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Engineering simulation of ground motions using a seismological model
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ABSTRACT:This paper describes a digital simulation method of ground motions using a seismological
model. The method is based on the spectral representation of stochastic waves in conjunction with the
stochastic summation of the small ruptures in making use of the representation theorem of elastodynamics
of the far field seismic waves. Numerical example demonstrates the effect of the directivity of seismic

waves on the acceleration time histories.

1 INTRODUCTION

In order to simulate high frequency ground mo-
tions (> about 1 Hz) at an average site from an
average earthquake of specified size, Boore (1983)
presented a stochastic method in which the Fourier
spectrum amplitude of simulated ground motion
approximates the acceleration spectrum with w2
property and a single corner frequency (Hanks and
McGuire, 1981). '

It is well known that the rupture plane of large
earthquake is too large to be treated as a point
source, and the slip motion as well as stress drop
are not uniform (irregular) over the extended rup-
‘ture plane. These heterogeneities of the rupture
process may cause the significant departure from
the self similar w™2 model of source spectrum (Aki
and Richards,1980; Papageorgiou,1988).

In order to represent a type of heterogeneity of
the extended rupture, the effects of source-station
geometry, and the effects of propagating rupture in
a simple model, Joyner and Boore (1986) consid-
ered a model where many small rupture areas are
added together with-their start times distributed
randomly with uniform probability over the rup-
ture duration.

In this paper, we apply the above Joyner and
Boore method to the general empirical Green'’s
function method proposed by Harada, et al.(1995,
1996) which is the generalization of the Irikura for-
mulation (Irikura, 1988). Consequently, we pro-

pose an average spectrum of ground motions at a
distance from an extended rupture where a type
of heterogeneity of the extended rupture, the ef-
fects of source-station geometry, and the effects of
propagating rupture are taken into account.

2 SPECTRUM OF GROUND MOTION
FROM STOCHASTIC SUMMATION OF
SMALL EARTHQUAKES

2.1Starting Equations

The starting equations in this paper belong to the
empirical Green’s function method initially sug-
gested by Hartzell (1978). This method, which
has been discussed in detail by Irikura (1988), is
a method to simulate ground motions from an ex-
tended rupture on the basis of the representation
theorem of elastodynamics. Here, a brief discus-
sion of the relevant mathematical formulation. is
presented in the frequency domain, and a new trans-
fer function is presented, which accounts for the
difference of the slip time functions between ex-
tended rupture and small rupture area.

The extended rupture plane with length L and
width W is divided into small rupture areas with
length AL and width AW, as shown in Fig.1.
Using the representation theorem of elastodynam-
ics, the far-field displacement u(z,t) in a homoge-
neous, isotropic, and layered medium can be ex-
pressed in the followirig integral form (Aki and
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Observation

Fig.1 Schematic diagram of the Green’s function
method and its notation

Richards, 1980; Somerville,et al., 1991):

NL NW Em+OL [in+AW b
m= 1n-
where = = (z,y,2)7 is the observation station,

D(¢ ,,t) is the velocity of the source time func-
tion at position (£,7) on the extended rupture,
G(z,&,n,t — te,) is the Green’s function (the im-
pulse response of medium), and * represents a con-
volution. T is the rupture propagation time from
the hypocenter of extended rupture to the (m,n)®
small rupture area, and ¢,,, is the propagation time
for S waves to travel from the (m,n)® small rup-
ture area to the observa’clon statlon which are de-
fined by:

Cs

where (n» is the distance from the hypocenter of
the extended rupture to the (m2,n)™ small rupture
area, Ry is the distance from the (m,n)™ area
to the observation station, R is the hypocentral
distance of the extended rupture, Vg is the rup-
ture velocity, and Cs the S wave velocity of the
medium.

The Fourier transform of Eq.(2.1) yields the

following equation:
m+OL n+AW
/: / D€y Ty @)

G, Em; 1, w)e ™ W T & bmn) gy (2.3)

In order to take into account the difference of
the slip time functions between the extended rup-
ture and the small rupture, the transfer function
is introduced, which is defined as:

Gmn

Vr

(2.2)

NL Nw
u(z,w) =
m—ln-

D(ﬁm) Ty W)

Tomnw) = Do (€ms T )

(2.4)

where D (ém, T, w) is the Fourier transform of
the velocity of the slip time function at position
(&, M) of the small rupture. By using Eq.(2.4),
Eq.(2.3) can be written as:

Np Nw
w(@,w) = YY" Do (W) (0, ) (2.5q)
m—ln—
where
Em+AL pon+AW
umn(m)w) = / / Dmn(&m:"]mw)
Em M
G({B, Em: Tins w)e*iW(Tmn + tm")dﬁdn (25b)

In Eq.(2.5b), %mn(z,w) is the far-field displace-
ment due to the small rupture. Equation (2.5)
indicates that the motions from the extended rup-
ture is the summation of the motions from the
N, x Ny small rupture areas with the weight of
Toan(w).

Based on Eq.(2.5), an approximate method can
be obtained, using a single record uo(z, w) due to
the (mg, )™ Tupture area. By assuming that the
slip time function of each small rupture and the
Green'’s function from the position of each small
rupture to the observation station are approximately
equal to those from the (mq,no)™ rupture area,
then Eq.(2.5a) can be reduced as:

NL Ny
mn(w _wtm”uo(m w)
m=1ln=1
(2.6a)
where
v Emn = Tmn + tmn (26b)

In deriving Eq.(2.6) the effect of the hypocentral
distance on the Green’s function has been consid-
ered approximately because the S wave attenuates
inversely proportional to the hypocentral distance
in a homogeneous isotropic medium.

From the similarity conditions of earthquakes
(Kanamori et al., 1975), the following relations are
derived:

(MO 1/3 _

™o

L w D
AL~ AW — Do/

T _N

7o

(2.7)

where N = NL = Nw, and My is the seismic mo-
ment of the extended rupture; my the seismic mo-
ment of the small rupture area; D and 7 are the
final offset of the dislocation and the dislocation
rise time of the extended rupture, respectively; Dy
and Ty those of the small rupture.

The transfer function T, (w) defined by Eq.(2.4)
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Fig.2 Frequency variation of |P(w, T¥)|

can be obtained by specifying a slip time function.
The following transfer function is used in this pa-
per:

, N WT (o

1 wT
w4+ — 1+ (‘2—)2
T

Trn(w) = (2.8)

where £ is a parameter that controls the value of
"the transfer function in high frequency range(w >
we = 2/7). Although several physical models exist
(Aki and Richards, 1980), the generation process
of high frequency seismic waves due to extended
rupture may be quite complex. Therefore, with-
out the use of physical models, one parameter x
has been introduced here, which has to be empiri-
cally estimated. For k=1, the transfer function is
equivalent to that obtained by assuming the ex-
ponential function for slip time functions of the
extended and small rupture areas (Harada et al.,
1995).

2.2 Average characteristics of the source spectrum
of an extended rupture obtained from a stochastic
summation of small rupture areas

We consider here a simple model for a simulation
of the many patterns of irregular propagation of a
coherent rupture front from a specified hypocen-
ter on a given extented rupture plane. For each
pattern of irregular ruptures, the small rupture
areas can be considered to be distributed on the
extented rupture plane with later start times at
progressively greater distances from the hypocen-
ter. However, in considering the collection of many
patterns it may be appropriate to assume approx-
imately that the start times of small rupture areas
are randomly distributed with uniform probabil-
ity over the observed rupture duration T} of the

given extended rupture. It is noted here that the
duration Ty depends on the size of the extended
rupture and on the rupture velocity, but it also
depends on the orientation of the observation rel-
ative to the rupture (see subsection 2.3). It is also
noted that the duration T} is assumed to be a ran-
dom variable with uniform probability. By con-
sidering the practical situation, the small rupture
areas are assumed identical. For the attention of
the source characteristics, we neglect the correc-
tion of the hypocentral distance.

With the above assumptions the Fourier spec-
trum of the uni- component waveform ug(w) from
the extended rupture may be written such as:

us(@) = | 32 Y Tn(w)e ™ “hmn | uso(w)  (29)

m=1ln=1

where ugo(w) represents the Fourier spectrum of
the uni-component waveform from a small rupture
area, and ¢}, the time delay uniformly distributed
over Ty. By taking the expectation over the en-
semble, the average source spectrum |ug(w)]| is ob-
tained as:

lus(w)] = SUMN (w)|T(w)|luso(w)|  (2.10)

where |T(w)|=|Tmn(w)|, and SUMy (w) is the co-
efficient of random summation given by:

SUMN(w) = [N2 {1 + (N? - 1)|1"(w,Tfo)|2}]1/2
(2.11a)
where
1P, Tyo)l = ———— [(Silw] -~ Sifwa]
e
u.)fo
_ . L1172
+ (Ci[w] — Cifwe) — In[w] + In[ws)) ]
(2.110)
where
w1 = 2(1 + V367 —) (2.11¢)
U.)fO
oy = 21— V367—) (2.11d)
u)f()

In Eq.(2.11a) T} is the mean of the observed rup-
ture duration Ty, and 87y is the coefficient of vari-
ation of Ty. The functions Si and Ci represent
the sine and cosine integrals. The first corner fre-
quency wyo is defined in this study such as:

2
waIFm (2.1]6)
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Fig.3 Normalized spectra of large earthquake by
the Joyner and Boore stochastic' summation of
small earthquakes, compared to the w=2 spectrum
(heavy line). (In the case of k = 1) .

The frequency variation of function |P(w,Tyo)!
is shown in Fig.2 for 67y =0.05, 0.3, and 0.5. For
small value of 67y =0.05, the frequency variation
of |P(w,Tyo)| indicates a wavy form with peaks
and troughs, similar to the behavior in the case
of deterministic rupture duration (6ry = 0) where
the function P(w, To) is given by:

LW
Sln;}—
1P, Tjo = Ty)| = |~

(2.12)
wy

The function of Eq.(2.12) is the same derived by
Joyner and Boore (1986), and also shown in Fig.2.
For large value of 6ry=0.5, the frequency varia-
tion of |P(w, Tfo)| is smooth. By considering the
fact that the variation in the first corner frequency
wyo may be large, we propose the following simple
function for |P(w, Tyo)| :

|P(w, Tyo)| =
w 2 w * w ™
1'“51(_> +C2<——) 0s—<+<
wfo wiro wro 2
L LA
v 2 7 wypo
u)fo

. (2.13)
where ¢;=0.16605, and ¢,=0.00761. The function
of Eq.(2.13) is also shown in Fig.2.

By introducing the second and third corner
frequencies defined by,

(2.14)
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Fig.4 Normalized spectra of large earthquake by
the Joyner and Boore stochastic summation of
small earthquakes, compared to the w2 spectrum
(heavy line). (In the case of k = 5)

the transfer function of Eq.(2.8) can be rewritten
as:

N+z’(2§) 1+ n(wﬁ)"’
T(w) = Ta(w) = o o
oW EAY)
1+ | | 1+E)
. (2.15a)
where,
N=Moys @0 (g15p)
mo We

The source spectrum of the small rupture is as-
sumed to be w~2 model such as:

g (w)] = ——0— (2.16)

A+ ()

In the two extreme frequencies where w -0
and w — 00, the source spectrum of an extended
rupture is found from Eq.(2.10) to be given by:

N Smo = 1\2/;[0
I{.Mo (gﬁ)
w .

Figures 3 and 4 show the average source spec-
tra of extended rupture normalized by the seismic
moment M, for the cases of k=1 and 5, respec-
tively. In each figure, wfo/wc =1/10 is assumed
and the variations with the summation parame-
ter N are shown. For comparison, the w2 source
spectrum model with the second corner frequency
w, is shown by the heavy line in each figure. It is
found from Fig.3 (for the case of k =1) that the

source spectrum of extended rupture follows the
w™? model at the lower frequency (wyo) and the

w0

lus(w)] = Yo (217)
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Fig.5 Geométry of a ruptuting fault and the path
to an observation station

higher frequency (w.) ranges, but at intermediate
frequency range its spectral amplitude is lower as
the summation parameter N increases than that
expected from the w2 model. These character-
istics obsetrved from Fig.3 are also observed from
Fig.4 (for the case of k=5), but the source spectral
amplitude is amplified by a factor of x at higher
frequency range (w > wy).

By comparing these characteristics shown in Figs.

3-and 4 with those obtained from the various ir-
regular source models (for examples, Izutani, 1984;
Papageorgiou, 1988) where the heterogeneity of ei-
ther slip or stress drop-on the extended rupture
plane is taken into account, the parameter k¥ may
be found to:be equivalent to the ratio of local stress
drop to global stress drop or the ratio of dynamic
stress drop . to static stress drop.

2.3 Average rupture duration observed at o station

The observed rupture duration Ty depends on the
size of the extended rupture and the rupture veloc-
ity, but it also depends on the orientation of the ob-
servation station relative to the extended rupture.-

For simplicity we adopt the simplest model for the

geometry of a rupture and the path to an observa-
tion station as shown in Fig.5. The observed rup-
ture duration (R > L where R is the hypocentral
distance and L is the strike length of the extended
rupture) is given such as (Ben-Menahem, 1961):

Ty = L (1 - Ecost‘})

Vr
where 0 is the azimuth angle from the strike of
extended rupture to the observation station. Vg
and Cg are the rupture velocity and the S wave
velocity. In Eq.(2.18a), L, Vg, Cs, and 6 may be
considered as random variables. However, for sim-
plicity, we use the rupture duration of Eq.(2.18a)
as an estimate of the average rupture duration ob-
served at a station:

(2.18a)

3 SAMPLE GROUND MOTION FROM
STOCHASTIC SUMMATION OF SMALL
EARTHQUAKES

A sample acceleration time history of ground mo-
tion is generated using the spectral representation
of stochastic waves proposed by Shinozuka (1974);
Shinozuka. et al.(1987): In this method, the power
spectrum of ground acceleration have to be given,
then the stationary acceleration time history is
generated by the following equation:

as(t) = ﬁ%w/ZSM(wj)Aw cos(wjt + ¢;) (3.ia)

where,

w; = jAw; Aw :ﬂ; i=12,...,N,

N (3.1b)

An upper bound-of the frequency w, in Eq.(3.1b)
represents an upper cut-off frequency béyond which
Saa{wj) may be assumed to be zero for either math-
ematical or physical reasons. In Eq.(3.1a), ¢; are
independent random phase angles uniformly dis-
tributed over the range (0, 27). Note that the sim-
ulated time history is asymptotically Gaussian as
N,, becomes large due to the central limit theorem.
The nonstationary acceleration time history a(t)
is obtained by multiplying an.envelope function
W(t) into the stationary time history a,(t).
a(t) = W(t)as(t) (32)
In this study, the following expression for the en-
velope function is used:

t 2
(%) 0st=t
wE) =9 1" T,<t<T,
expl—c(t — T,)] T.<t<Ty
(3.3)

where the duration (effective duration T.)of the
stationary strong portion (T, =T, - T3) of ground
motion is assumed equal to the average observed
rupture duration in Eq.(2.18).

Te = Tc - Tb = Tfo (340.)
Then, the duration of nonstationary ground mo-
tion (Ty) can be given using the empirical relations
by Ohsaki(1994):

T, = 2.63Tso (3.4b)

Ty = [0.12 — 0.04(Mypa — DTy (3.4¢)
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T. = [0.50 — 0.04(Mypra — 7)|T4 (3.4d)
" 1n0.1
c= ToT (3.4e)

The power spectrum S,q(w) of ground acceler-
ation appearing in Eq.(3.1a) is constructed using
the spectrum of chapter 2. Then, S,,(w) with the
effective duration T,=T}y is given by: ‘

Sualw) = 5 ;TE AW

(3.5)

where |A(w)| is the spectrum of ground accelera-
tion which is given by:

|A(w)] = SUMN(w)|T(w)]| Ao ()| (3.6)

where |Ag(w)| is the acceleration spectrum of small
earthquake observed at a distance R (the hypocen-
ter of a small earthquake is assumed to be the same
place of the extended rupture) with seismic mo-
ment mg, which is given by:

IAo(LL))l = CAso(w)AD(w)AA(w) (37)

where C, Agp(w), Ap(w), and As(w), represent
a scaling factor, a source spectrum, a diminution
factor, and a local soil amplification factor, respec-
tively.

The scaling factor and the source spectrum” of
the small earthquake are given by:

C= R(0,p)FV
~ ArpCE

m0w2

T Y

so(w)
where R(6, ¢) is the average correction factor for
radiation pattern, F' accounts for free-surface am-
plification, V' accounts for the partitioning of the
energy in two horizontal components, p is the den-
sity of the material at the source, Cg is the S wave
velocity at the source, and wy is the corner fre-
quency of the small earthquake.

The diminution factor and the local soil ampli-
fication factor are given by: ‘

1 1 wR

1+ (@/wmea)” B exp(‘zcgcs)" (3.9a)

w
[14 4h2(—)?
pCs g(“’g)
Aaw) = poCso W \2y2 2, W2
\/(1 PP
(3.95)
The first factor in Ap(w) is the high-cut filter that

accounts for the sudden drop that the spectrum ex-
hibits above wy,.z. It is assumed here n = 1. The

AD(O.)) =

28.28km /!

20km

Fig.6 Plane view of the rupturing fault and the 5 *
stations with equal hypocentral distance

second factor is the geometric spreading factor of
the S wave. The third factor is the effect of the
material damping on wave propagation in which
@ is a frequency-dependent attenuation factor.

The local soil amplification factor A4(w) is com-
posed of the deep soil amplification from the deep
ground level near the source with-the density p and
the S wave velocity Cs to the engineering ground
base with py and S wave velocity Csg of about 0.5
to 1 km/s, and the shallow soil amplification from
the engineering ground base to the ground surface.
The first factor in A4(w) of Eq.(3.9b) corresponds
to the deep soil amplification factor proposed by
Boore (1987), and the second factor to the shallow
soil amplification represented by the Kanai-Tajimi
spectrum (Kanai, 1957; Tajimi, 1960). w, and h,
control the peak position and the peak value of the
amplification factor; w, = 15.6(rad/sec), hy = 0.6
for a firm soil.

4 NUMERICAL EXAMPLE OF SAMPLE
GROUND MOTIONS

Numerical example is given now in order to demon-
strate an applicability of the simulation method
using a stochastic summation of small earthquakes
to an artificial generation of strong motions for
aseismic design. The example is also given to vi-
sualize the effect of directivity of seismic waves on
the ground motions.

In this numerical example, the horizontal ground
acceleration time histories on rock site are gener-
ated from an earthquake with magnitude Myp4 =
7.0 and hypocentral distance R=30 (km). A strike
slip fault with length L=20 (km) and width W=10
(km) is considered. The hypocenter is assumed to
be at the bottom edge of the the extended rupture
area.

The determination of the magnitude of small
earthquake may be arbitrary. In this study the
magnitude of small earthquake My 40 is assumed
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Fig.7 Sample ground acceleration time histories at
5 stations on rock site with equal hypocentral dis-
tance (Mypma=7.0, R=30 km)

to be 5.0, because the many empirical relation-
ships in the parameters are usually obtained for
the magnitude greater than about 4.0 to 5.0.

We determine the seismic moments of the earth-
quakes with My a=7.0 and Mjpr40=5.0 by the
following empirical relation which is obtained from
the earthquakes occurred under the sea area around
Japanese teritory (Sato, 1989):

Mo(dyne-cm) = 10(1-5Muma +162) (4 1)

From Eq.(2.7) the summation parameter N is de-
termiend using the seismic moments, My and my,
of large and small erthquakes such as:

N = (%)1/3 =10
mo

(4.2)

In evaluating the acceleration spectrum | A4o(w)|
of ground motion from small earthquake, the fol-
lowing values are used:

R(8,¢) =0.63; F=2.0, V=0.5 (4.4a)
p = 2.7gr/cm®; Cs = 3.6km/sec; (4.4b)
weo = 9.3rad/sec; Wrnag = 28.7rad/sec  (4.4c)
Q = 10(41 log(w/2m) + g2) (4.4d)

where ¢;=0.64, g2=2.1. _
The soil amplification of deep soil layers is as-
sumed constant as:

pCs
N =20
poCso
The soil amplification of shallow soil layers is eval-

uated using the following parameters:

w, = 5.56rad/sec; h, = 0.6

(4.5a)

(4.5b)

The ground acceleration time histories at 5 sta-
tions on rock site in Fig.6 are generated, with time
interval At =0.01 sec, and w,, = 27 x 50 rad/sec,
N,=1024. The sample of acceleration time histo-
ries at 5 stations (M;4=7.0, R= 30km, on rock
site) are shown in Fig.7. It is observed from Fig.7
that even in the same hypocentral distance R= 30
(km), the acceleration time histories are quite dif-
ferent from station to station in peak amplitude
and duration. The higher acceleration and the
shorter duration are observed in the stations A and
B which are located in the direction of propagating
rupture of the fault, while the lower acceleration
and the longer duration in-the stations D and E
located in the oposite direction of the propagat-
ing rupture. The phenomenon observed in Fig.7 is
well known as the directivity of seismic waves.

5 CONCLUSIONS

This paper describes a digital simulation method
of strong earthquake ground motions using a seis-
mological model. It can be concluded that:

(1) Based on the representation theorem of elas-
todynamics for the far-field seismic waves in the
frequency domain, the Fourier spectrum amplitude
of ground acceleration motion from an extended
fault is constructed by the stochastic summation of
small earthquakes proposed by Joyner and Boore
(1986), where the rupture start times of each small
earthquake are distributed randomly with uniform
probability over the rupture duration which is also
random variable with uniform probability.

(2) In the stochastic summation, a new transfer
function is introduced which originally takes into
account, not only the difference of the slip time
functions between the extended rupture and the
small rupture, but also the irregular slip motion
over a heterogeneous extended rupture plane.

~ (3) One parameter & introduced into the new
transfer function is found to be equivalent to the
ratio of local stress drop to global stress drop or the
ratio of dynamic stress drop to static stress drop
in the available irregular source models where the
heterogeneity of either slip or stress drop on the
extended rupture plane is taken into account.

(4) The source spectrum of an extended rupture
by the stochastic summation have three corner fre-
quencies, wyg, W, and we which are related to the
observed rupture duration of the extended rupture,
the rise time of the extended rupture, and the rise
time of the small rupture.
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(5) Based on the spectral representation of stochas- Symposium, pp.37-42.

tic waves, the simulation method of the nonsta-
tionary ground acceIeratlon time histories is sum-
marized.

(6) Numerlcal exa.mple is given in order to make
clear the procedure and the evaluation of the model
parameters for the generation of ground accelera-
tion time histories.

(7) Numerical exafnple also demonstrates the

effect of the directivity of seismic waves on the ac-
celeration time histories.
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