochondria in the neurons by opening mitochondrial permeability
292	transition pores and increasing reactive oxygen species production (Bernardi et al., 2006), thus
293	leading to peripheral nerve neuropathy (Duggett et al., 2016). Indeed, levels of markers of
294	oxidative and nitrosative stress, specifically 8-isoprostane, malondialdehyde, and nitric oxide,
295	were increased in our experiment. Ghrelin was shown to reduce oxidative and nitrosative stress
296	in diabetic neuropathy (Kyoraku et al., 2009; Tsuchimochi et al., 2013), sepsis-associated lung
297	injury (Zeng et al., 2015), and nonalcoholic fatty liver disease (Li et al., 2013), supporting our
298	finding that ghrelin exerted a neuroprotective effect against paclitaxel-induced neuropathy.
299	Ghrelin reduces the production of oxidative stress in the mitochondria of neurons by increasing
300	the expression of UCP2 (Andrews et al., 2008). Ghrelin also increases mitochondrial
301	proliferation by inducing UCP2 and activating PGC-1α (Wu et al., 1999; Andrews et al., 2008;
302	Fujimura et al., 2014). Moreover, ghrelin increases the expression of mitochondrial SOD2,
303	leading to decreased oxidative and nitrosative stress (Xu et al., 2008; Dobutovic et al., 2014).
304	

These mechanisms underlying ghrelin's effect on oxidative stress have been reported

306	in several pathologic conditions, such as an 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine
307	(MPTP)-induced Parkinson's disease experimental model (Andrews et al., 2009), traumatic
308	brain injury (Lopez et al., 2012), hemorrhagic shock (Qi et al., 2014), and a renal fibrosis model
309	(Fujimura et al., 2014). In the setting of peripheral neuropathy, this is the first study to
310	demonstrate that ghrelin reduced oxidative and nitrosative stress in dorsal root ganglia neurons
311	by inducing UCP2, PGC-1 α , and SOD2. Taken together, the above findings suggest that ghrelin
312	exerts a neuroprotective effect by improving mitochondrial anti-oxidant functions. Paclitaxel-
313	induced neuropathy involves multiple mechanisms in addition to oxidative stress, including
314	inflammation, intracellular Ca ²⁺ dysfunction, ion channel dysfunction, and transient potential
315	receptor activation (reviewed in (Carozzi et al., 2015)). Further studies are needed to elucidate
316	the molecular mechanisms of ghrelin's effect on paclitaxel-induced neuropathy.
317	
318	Previous studies also showed that ghrelin-null mice and growth hormone secretagogue
319	receptor-null mice developed more serious pathology in some experimental models; for
320	example, growth hormone secretagogue receptor-null mice were injured more severely in a
321	renal fibrosis model (Fujimura et al., 2014) and a hepatic ischemia model (Qin et al., 2014) than
322	WT mice. We here confirmed that growth hormone secretagogue receptor was expressed in the
323	dorsal root ganglia neurons of growth hormone secretagogue receptor-eGFP mice. Erriquez et

324	al. (2009) demonstrated that neurons in embryonic chick dorsal root ganglia expressed growth
325	hormone secretagogue receptor and that ghrelin partially increased neuronal cytosolic calcium
326	concentrations. Endogenous ghrelin possibly exerted a direct neuroprotective effect on
327	peripheral neurons through interactions with growth hormone secretagogue receptor, and
328	attenuated paclitaxel-induced neuropathy through ghrelin/ growth hormone secretagogue
329	receptor signaling.
330	
331	In conclusion, we demonstrated that ghrelin ameliorated paclitaxel-induced
332	neuropathy by preventing intraepidermal nerve fiber injuries. The mechanisms of ghrelin's
333	neuroprotective effect involved suppressing oxidative stress by activating mitochondrial anti-
334	oxidant functions through induction of UCP2 and SOD2, and by increasing mitochondrial
335	numbers. In addition, endogenous ghrelin exerted neuroprotective effects through its interaction
336	with growth hormone secretagogue receptor; this would then directly affect peripheral neurons
337	via this receptor's signaling. The pleiotropic effects of ghrelin against paclitaxel-induced
338	neuropathy that were demonstrated in this study suggest a novel and attractive therapeutic
339	strategy for the prevention of neuropathy during paclitaxel treatment in humans.
340	

342 **Reference**

- 343 Andrews, Z.B., Diano, S., Horvath, T.L., 2005. Mitochondrial uncoupling proteins in the CNS:
- in support of function and survival. Nat Rev Neurosci 6, 829-840.
- 345 Andrews, Z.B., Erion, D., Beiler, R., Liu, Z.W., Abizaid, A., Zigman, J., Elsworth, J.D., Savitt,
- 346 J.M., DiMarchi, R., Tschoep, M., Roth, R.H., Gao, X.B., Horvath, T.L., 2009. Ghrelin promotes
- 347 and protects nigrostriatal dopamine function via a UCP2-dependent mitochondrial mechanism. J
- 348 Neurosci 29, 14057-14065.
- 349 Andrews, Z.B., Liu, Z.W., Walllingford, N., Erion, D.M., Borok, E., Friedman, J.M., Tschop,
- 350 M.H., Shanabrough, M., Cline, G., Shulman, G.I., Coppola, A., Gao, X.B., Horvath, T.L.,
- 351 Diano, S., 2008. UCP2 mediates ghrelin's action on NPY/AgRP neurons by lowering free
- 352 radicals. Nature 454, 846-851.
- 353 Bernardi, P., Krauskopf, A., Basso, E., Petronilli, V., Blachly-Dyson, E., Di Lisa, F., Forte,
- M.A., 2006. The mitochondrial permeability transition from in vitro artifact to disease target.
- 355 Febs j 273, 2077-2099.
- Bobylev, I., Joshi, A.R., Barham, M., Ritter, C., Neiss, W.F., Hoke, A., Lehmann, H.C., 2015.
- 357 Paclitaxel inhibits mRNA transport in axons. Neurobiol Dis 82, 321-331.
- Boyette-Davis, J., Xin, W., Zhang, H., Dougherty, P.M., 2011. Intraepidermal nerve fiber loss
- 359 corresponds to the development of taxol-induced hyperalgesia and can be prevented by

- treatment with minocycline. Pain 152, 308-313.
- 361 Carozzi, V.A., Canta, A., Chiorazzi, A., 2015. Chemotherapy-induced peripheral neuropathy:
- 362 What do we know about mechanisms? Neurosci Lett 596, 90-107.
- 363 Chaplan, S.R., Bach, F.W., Pogrel, J.W., Chung, J.M., Yaksh, T.L., 1994. Quantitative
- assessment of tactile allodynia in the rat paw. J Neurosci Methods 53, 55-63.
- 365 Dobutovic, B., Sudar, E., Tepavcevic, S., Djordjevic, J., Djordjevic, A., Radojcic, M., Isenovic,
- 366 E.R., 2014. Effects of ghrelin on protein expression of antioxidative enzymes and iNOS in the
- 367 rat liver. Arch Med Sci 10, 806-816.
- 368 Duggett, N.A., Griffiths, L.A., McKenna, O.E., de Santis, V., Yongsanguanchai, N., Mokori,
- 369 E.B., Flatters, S.J., 2016. Oxidative stress in the development, maintenance and resolution of
- arrow paclitaxel-induced painful neuropathy. Neuroscience 333, 13-26.
- Erriquez, J., Bernascone, S., Ciarletta, M., Filigheddu, N., Graziani, A., Distasi, C., 2009.
- 372 Calcium signals activated by ghrelin and D-Lys(3)-GHRP-6 ghrelin antagonist in developing
- dorsal root ganglion glial cells. Cell Calcium 46, 197-208.
- Fujimura, K., Wakino, S., Minakuchi, H., Hasegawa, K., Hosoya, K., Komatsu, M., Kaneko, Y.,
- 375 Shinozuka, K., Washida, N., Kanda, T., Tokuyama, H., Hayashi, K., Itoh, H., 2014. Ghrelin
- 376 protects against renal damages induced by angiotensin-II via an antioxidative stress mechanism
- in mice. PLoS One 9, e94373.

- 378 Garcia, J.M., Cata, J.P., Dougherty, P.M., Smith, R.G., 2008. Ghrelin prevents cisplatin-induced
- mechanical hyperalgesia and cachexia. Endocrinology 149, 455-460.
- 380 Giuliani, D., Bitto, A., Galantucci, M., Zaffe, D., Ottani, A., Irrera, N., Neri, L., Cavallini, G.M.,
- 381 Altavilla, D., Botticelli, A.R., Squadrito, F., Guarini, S., 2014. Melanocortins protect against
- 382 progression of Alzheimer's disease in triple-transgenic mice by targeting multiple
- 383 pathophysiological pathways. Neurobiol Aging 35, 537-547.
- 384 Kawai, S., Takagi, Y., Kaneko, S., Kurosawa, T., 2011. Effect of three types of mixed anesthetic
- agents alternate to ketamine in mice. Exp Anim 60, 481-487.
- 386 Ko, M.H., Chen, W.P., Hsieh, S.T., 2002. Neuropathology of skin denervation in acrylamide-
- induced neuropathy. Neurobiol Dis 11, 155-165.
- 388 Ko, M.H., Hu, M.E., Hsieh, Y.L., Lan, C.T., Tseng, T.J., 2014. Peptidergic intraepidermal nerve
- 389 fibers in the skin contribute to the neuropathic pain in paclitaxel-induced peripheral neuropathy.
- 390 Neuropeptides 48, 109-117.
- 391 Kojima, M., Hosoda, H., Date, Y., Nakazato, M., Matsuo, H., Kangawa, K., 1999. Ghrelin is a
- 392 growth-hormone-releasing acylated peptide from stomach. Nature 402, 656-660.
- 393 Kojima, M., Kangawa, K., 2006. Drug insight: The functions of ghrelin and its potential as a
- 394 multitherapeutic hormone. Nat Clin Pract Endocrinol Metab 2, 80-88.
- 395 Konaka, K., Moriyama, K., Sakurada, T., Okada, N., Imanishi, M., Zamami, Y., Kawazoe, K.,

- 396 Fushitani, S., Ishizawa, K., 2017. Kamishoyosan and Shakuyakukanzoto promote recovery from
- 397 paclitaxel-induced neurite retraction in PC12 cells. J Pharm Health Care Sci 3, 20.
- 398 Kyoraku, I., Shiomi, K., Kangawa, K., Nakazato, M., 2009. Ghrelin reverses experimental
- diabetic neuropathy in mice. Biochem Biophys Res Commun 389, 405-408.
- Li, Y., Hai, J., Li, L., Chen, X., Peng, H., Cao, M., Zhang, Q., 2013. Administration of ghrelin
- 401 improves inflammation, oxidative stress, and apoptosis during and after non-alcoholic fatty liver
- 402 disease development. Endocrine 43, 376-386.
- Liu, X., Xiao, Q., Zhao, K., Gao, Y., 2013. Ghrelin inhibits high glucose-induced PC12 cell
- 404 apoptosis by regulating TLR4/NF-kappaB pathway. Inflammation 36, 1286-1294.
- 405 Lopez, N.E., Gaston, L., Lopez, K.R., Coimbra, R.C., Hageny, A., Putnam, J., Eliceiri, B.,
- 406 Coimbra, R., Bansal, V., 2012. Early ghrelin treatment attenuates disruption of the blood brain
- 407 barrier and apoptosis after traumatic brain injury through a UCP-2 mechanism. Brain Res 1489,
- 408 140-148.
- 409 Masocha, W., 2014. Paclitaxel-induced hyposensitivity to nociceptive chemical stimulation in
- 410 mice can be prevented by treatment with minocycline. Sci Rep 4, 6719.
- 411 Masocha, W., Kombian, S.B., Edafiogho, I.O., 2016. Evaluation of the antinociceptive activities
- 412 of enaminone compounds on the formalin and hot plate tests in mice. Sci Rep 6, 21582.
- 413 Nakazato, M., Murakami, N., Date, Y., Kojima, M., Matsuo, H., Kangawa, K., Matsukura, S.,

- 414 2001. A role for ghrelin in the central regulation of feeding. Nature 409, 194-198.
- 415 Polomano, R.C., Mannes, A.J., Clark, U.S., Bennett, G.J., 2001. A painful peripheral neuropathy
- 416 in the rat produced by the chemotherapeutic drug, paclitaxel. Pain 94, 293-304.
- 417 Qi, L., Cui, X., Dong, W., Barrera, R., Coppa, G.F., Wang, P., Wu, R., 2014. Ghrelin protects
- 418 rats against traumatic brain injury and hemorrhagic shock through upregulation of UCP2. Ann
- 419 Surg 260, 169-178.
- 420 Qin, Y., Li, Z., Wang, Z., Li, Y., Zhao, J., Mulholland, M., Zhang, W., 2014. Ghrelin contributes
- 421 to protection of hepatocellular injury induced by ischaemia/reperfusion. Liver Int 34, 567-575.
- 422 Rowinsky, E.K., Donehower, R.C., 1995. Paclitaxel (taxol). N Engl J Med 332, 1004-1014.
- 423 Sato, T., Kurokawa, M., Nakashima, Y., Ida, T., Takahashi, T., Fukue, Y., Ikawa, M., Okabe, M.,
- 424 Kangawa, K., Kojima, M., 2008. Ghrelin deficiency does not influence feeding performance.
- 425 Regul Pept 145, 7-11.
- 426 Sommer, C., Schafers, M., 1998. Painful mononeuropathy in C57BL/Wld mice with delayed
- 427 wallerian degeneration: differential effects of cytokine production and nerve regeneration on
- 428 thermal and mechanical hypersensitivity. Brain Res 784, 154-162.
- 429 Sun, Y., Wang, P., Zheng, H., Smith, R.G., 2004. Ghrelin stimulation of growth hormone release
- and appetite is mediated through the growth hormone secretagogue receptor. Proc Natl Acad Sci
- 431 U S A 101, 4679-4684.

- 432 Tofthagen, C., 2010. Patient perceptions associated with chemotherapy-induced peripheral
- 433 neuropathy. Clin J Oncol Nurs 14, E22-28.
- 434 Tsuchimochi, W., Kyoraku, I., Yamaguchi, H., Toshinai, K., Shiomi, K., Kangawa, K.,
- 435 Nakazato, M., 2013. Ghrelin prevents the development of experimental diabetic neuropathy in
- 436 rodents. Eur J Pharmacol 702, 187-193.
- 437 Tsujino, H., Kondo, E., Fukuoka, T., Dai, Y., Tokunaga, A., Miki, K., Yonenobu, K., Ochi, T.,
- 438 Noguchi, K., 2000. Activating transcription factor 3 (ATF3) induction by axotomy in sensory
- 439 and motoneurons: A novel neuronal marker of nerve injury. Mol Cell Neurosci 15, 170-182.
- 440 Wu, Z., Puigserver, P., Andersson, U., Zhang, C., Adelmant, G., Mootha, V., Troy, A., Cinti, S.,
- 441 Lowell, B., Scarpulla, R.C., Spiegelman, B.M., 1999. Mechanisms controlling mitochondrial
- 442 biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115-124.
- 443 Xu, Z., Lin, S., Wu, W., Tan, H., Wang, Z., Cheng, C., Lu, L., Zhang, X., 2008. Ghrelin prevents
- 444 doxorubicin-induced cardiotoxicity through TNF-alpha/NF-kappaB pathways and mitochondrial
- 445 protective mechanisms. Toxicology 247, 133-138.
- 446 Zeng, M., He, W., Li, L., Li, B., Luo, L., Huang, X., Guan, K., Chen, W., 2015. Ghrelin
- 447 attenuates sepsis-associated acute lung injury oxidative stress in rats. Inflammation 38, 683-690.
- 448 Zhang, H., Boyette-Davis, J.A., Kosturakis, A.K., Li, Y., Yoon, S.Y., Walters, E.T., Dougherty,
- 449 P.M., 2013. Induction of monocyte chemoattractant protein-1 (MCP-1) and its receptor CCR2 in

- 450 primary sensory neurons contributes to paclitaxel-induced peripheral neuropathy. J Pain 14,
- 451 1031-1044.
- 452 Zhang, H., Li, Y., de Carvalho-Barbosa, M., Kavelaars, A., Heijnen, C.J., Albrecht, P.J.,
- 453 Dougherty, P.M., 2016. Dorsal Root Ganglion Infiltration by Macrophages Contributes to
- 454 Paclitaxel Chemotherapy-Induced Peripheral Neuropathy. J Pain 17, 775-786.
- 455
- 456
- 457

458 Figure legends

460Fig. 1. Effects of ghrelin administration on mechanical and thermal hypersensitivity and body 461 weight. (A) Mechanical withdrawal threshold was measured by the von Frey test (n = 9-10) on 462 Day 1 and Day 7; (B) thermal withdrawal threshold was evaluated by the hot plate test (n = 10-11) on Day 1 and Day 7; (C) body weight on Day 1 and Day 7. (D) Immunohistochemistry for 463464anti-GFP antibodies in dorsal root ganglia of growth hormone secretagogue receptor-enhanced green fluorescent protein mice. Scale bars: 20 μ m. Values are means \pm S.E.M. *P < 0.05, **P <4654660.01. PTX, paclitaxel; GHSR, growth hormone secretagogue receptor; eGFP, enhanced green 467fluorescent protein. 468

469	Fig. 2. Histological analysis of ghrelin's effects on the dorsal root ganglia, sciatic nerve, and
470	intraepidermal nerve fibers. (A) Immunohistochemical detection of ATF3 in the dorsal root
471	ganglia and (B) ratio of ATF3-positive cells in NeuN-positive cells ($n = 5$). Scale bars: 100 μ m.
472	(C) Representative micrographs of sciatic nerves and (D) histograms of myelinated axon
473	diameter (n = 7–8). Scale bars: 20 μ m. (E) Representative immunohistochemical staining for
474	PGP9.5 and (F) the density of intraepidermal nerve fibers in hind paw skin ($n = 6$). Dotted line
475	shows the border between epidermis and dermis. Scale bars: 50 μ m. Values are means \pm S.E.M.

476 *P < 0.05, **P < 0.01. PTX, paclitaxel; IENF, intraepidermal nerve fiber.

478	Fig. 3. Effects of ghrelin on systemic oxidative and nitrosative stress, and mitochondrial anti-
479	oxidant function in dorsal root ganglia. Plasma levels of (A) 8-isoprostane ($n = 9$), (B)
480	malondialdehyde (n = 9), and (C) nitric oxide (n = 9) were measured on Day 7. (D) The mRNA
481	expression levels of $Ucp2$, $Pgc-1\alpha$, and $Sod2$ in the dorsal root ganglia were measured on Day 7
482	(n = 8-9). The mRNA levels were normalized against <i>Gapdh</i> mRNA levels, and shown relative
483	to the control group. (E) Representative images of immunocytochemical staining of SOD2 and
484	the SOD2 fluorescent intensity in PC12 cells (n = 4). Scale bar: 5 μ m. (F) Representative
485	images and analysis of a western blot of SOD2 in PC12 cells ($n = 4$). β -actin was used as a
486	loading control. Values are means \pm S.E.M. * <i>P</i> < 0.05, ** <i>P</i> < 0.01. PTX, paclitaxel.
487	
488	Fig. 4. Effects of endogenous ghrelin on paclitaxel-induced nerve injuries in ghrelin-null and
489	growth hormone secretagogue receptor-null mice, and histological evaluation of growth
490	hormone secretagogue receptor in peripheral neurons in growth hormone secretagogue receptor-
491	eGFP mice. (A) Mechanical withdrawal threshold was measured by the von Frey test ($n = 6$).
492	(B) Immunohistochemical detection of ATF3 in dorsal root ganglia and ratio of the ATF3-
493	positive cells in NeuN-positive cells (n = 6–7). Scale bars: 100 μ m. Values are means \pm S.E.M.

494 *P < 0.05, **P < 0.01. PTX, paclitaxel; GHSR, growth hormone secretagogue receptor.

D

axon diameter (µm)

В

