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SUMMARY 

   The fundamental repeating unit of the chromatin, the nucleosome, consists of a histone octamer 

(comprising two molecules of each of core histones H2A, H2B, H3 and H4), approximately 146 base 

pairs of DNA wrapped around it, a variable length (0-80 base pairs) of linker DNA and linker histone H1 

(or H5) (in higher eukaryotes).  Alterations in the chromatin structure are preferentially involved in 

almost all of DNA-utilizing processes, including gene expression, DNA replication, recombination, repair 

and others.  Of various epigenetic modifications of the chromatin, acetylation and deacetylation of core 

histones are the most common and important modifications.  Acetylation levels of specific Lys residues 

of core histones are cooperatively and precisely controlled by chromatin-modifying enzymes, such as 

histone acetyltransferases (HATs) and histone deacetylases (HDACs), each member of which plays 

specific roles in expressions of normal cell functions. 

 

   In eukaryotes genome information is preserved in a complex structure, the chromatin, which 

efficiently participates in packaging genomic DNA into nucleus and also provides the place for various 

DNA-utilizing reactions, such as replication, recombination, repair, gene expression and others.  The 

organization and packaging of the chromatin are achieved through the addition of numerous kinds of 

proteins, including histones and various non-histone proteins, to the DNA molecule.  A typical model for 

the hierarchy of the chromatin structure is as follows [1-8].  The basic structural unit of the chromatin, 

the nucleosome, consists of a histone octamer, comprising two molecules of each of core histones H2A, 

H2B, H3 and H4, and approximately 146 base pairs of DNA wrapped around it.  With a variable length 

(0-80 base pairs) of linker DNA and linker histone H1 (or H5) (in case of higher eukaryotes), the 

nucleosome constitutes the fundamental repeating unit of the chromatin.  Upon the assistance of a 

number of non-histone proteins, including high-mobility group (HMG) proteins, the nucleosome arrays 

are assembled into a higher order chromatin structure.  Genomic DNA folds around the nucleosomes to 

form 10 nm fibers, which fold helically into 30 nm chromatin fibers.  These 30 nm fibers further form 

loops observed in the prophase chromosome axis that coils to form the fully condensed metaphase 

chromosome. 

   Because histones (H2A, H2B, H3, H4, and H1 or H5) are essential for the maintenance of the 

chromatin structure, numerous numbers of each histone subtype must be rapidly and surely accumulated 

in nucleus, and quickly and correctly incorporated into the nucleosomes prior to cell division.  To supply 

a large amount of every histone subtype, following three distinct ways exist in eukaryotes.  1) The 

histone genes are present in multiple copies in most of higher eukaryotes, ranging from several dozens to 

hundreds, although yeast has two genes for each of core histones [4, 9].  2) The mRNA levels of every 

histone subtype are mainly controlled at a post-transcriptional step [10].  3) There is an attractive 

compensatory regulation mechanism, by which the mRNA levels of each of histone subtypes are 
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precisely kept in a stoichiometric balance [11-15]. 

   Moreover, as mentioned above, alterations in the chromatin structure are preferentially involved in the 

varied kinds of DNA-utilizing processes.  Concerning gene expressions, besides the DNA methylation 

[16], there are at least three remarkable ways by means of the chromatin conformation (structure) changes 

as follows: 1) the regulation by variants of every histone subtype, 2) the chromatin remodeling and 3) the 

post-translational modification. 

   First, several different variants with amino acid substitution(s) have been reported for most of histone 

subtypes [9, 17, 18].  The nature of these histone variants as to the regulation of gene expressions has 

reported in Saccharomyces cerevisiae, Drosophila melanogaster, Xenopus, Tetrahymena thermophile, etc. 

[19-24].  We determined the nucleotide sequences of almost all histone genes of chickens and reported 

that six H1, three H2A, four H2B and two H3 variants exist at least [9].  In addition, we reported that 

most of these variants separately regulate gene expressions in chicken DT40 cells by gene targeting 

techniques [14, 15, 25-27].  These findings revealed that besides the vital role in the chromatin 

organization, histone variants surely participate in regulation of gene expressions. 

   Secondly, the chromatin structure acts as a powerful transcriptional repressor in vivo, because it 

usually inhibits the binding of transcription factor proteins to their binding sites.  At the first step of gene 

activation, alterations in the chromatin (nucleosome) structure, the chromatin remodeling, surrounding 

transcriptional elements of DNA (such as promoter, operator, enhancer, etc.) allow the binding of 

transcription factors.  Several specific enzymatic activities have been reported to be necessary in this 

chromatin remodeling process.  Many different chromatin-remodeling complexes, such as NURF, 

CHRAC, ACF, SWI/SFF, ISW1, ISW2, RSF, WCRF and others, have been independently identified by 

distinct assays in various organisms, i.e., yeast, Drosophila melanogaster, mammals, etc. [28-30].  All of 

these complexes are functionally and biochemically different with each other but ubiquitously possess 

ATPase activity, which disrupts the interaction between DNA and histones [31].  Detailed reviews on the 

chromatin remodeling have been done elsewhere [32-34]. 

   Thirdly, the chemical modification of histones is one of the most common and important epigenetic 

modifications [35-40].  Post-translational modifications of histones (such as acetylation, 

phosphorylation, methylation, ubiquitination, sumoylation, ADP ribosylation, etc.) mainly occur at their 

N- and C-terminal tails.  Reviews concerning the last five have been done elsewhere in detail [41-46].  

Because a large number of topics concerning the first one have also been reviewed in numerous articles 

[35-40, 47-74], here, we briefly discussed the functional impact of alterations in the chromatin structure 

depending on the acetylation and deacetylation levels of core histones.  The molecules of core histones 

have been divided into three functional domains: histone-fold regions, diverse extensions and histone tails 

that extend outside the nucleosome core particle.  Surprisingly, approximately 50 years ago the chemical 

modifications of core histones with the acetyl group were first proposed to be of fundamental importance 
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as to activation of gene expressions in eukaryotes [75].  In fact, it has been established that the 

acetylation and deacetylation occur at the conserved and specific Lys residues in the N-terminal tails of 

core histones, and then the acetylated core histones are preferentially associated with the transcriptional 

active chromatin.  In addition, the positions of the conserved Lys residues modified with the acetyl 

group have remained nearly invariant throughout eukaryotic evolution.  Remarkably, the huge 

knowledge about the importance of the acetylation and deacetylation of core histones in the regulation of 

gene expressions by means of the chromatin conformation changes have been rapidly accumulated not 

only in the basic science as mentioned above [35-40, 47-74] but also in the clinical medicine [76-79] year 

by year.  The acetylation of the conserved Lys residues induces an open chromatin conformation that 

allows the transcription machinery access to promoters.  The acetylation and deacetylation levels are 

precisely and cooperatively controlled with chromatin-modifying enzymes, such as histone 

acetyltransferase(s) (HATs) and histone deacetylase(s) (HDACs).  Members of HATs transfer the acetyl 

group to the conserved Lys residues at the N-terminal tails of core histones to promote the euchromatin 

formation.  In contrast, members of HDACs remove the acetyl group from the acetylated Lys residues of 

core histones for gene silencing.  Thus, the histone acetylation and deacetylation levels controlled by 

HATs and HDACs play critical roles in the modulation of the chromatin topology and in the regulation of 

gene expressions in eukaryotes.  As mentioned above, a number of HAT and HDAC family members 

have been identified in several organisms and their detailed and specific functions have been reviewed by 

many research groups.  We also clarified individual roles of specific members of HATs and HDACs in 

chicken DT40 cells by gene targeting techniques as follows.  GCN5 is involved in gene expressions of 

various important factors and enzymes and also the IgM H-chain [80-87], and HAT1 contributes to both 

the recovery of DNA damages and the integrity of histone H3-H4 containing complex [88, 89].  In 

addition, HDAC2 indirectly and mainly regulates gene expressions of IgM H- and L-chains through 

opposite regulations of gene expressions of Pax5, EBF1, OBF1, Aiolos, E2A and others [90-92], and 

HDAC3 is essential for viability and important for apoptosis progression [93, 94].  
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