

境界要素法に部分解析法を用いた 震源断層-不整形地盤系の効率的地震動シミュレーション

原田隆典1·岡田洋輔2·王宏沢2·小林正樹2

¹工博, 宮崎大学教授, 工学部土木環境工学科 (〒889-2192宮崎市学園木花台西1-1) E-mail: harada@civil.miyazaki-u.ac.jp ²宮崎大学大学院学生, 工学研究科土木環境工学専攻 (〒889-2192宮崎市学園木花台西1-1)

本論文では、境界要素法の弱点である計算機容量と計算速度の問題点を改良するために、部分解析法を 用いた境界要素法による震源断層-不整形地盤系の効率的地震動シミュレーション手法を提案した。本論 文では、手法の定式化とその検証を主な目的とするため、震源断層-不整形地盤系を深部地盤と表層地盤 系の2つの部分領域に分ける場合について記述した。さらに効率性に優れた近似部分解析法についても記 述し、数値計算例によって手法の検証と効率性を例示した。

Key Words : seismic ground motions, kinematic source model, boundary element method, seismic waves, subsystems method

1

1. まえがき

地表の地震動は、震源断層で発生した地震波が地 層を伝播し、地表まで到達した結果として現われる 地盤の揺れである。したがって、構造物の耐震設計 や都市の地震防災対策で必要とされる強震動波形や その特性を評価する際には、このような震源断層破 壊によって生じた地震波の伝播過程を考慮した数理 モデルの開発が必要となる。

数理モデルに基づく地震動波形の合成法に関する 研究は、主に地震学分野で発展してきた。この広範 な研究現状は、他の論文"に詳しく述べられている が、ここでは観測記録が皆無に等しくその特性があ まりわかっていない震源断層近傍の地震動を震源断 層-3次元不整形地盤系とした数理モデルによって 模擬することに絞ると,現状では差分法による研究 ^{2),3),4),5)}が主流になっているようである。しかし差 分法では,無限に広がる領域のモデル化ができない こと、材料減衰の導入や数値計算精度の改良等にま だ問題が残されている。一方、無限領域への波動伝 播を解析的に考慮できる境界要素法は、差分法や有 限要素法に比べて計算機容量の点で弱点がある。境 界要素法を用いた3次元波動問題に関するこれまで の研究では、平面波入射による3次元不整形地盤の 解析を扱ったものが主流で、震源断層からの地震波 を考慮した研究は少ない^{6),7)}。しかし震源断層近傍 では、振幅の違うあらゆる種類の波があらゆる方向 から入射するため、震源断層-不整形地盤系を一体 とした解析が不可欠となる。

境界要素法には , 例えば論文⁹で整理している ように,運動学的断層モデルを用いた震源断層-不 整形地盤系が厳密に積分方程式系として定式化でき, これらは境界要素法によって離散化され数値的に解 析できるという数理学的厳密性とエレガント性があ る。

そこで本研究では解析法としては目新しいもので はないが、これを震源断層近傍での構造物の耐震設 計用入力地震動評価という工学問題に適用すること を目的に、境界要素法の弱点である計算機容量と計 算速度の問題点を改良した、「部分解析法を用いた 境界要素法による震源断層ー不整形地盤系の効率的 地震動シミュレーション手法」を提案する。本論文 では、手法の定式化とその検証を主な目的とするた め、震源断層-不整形地盤系を深部地盤と表層地盤 系の2つの部分領域に分ける場合について記述する。 さらに効率性に優れた近似部分解析法についても記 述する。また、以下のような工学的なパラメータ感 度解析に本論文で提案する部分解析法を用いれば, さらに有利となると思われる。すなわち、震源断層 - 不整形地盤系において、(1)深部地盤系よりも 表層地盤の地形や物性値が変わると地表の地震動が どのように変わるかを調べる場合や,(2)深部地 盤系の震源特性が変わると地表の地震動がどのよう. に変わるかを調べる場合、一方に関係する領域のみ の計算を他方のものと組み合わせて地表の地震動が 計算できるので全体解析をするよりも計算速度の点

図-1 震源断層一不整形地盤系とその記号

2. 境界要素法による全体解析法

本章では、定式化とその記号を簡単化するため、 図-1に示すような震源断層を含む2層から成る不 整形3次元地盤を対象として、振動数領域における 積分方程式系⁹⁾を境界要素法によって離散化した次 式から説明を始める。図-1に示すように境界面の 単位法線ベクトル n を定義し、3次元弾性波動方 程式の積分方程式表示における外部問題を境界要素 法に従って一定要素で離散化し、マトリックス表示 すると次式が得られる⁸⁾。

領域V₀に対して:

$$\begin{bmatrix} \boldsymbol{H}_{11}^{0} & \boldsymbol{H}_{12}^{0} \\ \boldsymbol{H}_{21}^{0} & \boldsymbol{H}_{22}^{0} \end{bmatrix} \begin{pmatrix} \boldsymbol{U}_{0} \\ \boldsymbol{U}_{01} \end{pmatrix} =$$

$$\begin{bmatrix} \boldsymbol{G}_{11}^{0} & \boldsymbol{G}_{12}^{0} \\ \boldsymbol{G}_{21}^{0} & \boldsymbol{G}_{22}^{0} \end{bmatrix} \begin{pmatrix} \boldsymbol{T}_{0} \\ \boldsymbol{T}_{01} \end{pmatrix} + \begin{pmatrix} \boldsymbol{u}_{0}^{(in)} \\ \boldsymbol{u}_{01}^{(in)} \end{pmatrix}$$

$$(1)$$

ここに,

U₀, T₀ : 境界 Γ₀上の変位と表面応力ベクトル
 U₀₁, T₀₁ : 境界 Γ₀上の変位と表面応力ベクトル
 H_{ij}⁰, G_{ij}⁰ : 領域V₀の積分方程式を境界要素法に従って離散化して求められる表面応力Green関数と変位Green関数に関わる係数マトリックスのU₀, U₀₁およびT₀, T₀₁に対応する成分

u₀⁽ⁱⁿ⁾, **u**₀₁⁽ⁱⁿ⁾ : 境界Γ₀ および境界Γ₀₁ 上の入射波成分

同様な記号の約束に従って領域V₁に対して次のような記号を用い,次式が得られる。 領域V₁に対して:

 $\begin{bmatrix} \boldsymbol{H}_{11}^{\mathrm{l}} & \boldsymbol{H}_{12}^{\mathrm{l}} \\ \boldsymbol{H}_{21}^{\mathrm{l}} & \boldsymbol{H}_{22}^{\mathrm{l}} \end{bmatrix} \begin{pmatrix} \boldsymbol{U}_{1} \\ \boldsymbol{U}_{01} \end{pmatrix} = \begin{bmatrix} \boldsymbol{G}_{11}^{\mathrm{l}} & \boldsymbol{G}_{12}^{\mathrm{l}} \\ \boldsymbol{G}_{21}^{\mathrm{l}} & \boldsymbol{G}_{22}^{\mathrm{l}} \end{bmatrix} \begin{pmatrix} \boldsymbol{T}_{1} \\ -\boldsymbol{T}_{01} \end{pmatrix} \quad (2)$

 U₁, T₁ : 境界 Γ₁上の変位と表面応力ベクトル
 H_{ij}¹, G_{ij}¹ : 領域V₁の積分方程式を境界要素法に従って 離散化して求められる表面応力Green関数と 変位Green関数に関わる係数マトリックスの U₁, U₀₁およびT₁, T₀₁に対応する成分

図-2 部分解析法の説明図

上式の右辺の $-T_{01}$ のマイナス記号は、境界 Γ_{01} 上の 領域 V_0 側の表面応力を T_{01} とすると、作用反作用の 法則から領域 V_1 側の表面応力は大きさが同じで、 その向きが逆方向であるためである。

ここで、未知数は、 U_0 、 U_1 、 U_1 、 T_{01} であり、 T_0 、 T_1 は領域 V_0 、 V_1 の地表面応力で既知(零)であるの で、未知数を左辺にまとめると、式(1)、(2)から次 式が得られる。

$\int H_{11}^0$	H_{12}^{0}	$-G_{12}^{0}$	0	$\left \left(U_{0} \right) \right $	}	
H_{21}^{0}	H_{22}^{0}	$-G_{22}^{0}$	0	U ₀₁	_	
0	H_{12}^{1}	G_{12}^{1}	$oldsymbol{H}_{11}^1$	T ₀₁	-	
0	$oldsymbol{H}_{22}^1$	G_{22}^{1}	H_{21}^{1}	$\left\ U_{1} \right\ $)	(3)
$\int G_{11}^0$	0]	($u_0^{(in)}$			
G_{21}^{0}	0	T_0	$u_{01}^{(in)}$			
0	G_{11}^{l}	$[\mathbf{r}_1]^{T}$	0			
0	G_{21}^{l}		0).			

上式の連立方程式を解いて未知数 U_0 , U_{01} , U_1 , T_{01} が求められる。これが通常の境界要素法を用い た全体解析の定式である。しかし、上式の全体解析 法では、境界 Γ_0 上を離散化した要素数を N_0 , 境界 Γ_{01} 上を離散化した要素数を N_{01} , 境界 Γ_1 上を離散 化した要素数を N_1 とすると、各要素に対して変位 と表面応力はそれぞれ x-y-z軸方向の3成分を持つ ので、未知数の数は要素数の3倍になり、3(N_0 + $2N_{01}+N_1$)元の連立方程式を解くことになる。

3. 境界要素法による部分解析法

図-2(a)に示すような震源断層-不整形地盤系 を図-2(b),(c),(d)に示すように,

- (1)入射波u⁽ⁱⁿ⁾による自由表面を持つ地盤の入射波
 問題(自由地盤の入射波問題 図-2(b))
- (2)入射波は存在しないが自由地盤上に外力(正確には表面応力)T₀₁が作用する時の地盤の応答問題(自由地盤の外力応答問題図-2(c))

(3)領域V₁の応答問題 図-2(d), の3段階の応答問題に分けて計算する部分解析法の 定式化を以下に説明する。

上記(1)の自由地盤の入射波問題では、式(1)にお

いて境界上の表面応力 T_0 , T_{01} は零(自由表面上の応力は零)とおけるため、次式の連立方程式を解いて自由表面上の変位 U_0^{free} , U_{01}^{free} が求められる。

$$\begin{bmatrix} \boldsymbol{H}_{11}^{0} & \boldsymbol{H}_{12}^{0} \\ \boldsymbol{H}_{21}^{0} & \boldsymbol{H}_{22}^{0} \end{bmatrix} \begin{pmatrix} \boldsymbol{U}_{0}^{free} \\ \boldsymbol{U}_{01}^{free} \end{pmatrix} = \begin{pmatrix} \boldsymbol{u}_{0}^{(in)} \\ \boldsymbol{u}_{01}^{(in)} \end{pmatrix}$$
(4)

また、上記(2)の自由地盤の外力応答問題では、 式(1)の入射波の項を零とおき、更に表面応力 T_0 も 零となるので、境界 Γ_{01} 上の表面応力 T_{01} のみによる 自由地表面の変位応答 U_0^{force} , U_{01}^{force} が、次式から 求められる。

$$\begin{bmatrix} \boldsymbol{H}_{11}^{0} & \boldsymbol{H}_{12}^{0} \\ \boldsymbol{H}_{21}^{0} & \boldsymbol{H}_{22}^{0} \end{bmatrix} \begin{pmatrix} \boldsymbol{U}_{0}^{force} \\ \boldsymbol{U}_{01}^{force} \end{pmatrix} = \begin{bmatrix} \boldsymbol{G}_{11}^{0} & \boldsymbol{G}_{12}^{0} \\ \boldsymbol{G}_{21}^{0} & \boldsymbol{G}_{22}^{0} \end{bmatrix} \begin{pmatrix} \boldsymbol{\theta} \\ \boldsymbol{T}_{01} \end{pmatrix} \quad (5)$$

上式(5)より,自由地表面の変位応答 U_0^{force} を消去し,境界 Γ_{01} 上の表面応力 T_{01} と自由地表面の変位応答 U_0^{force} の関係式を求めると,次式のように剛性マトリックス K_{01} を用いて表現することができる。

 $T_{01} = K_{01} U_{01}^{force}$ (6a)

$$\boldsymbol{K}_{01} = \left[\boldsymbol{H}_{21}^{0} \left(\boldsymbol{H}_{11}^{0} \right)^{-1} \boldsymbol{G}_{12}^{0} - \boldsymbol{G}_{22}^{0} \right]^{-1} \times \left[\boldsymbol{H}_{21}^{0} \left(\boldsymbol{H}_{11}^{0} \right)^{-1} \boldsymbol{H}_{12}^{0} - \boldsymbol{H}_{22}^{0} \right]$$
(6b)

剛性マトリックスK₀₁は、振動数によって変わる複素数であるため振動数依存の複素ばねと呼ぶことができる。

さて、上記(1)と(2)のように自由地盤の入射波問 題と外力応答問題に分けることによって新しく定義 された自由地表面の変位 U_0^{free} , U_{01}^{free} および U_0^{force} , U_{01}^{force} は、これらを足し合わせると、変位の適合 条件から全体系の境界上の変位 U_0 , U_{01} に等しくな らなければならない。したがって、次式が成立する。

$$\begin{pmatrix} \boldsymbol{U}_{0} \\ \boldsymbol{U}_{01} \end{pmatrix} = \begin{pmatrix} \boldsymbol{U}_{0}^{free} + \boldsymbol{U}_{0}^{force} \\ \boldsymbol{U}_{01}^{free} + \boldsymbol{U}_{01}^{force} \end{pmatrix}$$
(7)

式(6a) と式(7)から、領域 V_0 と領域 V_1 の境界 Γ_{01} 上の表面応力 T_{01} は、次式のように表される。

$$\boldsymbol{T}_{01} = \boldsymbol{K}_{01} \boldsymbol{U}_{01}^{force} = \boldsymbol{K}_{01} \left(\boldsymbol{U}_{01} - \boldsymbol{U}_{01}^{free} \right)$$
(8)

上式を式(2)の表面応力**T**₀₁に代入し整理すると, 次式が得られる。

$$\begin{bmatrix} \boldsymbol{H}_{11}^{1} & \boldsymbol{H}_{12}^{1} + \boldsymbol{G}_{12}^{1} \boldsymbol{K}_{01} \\ \boldsymbol{H}_{21}^{1} & \boldsymbol{H}_{22}^{1} + \boldsymbol{G}_{22}^{1} \boldsymbol{K}_{01} \end{bmatrix} \begin{pmatrix} \boldsymbol{U}_{1} \\ \boldsymbol{U}_{01} \end{pmatrix} = \begin{bmatrix} \boldsymbol{G}_{11}^{1} & \boldsymbol{G}_{12}^{1} \\ \boldsymbol{G}_{21}^{1} & \boldsymbol{G}_{22}^{1} \end{bmatrix} \begin{pmatrix} \boldsymbol{T}_{1} \\ \boldsymbol{K}_{01} \boldsymbol{U}_{01}^{free} \end{pmatrix}$$
(9)

上式は、 $\mathbf{図} - 2$ (d)に示すように領域V₁を剛性マト リックス(複素ばね)で支持し、その支点に自由地 盤の地震動変位 \mathbf{U}_{01}^{free} を作用させて領域V₁の応答変 位 \mathbf{U}_{1} , \mathbf{U}_{01} を計算するための連立方程式を表してい る。

最後に,残る未知変位 U_0 は,式(1)において自由 表面応力 T_0 を零とおき,未知数 U_0 , T_{01} を左辺に移 して得られる次式から求められる。

$$\begin{bmatrix} \boldsymbol{H}_{11}^{0} & -\boldsymbol{G}_{12}^{0} \\ \boldsymbol{H}_{21}^{0} & -\boldsymbol{G}_{22}^{0} \end{bmatrix} \begin{pmatrix} \boldsymbol{U}_{0} \\ \boldsymbol{T}_{01} \end{pmatrix} = -\begin{bmatrix} \boldsymbol{H}_{12}^{0} \\ \boldsymbol{H}_{22}^{0} \end{bmatrix} \boldsymbol{U}_{01} + \begin{pmatrix} \boldsymbol{u}_{0}^{(in)} \\ \boldsymbol{u}_{01}^{(in)} \end{pmatrix} (10)$$

式(6)は、 $V_0 \geq V_1$ の境界 Γ_{01} の変位と表面応力を 関係付ける剛性マトリックス K_{01} を厳密に求める式 であり、このように厳密に求められた剛性マトリッ クス K_{01} に基づく部分解析法を厳密部分解析法(式 (9)、(10))と呼ぶ。

これに対して振動数が高くなると(短波長),不 整形地盤の地表面法線方向にP波やS波が伝播する と仮定できるので,不整形地盤地表面の各要素は局 所的に半無限地盤地表面の各要素で近似できると考 えられる。一方よく知られているように,半無限地 盤地表面に鉛直方向,水平方向に表面応力が作用す るときの剛性マトリックスは減衰係数 ρC_s , ρC_p , ($\rho = 密度$, $C_s = S 波速度$, $C_p = P 波速度$)のダッシ ュポットによってモデル化できる。このような近似 的な剛性マトリックスを用いる場合を近似部分解析 法と呼ぶ。

ここで、上記の厳密部分解析法における連立方程 式の次元を整理すると、自由地盤入射波応答問題 (式(4))で、3(N₀+ N₀₁)元、自由地盤外力応答問題 (剛性マトリックス)(式(6))では、3(N₀₁)元、領 域V₁の応答問題(式(9))では、3(N₀+ N₁)元、領域 V₀の応答問題(式(10))で、3(N₀+ N₀₁)元の連立方 程式を解くことになる。ここに、境界 Γ_0 上を離散 化した要素数をN₀、境界 Γ_{01} 上を離散化した要素 数をN₀₁、境界 Γ_1 上を離散化した要素数をN₁とする。 以上からわかるように厳密部分解析法では、連立 方程式の係数マトリックスの大きさは、最大でも部 分領域の境界上の要素分割数の3倍(3(N₀+ N₀₁)また

は3(N₀₁+ N₁))以上にはならないので,計算機容量お よび計算速度に関して部分解析法は,全体解析法 3(N₀+2N₀₁+N₁)元連立方程式)に比べ優れた計算方 法であることがわかる。また,近似部分解析法を用 いると,自由地盤の外力応答問題で逆行列の計算 (式(6b))が不要になるので,近似部分解析法は全体 解析法と厳密部分解析法に比べより少ない時間で計 算できる。具体的計算例による計算機容量と計算速 度に関する比較は,後で述べる。

4. 震源断層ー不整形地盤の地震動計算例

4. 1 横ずれ断層一矩形の溺れ谷地盤モデル

図-3 横ずれ断層-矩形溺れ谷地盤モデル

我一下 解析で用いた定形各地盤モデルの物性値				
	P波	S波	密度	Q值
	速度	速度	ρ	
	[m / sec]	[m / sec]	[t / m ³]	
領域 1	6000	3500	2.8	400
領域 2	2800	1600	2.3	150

初七本田いた佐服公地般ナゴルの施設は

部分解析法の検証と数値計算上の優位性を示すた めに、図-3に示すように半無限地盤中に鉛直横ず れ断層があり、その上に矩形の溺れ谷地盤が存在す るような震源断層-不整形地盤系モデルを想定し, 全体解析法,厳密部分解析法,近似部分解析法によ って地表面地震動を計算し比較する。鉛直横ずれ断 層は溺れ谷地盤の下方中央に存在する。地盤物性値 は、表-1に示すように震源断層が存在する半無限 地盤のS波速度は、3.5km/sで標準的な地殻の硬さで ある。矩形の谷地盤のS波速度は、1.6km/sで地殻よ りもかなり軟らかではあるが、中程度の硬さの岩盤 でありこれが水平成層地盤構造であればそのS波の 1次固有振動数(2 π C_s/(4H))は1.7 rad/s (=2 π 1.6/(4×1.5))となる。半無限地盤の方は、3kmx3km、 矩形谷地盤の方は,1.5kmx1.5kmの正方形の一定要 素で境界を分割した(No=800, No1=480, N1=400)。 要素の大きさと地盤物性値を考慮し、解析した地震 動の振動数は2 rad/s までを対象としている。

震源断層は、図-4に示すような 8.5kmx8.5km の矩形断層で、震源メカニズムは断層の左端から一 様に破壊が伝播する横ずれ断層とし、震源パラメタ ーを表-2に示す。

図-4 解析で用いた横ずれ断層モデル

表-2 解析で用いた横ずれ断層の震源パラメター

地震モーメントMo	[N•m]	2. 230×10^{17}
	[dyne•cm]	2. 230×10^{24}
	4	
立ち上がり時間 r	[sec]	0.3
断層長さ L	[m]	8500
断層幅 W	[m]	8500
破壞伝播速度 v _r	[m/sec]	2200
断層上端長さz _{so}	[m]	0.0
走行角度 φ	[°]	0. 0
傾斜角度 δ	[°]	90.0
食い違い角度λ	[°]	0.0
破壊伝播タイプ		Type 1

4.2 地表面の増幅特性

震源断層から放射される地震波による応答特性を 見る前に、図ー3の不整形地盤に単位振幅のSH波 (v軸方向の変位のみ)が鉛直下方から入射したとき の矩形谷中央を通るy軸に沿う地表面応答倍率の変 化を見ておく。振動数 0.0625 rad/s から 2.0 rad/s の5つの振動数毎のy軸に沿う地表面応答倍率の変 化を図-5.6に示す。図-5は、全体解析法(曲 線)と厳密部分解析法(○□△記号)による応答倍 率を比較し、図ー6は全体解析(曲線)と近似部分 解析法(○□△記号)の比較結果である。全体解析 法によるプログラムの検証は論文⁹でなされている ので, 図-5に示すように全体解析法(曲線)と厳 密部分解析法(○□△記号)の完全な一致は、本論 文で提案した厳密部分解析法の妥当性を示している。 また, 図-6のように近似部分解析法の結果は, 全 体解析法と完全に一致しないもの、両者の応答倍率 は似ており、近似部分解析法も実用的には問題はな いものと思われる。

4.3 地表面の速度波形特性

ここでは、横ずれ断層から放射される地震波に よる矩形谷地表面の地震動波形を全体解析法、厳 密部分解析法,近似部分解析法で計算し比較する。 なおこの比較では、震源断層破壊終了付近の断層直 交方向変位が最も大きくなることがわかったので、 ここではその付近の4つの地点における直交方向 の速度波形による比較結果を示すものとする。

図-7は、全体解析法と厳密部分解析法による速 度波形の比較を示す。前節のSH波入射による地盤 増幅特性の場合と同様に、全体解析法と厳密部分解 析法のよる結果は完全に一致しており、厳密部分解 析法の妥当性が確認されたことを示している。また、 図-8に示す全体解析法と近似解析法の比較では、 両者の完全な一致は見られないものの近似部分解析 法による波形はほぼ全体解析法の結果に似ており、 近似部分解析法の妥当性が確認されたものと思われ る。

4

図-7 全体解析法と厳密部分解析法による断層直交方 向の速度波形の比較

Y

Velocity(m/sec) Analysis of Subsystem (Approximate Method) Analysis of Entire System -0. 0. 8 12 16 20 24 28 32 36 40 Fault Time(sec) --- Boundary X=9750(m) Y≃750(m) Fault soft Ground X=9750(m) Y=3750(m) Hard Ground X=9750(m) Y≈9750(m) Х Y

図-8 全体解析法と近似部分解析法による断層直交方 向の速度波形の比較

5. 部分解析法の計算上の利点

本論文で新しく提案した厳密部分解析法と近似部 分解析法の妥当性は前節の数値計算例による全体解 析法との比較によって確認されたので,ここでは計 算機容量や計算時間の比較をして,部分解析法の計 算上の利点をまとめておく。

第4章で用いた震源断層-矩形谷地盤系で地表面 速度波形を計算した場合について、1つの振動数に よる応答を計算するために必要な計算機メモリ最大 使用量と計算時間について比較すると、表-3のよ うにまとめることができる。もちろんこれらの数字 は、使用した計算機やプログラミングに依存するが、 全体解析法に比べて、厳密部分解析法と近似部分解 析法の相対的利点を見るには十分である。

表-3によると、全体解析法で必要とされる最大 計算機メモリに関しては、厳密部分解析法と近似部 分解析法では、それぞれ全体解析法の約1/2倍と約 1/4倍の計算機メモリーで済むことになる。また、 計算時間に関しては、厳密部分解析法と近似部分解 析法は、それぞれ全体解析法の約1/3倍と約1/6倍の 計算時間で計算できることがわかり、本論文の部分 解析法の計算上の利点が確認できたものと思われる。

6. まとめ

本論文では、震源断層-不整形地盤系における地 震動シミュレーションを3次元境界要素法によって 行うときに問題となる, 計算機容量と計算時間の 改良を目指して, 部分解析法を利用した境界要素法 による効率的地震動合成法を提案し、その検証と数 値計算上の利点を示した。本論文では、手法の定式 化とその検証を主な目的とするため、震源断層-不 整形地盤系を深部地盤と表層地盤系の2つの部分領 域に分ける場合について記述するとともに、さらに 効率性に優れた近似部分解析法についても記述した。 また,以下のような工学的なパラメータ感度解析に 本論文で提案する部分解析法を用いれば、さらに有 利となると思われる。すなわち、震源断層-不整形 地盤系において、(1)深部地盤系よりも表層地盤 の地形や物性値が変わると地表の地震動がどのよう に変わるかを調べる場合や, (2) 深部地盤系の震 源特性が変わると地表の地震動がどのように変わる かを調べる場合、一方に関係する領域のみの計算を 他方のものと組み合わせて地表の地震動が計算でき るので全体解析をするよりも計算速度の点で有利と なる。

本論文で提案した部分解析法の考え方を,多数の 部分領域に分けて計算する方法に拡張すれば,さら に効率性に優れた計算法になると考えられるが,具 体的方法については今後の課題とする。

表-3 計算時間および記憶容量の比較

	全体解析法	厳密部分	近似部分
		解析法	解析法
最大 要素数	N ₀ +2N ₀₁ +N ₁	N ₀ +N ₀₁	N ₀ +N ₀₁
	2160	1280	1280
最大記 憶容量	1,338Mbyte	609MByte	365Mbyte
計算 時間	6時間46分	2時間35分	1時間11分

参考文献

1) 纐纈一起,竹中博士(1989),近地地震波の伝播に関す る理論,地震 第2号,第42巻, pp.391-403.

2) Graves, R.W. (1995), Preliminary analysis of long-period basin response in the Los Angeles region from the 1994 Northridge earthquake, *Geophysical Reserach Letters*, Vol. 22, pp.101-104.

3) Olsen, K., and Archuleta, R.J. (1996), Three-dimensional simulation of earthquake on the Los Angeles fault system, *Bulletin of the Seismological Society of America*, Vol. 86, pp.575-596.

4) Sato., Graves, R.W., and Somerville, P.G. (1999), 3-D finite-difference simulation of long-period strong motions in the Tokyo Metropolitan area during the 1990 Odawara earthquake (M_j 5.1) and the Great 1923 Kanto earthquake (M_s 8.2) in Japan, *Bulletin of the Seismological Society of America*, Vol. 89, pp.575-596.

5) Inoue, T., and Miyatake, T. (1997), 3-D simulation of nearfield strong ground motion : Basin edge effect derived from rupture directivity, *Geophysical Reserach Letters*, Vol. 24, pp.905-908.

6) 阿部和久,吉田裕,中村智樹 (1993),時間領域境界要 素法による3次元地震断層解析,土木学会論文集, No.471/I-24,pp.125-133.

7) 片岡正次郎 (1996), 3次元境界要素法による1995年兵 庫県南部地震のシミュレーション,東京工業大学土木工 学科研究報告, No.54, pp.11-20.

8) 小林昭一(編著)(2000), 波動解析と境界要素法, 京都 大学学術出版会.

10) 原田隆典,黒田拓士,山上武志,(2002),3次元直接境 界要素法による震源断層-不整形地盤系の応答解析と震 源断層近傍地震動の渦現象,構造工学論文集,Vol.47A, pp.843-849.

11) 原田隆典,大角恒雄,奥倉英世,(1999),3次元直交 座標系における波動場の解析解とその地震動波形作成へ の応用,土木学会論文集,No.612/I-46,pp.99-108.

12) 原田隆典,山下肇,(2000),剛性マトリックスに基づく地震動の波形合成法と震源断層近傍地震動の渦現象, 土木学会応用力学論文集, Vol. 3, pp.569-576.

(2003年6月30日受付)

EFFICIENT SIMUATION METHOD OF GROUND MOTIONS USIG SUBSYSTEMS ANALYSIS AND BOUNDARY ELEMENT METHOD

Takanori HARADA, Yousuke OKADA, and Koutaku OHO

Since the physical processes of propagation of seismic waves generated by a kinematical fault rupture model buried in laterally inhomogeneous layered media can be consistently and rigorously represented by using the integral equations and the integral equations can be numerically solved with making use of the direct boundary element method, the simulation method of earthquake ground motions for the fault— earth crust model with laterally inhomogeneous layered media has been developed by using the 3-dimensional direct boundary element method. Especially in this paper, in order to improve the computation memory capacity and computation time by using the 3-dimensional direct boundary element method. The advantage of the developed method of analysis of sub systems has been demonstrated by the numerical examples for a single laterally inhomogeneous valley with a strike slip fault rupture model.