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Abstract

The significance of stochasticity in the characteristics of the surface layers of a site
to the resulting spatial variation of seismic ground motions and the seismic ground
strains is investigated. For this purpose, an analytical site-specific model is developed.
The model approximates the site topography by a horizontally extended layer with
random characteristics overlaying a half-space (bedrock). The spatial variation of
the incident motion at the bedrock-layer interface incorporates the effects of the loss
of coherence of the motions at increasing separation distances and their propagation
in the bedrock; the site contribution to the spatial variation of the surface motions
results from the vertical transmission of shear waves through the stochastic layer. It
is shown, in an example application of the approach, that the spatial coherence of the
motions on the ground surface is similar to that of the incident motion at the bedrock-
layer interface except at the predominant frequency of the layer, where it decreases
considerably. It is also shown that, for soft soil conditions, the layer stochasticity
controls seismic ground strains. In the absence of spatially recorded seismic data at
a site, the approach can be utilized for the description of the spatial variation of the
motions in the seismic response analysis of buried and above-ground lifelines.
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1 Introduction

The seismic resistant design of conventional “point” strﬁctures re(juires information on the
time variation of the seismic ground motions at a single location on the ground surface;
because the dimensions of such structures are relatively small compared to the wavelengths
of the seismic motions, it can be assumed that the ground excitations over the entire
foundation area are essentially the same. This is not the case, however, for the seisfnic
response of lifelines. Lifelines, such as pipelines and bridges, extend over long distances
parallel to the ground, and théir supports undergo different motions during earthquakes.
The differential motion or the spatial variation of the seismic ground motions niay induce
significant additional forces in the structures than the ones obtained if it is assumed that
the motions at all supports are identical.

The spatial variation of the seismic ground motions is caused by their apparent propa-
gation on the ground surface and the change in their shape (loss of coherence) at various
locations. It is, generally, obﬁained from the analyéis of recorded data at dense instrument
a,rrays; such as the SMART-1 array in Lotung, Taiwan (e.g., [2], [3], [9], (10], [12], [17],
(18], [34]); most of these analyses consider the strong motions of the direct S-wave window.
It has been recognized that the spatial variation of the seismic ground motions can be de-
scribed by a function exponentially decaying with separation distance and frequency (e.g.,
[3], [25], [34]). However, various expressions and different degrees of exponential decay>
appear to fit data recorded at the same site for different earthquakes or at different sites. It
has not been established yet which spatial variability model is the more appropriate for the
seismic analysis of lifelines. Furthermore, the choice of any particular model (mathemati-
cal expression and degree of exponential decay) in the seismic response analysis of lifelines
has a significant effect on the resulting structural response: the degree of correlation in
the spatial variation at low frequencies controls differential ground displacements, seismic

strains and the quasi-static response of lifelines, whereas the degree of the exponential de-
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cay at higher frequencies controls the dynamic response of above-ground lifelines [39], [40].
Consequently, a major difficulty in the evaluation of the seismic response of these extended
structures is the selection of an appropriate spatial variability model for the site under
consideration, when spatially recorded seismic data are not available. Thus, there is a need
for reliable site-specific, analytical and/or empirical models for the spatial va.ria;tion of the
seismic ground motions to be used in the seismic resistant analysis and design of lifelines.
Somerville et al [28] proposed a model, in which they attribute spatial variability to the
wave propagation effect, the finite source effect, the effect of scattering of the seismic waves
as they propagate from the source to the site, and the local site effects. Schneider et al [25]
considered that the spatial variability is the product of two terms, the first corresponding
to source and wave passage effects and the second to the scattering of the waves from
the source to the ground surface. In a recent study, Spudich [29] indicated that the main
contributors to the spatial variation of the seismic motions are the wave passage effects,
the free surface boundary conditions, which may introduce surface waves, and the site
conditions, which may introduce spatially variable delays in the arrival of the waves from
the bedrock to the surface as well as spatially variable site effects; Spudich [29], based on
a review of seismological observations, also suggested that the effect of source finiteness is
minimal. Der Kiureghian [7] has recently developed a stochastic model, in which the total
spatial variation of the seismic motions is composed of terms corresponding to wave passagé
effects, effects of loss of coherence in the bedrock motion, and site response contribution.
This work deals also with the analytical evaluation of the spatial variation of the seismic
motions. Contrary to current approaches, that consider fully deterministic layer characteris-
tics for the site response contribution to spatial variability, the present analysis investigates
the effect of layer stochasticity in the resulting seismic ground motions. It attributes the
total spatial variation of the strong, shear-wave motions to the wave passage effect, the

scattering of the waves from the source to the site, and the local site conditions. Based



on Spudich’s [29] observations, the effect of source finiteness is not taken into considera-
tion. The scattering of the shear waves from the source to the site is represented by a
commonly used model for the loss of spatial coherence in seismic ground motions. The
wave passage effect is represented by a phase différence'term, i.e., the vseismic time history
propagates with a constant velocity on the ground surface, as is, generally, the case for
the strong S-wave window of the motions. The approach concentrates on the site response
effect, which is approximated by one-dimensional, shear wave propagation through a ran-
dom layer. Thus, the methodology is applicable to sites which can be approximated by
horizontal layers without dramatic changes in their topography and for the strong motion
S-wave window. The contributions of the various factors to the spatial variation of the
surface motions and the resulting seismic ground strains are examined for an example site.
It is shown that variabilities in the soil characteristics can signiﬁcéntly reduce the degree
of correlation of the seismic motions at the stochastic layer predominant frequency and
significantly increase the value of seismic ground strains. Thus, stochasticity in the soil
characteristics ought to be incorporated in spatial variability models. In the absence of
spatially recorded seismic data at a site, the results of the present approach can be used as
- a realistic approximation for the description of spatially van'able seismic ground motions

in the seismic response analysis of above-ground and buried lifelines.

2 Seismic ground displacements in homogeneous sto-
chastic layered media

2.1 Evaluation of seismic ground motions

Consider an elastic half-space (bedrock) underlying a horizontally extended layer with
stochastic properties; the coordinate along the depth of thé layer is indicated by z and
that along the ground surface by z. The total layer thickness is constant and equal to H.

Within the layer the soil characteristics (shear modulus G(z, z) and mass density p(z, z))



| vary randomly along the horizontal coordinate as:
G(z,2) = G:(2)[1 + fe(z)] (1)

and
p(x,z) = p=(2)[1 + fo(z)) (2)

where, G,(z) gnd pz(z) represent the mean values of G(z, z) and p(z, z), respectively, and
are deterministic functions of z, and felz) and f,(z) represent stochastic fields with zero
mean along the horizontal coordinate z.

The incident seismic motion at the bedrock-layer interface, us(z,t), is represented by
stationary random shear waves. The displacement time history at any location (z, z) within
the layer is the superposition of the incident displacement at the bedrock-layer interface,
up(z,t), and the relative displacement between the bedrock and the location under consid-
~ eration, u(z, 2,t):

u(z, z,t) = w(z, t) + u-(z, 2,t) (3)

The following assumptions are made at this point regarding the layer response to the
random incident motion: |

(i) The incident random waves impinge the bedrock-layer interface at such angles that
their propagation within the layers can be assumed to be vertical. This assumption serves
as a first approximation, since it simplifies the wave propagation patterns in layered media,
and is commonly used in the consideration of the effects of layers on seismic ground motions
(e.g., [24]). Furthermore, it can be reasoned that, because the angle of transmission of body
waves from the bedrock to the surface layer is steep and can be as steep as 90° [22], the
propagation of the waveforms within the 1ayér can be considered vertical.

(ii) The relative displacenﬁent ur(z, z,t) can be represented by the product of the gen-

eralized coordinate u*(z,t), and an assumed mode shape (z), that satisfies the geometric

boundary conditions #(0) = 1 (at the ground surface) and ¥(H) = 0 (at the bedrock-layer



interface):
Uz, 2,t) = v (=, DY(2) 4)

The assumed mode shape takes the form [11]:

#(z) = cos(5 G

which corresponds to the normalized first mode shape of a eingle, homogeneous, infinite,
horizontal layer over a rigid bedrock (e.g., [20]). This consideration approximates. the layer
response by that of a single—degree—of—freedom oscillator with random characteristics, as
will be shown »la.ter< in the derivation. It is noted that this simpliﬁcatio’n eliminates the
effects of higher modes present in a layered half-space, but captures the dominant iayer
response; it is geherally acceptable that the site responds with a dominant frequency to
seismic excitations (e.g., [25]). It is also noted that, with the enforcement of the boundary
condition 9 (H) = 0, the model does not consider properly the effect of the layers on the
total motion at the bedrock-layer interface; thus, the present approach is valid only for the
estimatioﬁ of surface ground motior characteristics.

‘For clarity purposes,' it is also mentioned that the layer characteristics and the param-
eters affecting the incident motion at the bedrock-layer interface, such as source effects
and random inhomogeneities along the path of the waves in the bedrock, are statistically
independent quantities.

With the aforementioned considerations, the forces acting on an infinitesimal soil ele-

ment within the layers are determined from [20]:

File,2,t) = —ple,) 222D drdz = —p(e, )i,z dmdz (9
and
Fr(x,z,t) = —a—[G’(r, z)M] dz dz | , (7
, 0z 0z A



in which, Fi(z,z2,t) and Fg(z,z,t) are the inertia and restoring force for the element,

respectively. Through the principle of virtual work, i.e.,
H .
6W:/0 (F; + Fr)6u, =0 8)

in which, du. = ¥(z)éu*(z,t), since ¥(z) is the given shape function, the equation‘ of
motion becomes:

i*(z,1) + W' @)U’ (z,8) = - Biis(z, 1) 9)
in which, w*(z) is the predominant layer natural frequency determined from Egs. 1, 2, 6,
7 and 8§ as: |

W (z) = \J W E Gz ) ¢(R)9(z) dz _ \J 1+ fo(@) JF G.(2) W/ (2))2 dz 19)
Is? oz, 2) (=) dz (1+ £,(@) fF 0:(2) ()2 dz
and 3 is the participation factor (Egs. 2, 6, 7 and 8): :
_ e, d(2)dz [y pa(2) P(2)dz (11)

o, ) W(2)2dz [ p.(2) [9(2))2 dz

An approximate equivalent damping ratio, {*(z), is then introduced in Eq. 9 to account
for the energy loss due, but not necessarily exclusively, to the hysteretic behaviour of the

soil under dynamic loading. Thus, the equation of motion becomes:
i*(z,t) + 2¢(2)wh(@)at(z, t) + W (@) u(z,t) = — Fis(z,t) (12)

The predbminant natural frequency w*(z) and the equivalent damping ratio ¢*(z) fluc-
tuate randomly along x; this fluctuation results from the stochasticity in the layer charac-

teristics (Egs. 1 and 2) and can, alternatively, be expressed as:
w(z) = woll + w(z)] (13)

() = Goll + ¢(x)] (14)
in which, wo and (p are the mean values of w*(z) and (*(z), respectively, and w(z) and
¢(z) are homogeneous stochastic fields with zero mean and corresponding standard de-

viations o.., and o¢. It is noted that, since the approach is applicable to sites without
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dra.maticb changes in their topography, the variability of both w*(z) and ¢*(x) ‘around their
mean values is smé.ll; consequently, the standard deviations o, and o¢c of their random
fluctuations, w(z) and {(z), are small quantities.

The solution to the differential equation of motion (Eq. 12} is:

+00 ' |
ut(z,t) = —f / h(z, 7)iiy(z,t — T} dr (15)
in which, h(z,7) is the implilse response function:
1 @ @7 Ginlw* (2) /1 — [ (22
h(z,7) = { @Y1 @P sinf (@)1= C@Pr] forr20 o
0 - for <0

Once u*(z,?) is determined, the seismic motions on the ground surface (z = 0) can be
evaluated from:

u(z,z=0,t) = up(z,t) + u*{z,t) 17)

which is essentially a repetition of Eq. 3 with the consideration that P(0) = 1.
u*(z,t) (Eq. 15) is determined as follows: The impulse response function A(z, 7) of Eq.
16 is expanded into a Taylor series around w*(z) = wp and (*(z) = (o, and results (for

7> 0) in:

h(z, T) (@Wew = ,.:,—f/li_o‘fgg [sinwoy/1—¢5 7
+ w(z)(—sinwoy/1 — §§ 7 — Guwr sinwoy/1 — G 7

+uwoy/1 — (§ 7 coswoy/1 — ¢ 7) (18)
+ (x)(ﬁv sinwopy/1 — (3 7 — Qoo smwoﬂT
CQ“"OZ: = COS Wp m 7)]

Neglecting terms of order three and higher (i.e., O({o? ) 0(3a2,), O(¢3ad,), etc.),

due to smallness of (o, 0., and o¢¢, and considering the statistical independence between the .
layer characteristics (w(z) and ¢(z)) and the incident motion at the bedrock-layer interface
(up(z,t)), one can obtain, after lengthy but straight-forward algebraic manipulations, the

cross spectral density of the relative ground displacement as:

Suru (€,0) = B2w [|H (wo, Go, )| + 44 Run(€) | H(wo, o, )] Suyus (§,w) | (19)
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in which, R..(£) is the autocorrelation function of w(z) (Eq. 13), and represents the
fluctuation of the predominant frequency of the layer around its mean value. In Eq. 19,

the frequency response function H(wp, o, w) is given by:

1

— w? + 271 (uwow (20)

H(wO) CO)“‘}) = wg

with ¢ = v/—1, and Sy, (§,w) is the cross spectral density of the incident motion at the
bedrock-layer interface. .
The cross spectral density of the total ground surface displacement is determined from

Egs. 17, 18 and 19, again after lengthy but straight-forward algebraic manipulations, as:

S’u'u(§7w) = [(wg + (213 + 4((? - 2) wng + (,3 - 1)2(114) lH(&Jo,Co,LU)P
+4 52 w3 w* R (€) [H (w0, G0, )] Sy (€, ) (21)

The corresponding power spectral density of the motions is obtained from Eq. 21 by setting

the sep’aration'distance equal to zero, (£ = 0), as:

Sw(w) = [(wi + @28 + 4 - 2)wi® + (6 — 1)%w") |H (wo, (o, w)?
+4 52wy wt o, [H(wo, Co, )| Suses (W) (22)
in which, Sy, (W) = Suu,(§ = 0,w), is the power spectrum of the incident motion. It

is noted that, for a participation factor equal to one (G = 1, i.e., simple single-degree-of-
freedom oscillator) and for deterministic values of the soil properties, Eq. 22 reduces to the
well known Kana.i—Tajimi spectrum [15], [31]. |

The parameters 3, wo, Ruw(£), 0uw, and (o in Egs. 21 and 22 depend on the soil proper-
ties, and are evaluated in the following subsection for an example site. The description for
the cross and power spectral spectral densities of the incident motion at the bedrock-layer

interface (Eqgs. 21 and 22) are discussed in Section 3.



2.2 Stochastic characteristics of the ground

Consider the profile of an example site over a length of 1200m shown in Fig. 1. For
simplicity, it is considered that the stochasticity in the soil characteristics results from
variability in the depth of six sublayers (M = 6) consisting the-70m deep surface layer. The
soil characteristics are constant withir each sublayer and given in Table 1, and the sublayer
- boundaries are approximated by stepped lines as shown in Fig. 1. The cross sectional area
is then divided into sixty vertical suh&ections each with dimensions 20m x 70m. Frém the
layer thickness (Fig. 1) and the soil material properties (Table 1), the predominant layer
frequency w*(z,), n = 1,2, ....,60 can be computed by an extension of Okamoto’s equation
[21]:
o w'(z,) = T 1 ' (23)
A 2 M Hian

72 e(@n)
in which, H;(z.) and v, (x,) are the depth and shear wave velocity, respectively, of sublayer
J at location x,,. The mean value and standard deviation of the sample data (Eq. 23) can
be determined using standard techniques (e.g., Ref. [4]). For the particular example of Fig.
1 and Table 1, the mean predominant frequency of the layer becomes wy = 5.64 rad/sec
with a corresponding standard deviation of o, = 0.101.

The sample spatial correlation function for w(x) (Eq. 13) is calculated by interpreting

each sample as a realization of the stachastic process using the following equation:

Reclg) = g 3 () oy ) (24

Wo

where N is the total number of soil vertical subsections (N = 60 for this example). In
ordér to avoid a small averaging number N — k in Eq. 24, the longest separation distance

used was & = 600m. The resulting spatial correlation function, normalized by the variance

2
ww?

o2,, is presented in Fig. 2. Later in this work, a closed form approximation for the
spatial correlation function will be necessary so that the behaviour of the spatial variability

is analytically reproduced, and the seismic ground strains are estimated. The analytical
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approximation for R, (ék) is:
Rual€) = 0% fou(€) (25)

in which, f,.(£), the normalized spatial correlation function, ought to be consistent with
the variability of the data at the site, and sé,tisfy the following conditions:(i) it ought to be
symmetric around £ = 0 (homogeneity requirement); and (ii) its first and second derivatives
ought to exist and assume finite values at £ = 0, so that the evaluation of strains based on
the expression is feasible. It is noted, that these two conditions impose that f/_(0) = 0.

For the present example the mathematical éxpression used for f,.,(£) is:

fool) = (L — 2(2)] 7 | (26)

w

in which, b, is the scale of correlation. The value of b, is determined in such a way that
R..(£) (Eq. 25) becomes zero for the same value of the separation distance £ that produces
a zero value for Ruw (&) (Eq: 24); in this case, £ ~ 110m for R,.(€) =0 (Fig. 2), and, thus,
b, = 155.56m. The analytical spatial correlation function (Egs. 25 and 26), normalized
by the layer frequency variance, is also plotted in Fig. 2. Alternative expressions for the
normalized autocorrelation function can be found in, e.g., Ref. [10].

In the absence of more refined data for the damping coefficient, it is assumed that (o =
0.20 for the soft soil site (low predominant frequency) of the present example. (o = 0.20,
0.40 and 0.60 are commonly used values for damping coefficients for soft, intermediate and
firm soil conditions [8],-13], [31].

The participation factor 3 is obtained from Eq. 11 through integration of deterministic
functions, which involve the mean value of the soil mass of the layer and the shape function.
In this example, the soil mass is constant in each sublayer, but the sublayers’ thickness
fluctuates. A gross estimate for the participation factor can be obtained if the soil mass is

averaged over all sublayers and the integration performed over the entire layer thickness,
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ie.,
Hyz)dz 4
S rer-aE R 0

Alternatively, 3 can be determined from the mean value of the participation factor obtained

B

‘through the application of Eq. 11 to each vertical subsection, i.e.,

‘ % hit+H; 5
B(zn) = R paa)d()dz & pi h{ ¥(z) dz

B e AW W BEEED

i(zn

(28)
i=1
in which, M is the number of soil sublayers, p; is the soil mass in sublayer i (Table 1),
H;(x,) is the thickness of the sublayer at location z, (Fig. 1), and hi(z,) = iil H(z,)
for : > 1 and hy(z,) = 0. The mean value of the participation factors resultinglgom Eq.
28 is § = 1.302, a value not significantly different from the gross estimate of Eq. 27. In
the following, the mean value of 8 = 1.302 is used. It is noted that this value represents
the actual participation factor for all vertical subsections; the variance of the participation
factor obtained from the datd of Eq. 28 was 9.4 x 1075,
The power spectral density of the total surface motions normalized with respect to that
of the incident motion (Eq. 22) is shown in Fig. 3. As expected, its power is contained in
the vicinity of the mean value of the layer predominant frequency and its shape resembles

that of the Kanai-Tajimi spectrum.

3 Seismic motion spatial correlation structure

As indicated in the Introduction, the spai‘.ial variation of seismic ground motions results
from the apparent probagation of the waveforms on the ground surface and the differences
in their shape at the various locations. Commonly, the moré well understood wave passage
effect is considered independently of the‘other spatial variability causes. The main descrip-
~ tor of the remaivning spatial variability causes is the coherence, defined as the absolute value

of the cross spectrum of the motions at two recording stations divided by the square root of
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the product of the power spectra at the two stations. Coherence estimates are insensitive
to the amplitude differences of the motions at the various locations [29]. Consequently, the
variability in the motions described by the coherence is attributed mainly to their phase
differences [1], i.e., coherence represents essentially random phase fluctuations. It is noted
that, although coherence describes phase variability, it is not associated with fhe (deter-
ministic) apparent propagation of the motions on the ground surface; quadrant-symmetric
space-time random fields [35], as most coherence models are, represent motions that are
superpositions of standing waves {37]. The power spectra of the motions, which are pro-
portional to the(square of the amplitude, are, generally, assumed to be the same at all

locations, an assumption also made implicitly in Eq. 22.

In the present notation, the spatial variation of seismic ground motions is expressed as:

Sun(é,w)

Vsol§,w) = =00 (29)
and their coherence as:
S** )
Yoo (&, W) = gl-@%—% (30)

in which, * = u for the surface motions, or * = u; for the incidence motions.
The incident motion coherence and the apparent propagation of the waveforms are
estimated in the following subsection, and followed by the evaluation of the total surface

motion spatial correlation structure.

3.1 Spatial variation of incident motions

Since stationarity is assumed throughout the analysis, the incident motion at the bedrock-
layer interface is described by its cross spectral density between two stations at a distance

¢ apart from each other as (Eq. 29):

Subub (Ex w) = Subub (w)7b.sv (§7 UJ) (31)
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in Which, Sy (w),vthe power spectral density of the incident motion (displacement) at
the bedrock-layer interface, is considered to be the same at all locations, and Yo.s0 (€, w)
indicates the spatial variation of that motion.

In Eq. 31, the incident motion powef spectral density can be dpproximated by the
commonly used seismological spectra [14]. The spatial variation of the motions Yo.s0 (€, W)
is decomposed into a term describing loss of coherence, Vo.con(€,w), and a term representing

propagation, v yrop(§, w, ¢) with ¢ indicating velocity, as:

’Yb.s;v (E: w) = Yb.coh (67 w)’}'b.prop (&7 W, C) : ’ , (32)

Since it has been suggested that the finite source effect on the spatial variability is not
significant [29], the loss of coherence of the incident motions will result from the scattering
of the waves as they travel from the source to the bedrock-layer interface, which can be
approximated by stochastic wave propagation [27], [33]. For the shear wave window an-
alyzed herein, the incident motion coherence is approximated by the model of Luco and
Wong [19], which is based on the analysis of shear waves propagating a distance R through

a random medium:

'ﬂ.coh(é,w) = e_(%)z — 6_0‘2“’252
R 1/2 n
= —_— — 3
n u(ro) o . )

Urm 1S an estimate for the elastic shear wave velocity in the random medium (bedrock), ro
the scale length of random inhomogeneities along the path, and u? a measure of the relative
variation of the elastic properties in the medium. , the incoherence parameter, controls the
exponential decay of the function; the higher the value of a, the higher the loss of coherence
as separation distance and frequency increase. With appropriate choices for the incohei‘ence
parameter, the model has been shown to fit the spatial variation of recorded data, and has
been used extensively by researchers in their evaluation of the seismic response analysis of

lifelines (e.g., [8], [19], [36], [38], [39]). In these approaches, Eq. 33 has been used for the
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description of the spatial coherence of the surface motions, whereas herein it represents the
coherence of the incident excitation at the bedrock-layer interface. This does not necessarily
constitute an inconsistency: The expression is based on shear wave propagation through
random media, an approximation which may be valid for the propagation of the waves’
from the source to the ground surface or from the source to the bedrock—layef interface;
Der Kiureghian [7] has also recently used Eq. 33 for the description of the bedrock motion
coherence. It is also noted that the degree of loss of coherence in Eq. 33 is the same with
increasing frequency and separation distance. This behaviour is not consistent with some
recent observations, that suggest that the decay of coherence with frequency may differ from
its decay with separation distance [29]. The present methodology can accommodate these
recent developments: when alternative formulations, that reproduce these observations,
become available, they can be easily incorporated in Egs. 31 and 32 instead of Luco and
Wong’s expression.

The apparent propagation of the motions is described in spatial variability expressions
(Egs. 29 and 32) by:

7b-Pf'0P(€: w, C) = e—in/c (34)

which represents the frequency dependent correlation function of a unidirectional random
wave propagating with constant velocity ¢ [35]. The consideration that the entire seismic
ground motion propagates with a constant velocity is valid, since only the window of the
strong S-wave motion is considered. This observation has been verified from analyses of
recorded data for the estimation of the spatial variability (e.g., Ref. [12]), and also from
the slowness spectra evaluation of broad-band body waves [30], [41]. It is noted that ¢ (in
Eq. 34) is the apparent propagation velocity of the incident motion at the bedrock-layer
interface, which is a function of the shear wave velocity in the bedrock, v,,, and the angle
of incidence of waves at the interface. As indicated in Section 2, it is considered that the

waves impinge the interface at such angles, that their propagation within the layer can be
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considered vertical.

3.2 Spatial variation of surface motions

With the considerations of Sections 2 and 3.1, the cross spectral density of the total surface

motion becomes: . ‘ -

Sun(€,w) = [H1(8,w0,C0, ) + Runs(€) Ha(B, wo, o, )] Suyuy (w) e =% (35)

in which,

Hi(B,wo, Co,w) = (wp + (26 + 463 - 2)wiw? + (B — 1)%w*) [H (w0, Co,w)|* (36)
He(B,wo, (o, w) = 46°wyo |H(wo,Co,w)|* , (37)

Equation 35 incorporates the contributions of both the igcident motion variability and the
layer stochasticity to the total correlation structﬁre of the surface motions. In order to
analyze these effects separately, their contributions are isolated from one another:

In the absence of the layers the variability of the surface motions becomes identical to
that of the incident motion (Eq. 32). The variation with frequency of the term representing
loss of coherence in the incident motion (e~ ***¢* from Eq.» 33) at éepara.tion distances of
40, 100, 200, and 500m is presented in Fig. 4; « is equal to 2.5 x 107* sec/m, a median
value between the ones suggésted by Luco and Wong [19] from their analyses of actual
earthquake data (2 — 3 x 107* sec/m). The wave passage term in the incidént motion
spatial variation (e"'if‘ from Eq. 34) introduces a phase difference in the seismic ground

motions at various stations, the value of which is determined from:

(oL .
o(é,w) = arctan%:_@; = -wf (38)

with R and < indicating the real and imaginary part, respectively; Eq. 38 represents the

deterministic phase of a broad band S-wave propagating with constant velocity c.
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In order to isolate the effect of the layer stochasticity from that of the incident motion
in the total spatial variability, it is assumed that the bedrock motion is fully coherent with
¢ — o0 (i.e., Suyuy(§,w) = Suyu(w) in Eq. 31). For fully coherent incidence motions, the
resulting surface motion random field is quadrant-symmetric, and, thus, the stochasticity

in the layers affects the coherence of the motions according to (Egs. 30 and 35): ,

[Hl(ﬂawﬂ; CDyw) + wa(&) H2(ﬂ: Wo, CO) w)]
[H1(8,wo,Co,w) + 2, Ha(B,wo, (o, w)]

The contribution of the layer stochasticity to the spatial variation of the motions (Eq.

Mcon(§,w) = (39)

39) at separation distances of 40, 100, 200, and 500m is presented in Fig. 5; the actual
values of the spatial correlation function f?w(ﬁ) (Eq. 24) were used in the figure. The
correlation structure in Fig. 5 is different from the one expected in spatial variability (i.e.,
exponential decay with both separation distance and frequency). The expression decays
close to the frequency of the first mode of the layers and assumes a constant value close
to perfect correlation as frequency increases. The behaviour of the correlation in Fig. 5 is
realistic: The layer responds to the incident excitation as a series of single-degree-of-freedom
systems with slightly varying, correlated frequency. For input motion frequencies close to
the mean natural frequency of the “oscillators”, the response of the systems is affected by
the variability in the value of this natural frequency, and results in loss of correlation. As
the exciting frequencies increase past the natural frequency of the systems, the actual value
of the natural frequency (for small variabilities) seizes to affect the response significantly.

The overall coherence (incident motion coherence and layer stochasticity) in the spatial

variation of the surface motions is expressed as (Egs. 30, 33 and 39):

Yeoh (g) GJ) = 'Yb.coh(gr Ld) Vi.coh (f: L:J) (40)

and is presented in Fig. 6. It is noted from the figure that the overall shape of the total
coherence is controlled by that of the incident motion; the layer stochasticity results in a

decrease in the correlation close to the mean value of the natural frequency of the layer.
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This should be expected, since the total coherence of the surface motions is the product of
the incident motion coherence and the one resulting from the layer stochasticity.

The overall agreement of the spatial coherence with and without site éffects is consistent
with previous observations at various array sites, which indicate that the site variability
may not particularly influence the overall correlation structure of the total motion [25], [26].
It also justifies the use of smoothly decaying spatial coherence models with parameters ob-
tained from surface reeords (such as Luco and Wong’s model) to describe the coherence of
the incident motions in the present approach. However, the drop in the correlation at the
predorhinanf frequency of the layers is distinguishable. This drop-in-coherence behaviour
observed in Figs. 5 and 6 has also been noted by Kanasewich [16], who suggested that
site resonances can be identified from holes in the coherence spectra of motions at adja—
cent locations, and by Cranswick {5}, who further indicated that perturbations with small
deviations in the layer characteristics will produce the greatest changes in the response
functions, and, since coherence is a measure of similarity of the motions, it will be low
at the resonant frequencies. Thus, the present approach incorporates site effects in the
spatial correlation structure of the motions that are consistent with observations, but have
not been taken into account before in its estimates. Generally, it is assumed that the site
contribution results from the response of individual, statistically independent soil columns
with different characteristics. Accordingly, the site contribution does not affect coherence,
but produces a deterministic phase difference in the surface motion correlation [7]. Clearly,

- the deterministic phase difference is caused by the delays in the arrive.l of the waves from
the bedrock to the ground surface due to their propagation through different layers. The
present approach approximates the soil columns transmitting the bedrock excitation to the
ground surface by single-degree-of-freedom systems with similar, correlated characteristics.
The time delay in the arrival of the waves from the interface to the ground surface is in-

corporated in the model through the layer predominant frequency (Eq. 12): an incident
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impulse acceleration at the bedrock-layer interface at ¢t = 0 would produce a ma.x1rnum
response on the ground surface at approximately ¢ = %(i—:), ‘%% representing the period of
oscillation. The layer stochasticity causes random fluctuations in the arrival of the waves
from the bedrock to the surface, and, thus, affects the coherence -random phase variability--
of the motions. The apparent propagation (deterministic phase) of the surface motions is
controlled by that of the incident motion, since vertical propagation is considered within
the layer. It is emphasized that the present methodology is applicable to sites with no
dramatic changes in their topography, for which the homogeneity assumption for the layer
variability is valid. For sites with spatial characteristics that deviate significantly from
constant mean values, the spatial homogeneity assumption ought to be waived; in this
case, the layer stochasticity would affect both the coherence and the apparent propagation
(deterministic phase) of the motions. |
Based on Egs. 29, 35 and 39, the spatial variation of the surface motions becomes:

- [Hl(ﬂ:wO:CO’w)+'wa(§)H2(/3)w0;C0’w)] — a?w2¢? —i-“’;‘i
73”('57(“‘)) B [H],(,B,WO,CO,W) + 0'3‘,_, H2(,@,(U0,C0,w>] ¢ ¢

(41)

4 Evaluation of seismic ground strains

Seismic strains resulting on the surface of the stochastic layer are evaluated as follows: The

cross correlation function of the seismic motions on the ground surface is defined as:

+w .
Runl§7) = [ Sul6w) 7w (42)

From the above expression, the variance of the horizontal seismic strains along the z-

direction (direction of wave propagation on the ground surface) becomes:

82 Ry (€, 7) 90 825y (€, w)
2 Lt STy g Puuls, W) _
Tee = [ 862 HS;O [/;co 0{2 dw] IE—O (43)
and that of the seismic ground velocities (particle velocities):
82Ruu(€ ,7) Foo
= e e = [ @ Swl6w) do] oo (44)



The square-root of the variance (root-mean-square) of a random quantity provides informa-
tion on its mean maximum value, since rms values are proportional to the mean maximum
ones [6]. |

The evaluation of seismic ground strains (Eq. 43) requires the integration of the second
derivative with fespect to & of the cross correlation of the motions at 7 = 0, whiéh becomes

(Egs. 21, 31, 32 and 42):

Runl67=0) = [ [Ha(B8,00Go,) + Rol€) HalB,0, o, )]
¢ ’-*%i duw N

—aw

X Syulw)e

in which, H;(8,wo, {o,w), and Ha(B, wo, (o, w) are given by Egs. 36 and 37, respectively.
Since both the value and the derivatives of the spatial correlation function R, (£) are
needed at £ = 0 in Eqs. 43 and 45, its analytical approximation (Eq. 25) is required.

These derivatives, for any assumed correlation function expression f,.(£), take the form:
Ruu(0) = i Rou(0)=0; RL(0) = of, f.(0) (46)

The substitution of Eq. 46 into Eqgs. 43 and 45 yields the variance of the seismic ground

strains: -
€€ _"/ 20( + (i)2)(H1 + afzw HQ) waf (O) H?] Ubub(w) dw (47)

in which, the dependence of H; and H, on 3, wo, (o and w has been omitted for simplicity.
With the assumption that Sﬁ;ﬁb(w), the power spectral density of the incident motion
acceleration, is a slowly varying function of frequency, and noting that both | H (wo, (o, w)/|?
and |H (wo, o, w)|* peak close to w = wyp, an approximation for the variance of the ground

strains is found to be:

= (o e+ (021 (82 0 Ty +ach) - T O ey T ) (09

2¢
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The variance of the seismic velocity at the ground surface can also be evaluated through a

similar procedure. Equations 36, 37, 44 and 46 lead to:
2 teo g 2 »
ot = [ &P (M + 0% ) Suyua () d (49)

which, with the same approximations used in the evaluation of the seismic stréjns, yields:

a0

a2, - o} (PO+5%) +4¢3]}2—C:{;§sa,,ﬁ,,<wo> (50)

Equations 48 and 50 then result in the following estimate for the rms seismic ground

strain in terms of the rms ground velocity:

B2 ol f2.(0) (1+4¢3)
28 [P+ Fr) + 48]

(51)

Tyo

— \J[w + R -

The normalized spatial correlation function of the present example (Eq. 26) yields f” (0) =
--b%, and Eq. 51 takes the form:

3520l (1+4¢9)
Guidl [B2(1+52) +4¢3]

O¢e

Jee =\J[2a2 + R+

o (52)

Figure 7 presents the rms seismic strain (o) normalized with respect to the rms ground
velocity (o4.) as function of the apparent propagation velocity of the motions on the ground
surface. Three variations of the seismic strains are presented in the figure: the first corre-

sponds to the incident motion effects only, i.e.,

Tee 5 1 9
= |20 +(2) | (53)

the second corresponds only to site effects (o = 0 in Eq. 52), and the third incorporates the
contributions of both the incident motion variability and the layer stochasticity (Eq. 52).
The shape of the ground strain vs. apparent propagation velocity variability in Fig. 7 is
consistent with simulations of seismic ground strains and velocities [38], and with a.nalyses.

of actual seismic strains from recorded data during the 1971 San Fernando earthquake [22]:
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The variation of seismic strains at low velocities is not affected by the loss of coherence in the
motions; this is consistent with the commonly used approximation in engineering practice
when surface waves dominate in the motions, namely that seismic strains are equal to the
ground (particle) velocity divided by the apparent propagation velocity of the motions.
When body waves dominate -as is the case for the strong motion shear wave wihdow-, the
effect of the loss of cdherénce in the motions on seismic gfound strains becomes significant
(Fig. 7). For the soft soil profile considered herein, Fig. 7 iﬁdicates that the contribution of
the layer stochasticity essentially controls the seismic strains. This effect was not obvious
from the spatial variability of the surface ground motions (Fig. 6), although not altogether
unexpected, since the layér stdchasticity contribution occurs at the dominant soil frequency
(Eq. 48). As expected, the combined effect of the bedrock motion and layer stochasticity
yields higher strains (Fig. 7). o |

5 Summary and conclusion

The evaluation of the selsmic response of lifelines, such as pipelines and bridges, requires
estimates for the spatial variation of the seismic ground motions at the site. Such esti-
mates are difficult to obtain at sites where recorded seismic data from dense arrays are not
available.

An approach for the analytical evaluation of the spatial variation of the seismic ground
motions at sites that can be appraximated by a stochastic layer overlaying a bedrock has
been presented. As is commonly the case in the estimation of the spatial variation; only
direct shear waves have been considered. The model presented incorporafes the basic factors
that contribute to the spatial variation of seismic ground motions and the assumptions made
in thé‘approach are consistent with observations from recorded data and well-established
approximations. It has been assumed that the spatial variation of the incident‘ motion

at the bedrock-layer interface can be described by its spatial coherence and its apparent
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propagation. The spatial coherence of the incident motion is described by the expression
derived by Luco and Wong [19] from the analysis of shear wave propagation through random |
media. A constant apparent propagation velocity for the broad-band shear waves along the
interface has been utilized. The incident shéar waves at the bedrock-layer interface were
then assumed to propagate vertically through the stochastic layer and the site response
was approximated by that of one-degree-of-freedom oscillators with random properties.

It was shown that the shape of the spatial variation of the motions on the ground
surface is controlled by that of the incident motion. The site contribution is concentrated
in the vicinity of the predominant frequency of the layer and yields a drop in the value
of the coherence. Such site effects, although observed, have not been incorporated before
in spatial variability models. Seismic ground strains evaluated from the model suggested
that the contribution of the site stochasticity can be significant: it essentially controls the
strains at higher -body wave- apparent propagation velocities for the soft soil conditions
considered herein. Since strains are the key parameter in the seismic response analysis
of buried pipelines and are also indicative of the amplitude of differential displacements,
which control the seismic quasi-static response of above-ground lifelines, the results of this
analysis suggest that the effect of layer stochasticity cannot be neglected in the evaluation
of the spatial variation of seismic ground motions. |

The methodology developed herein provides an approximation for the spatial variation
of the seismic ground motions that incorporates information on the soil profile at the site.
In the absence of ‘spatially recorded seismic data at a site, the spatially variable motions
resulting from the model can be applied as input motions at the supports of above-ground

and buried lifelines in their seismic resistant analysis and design.
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Table 1: Material properties of the site profile in Fig. 1

Layer Soil Mass | Poisson Ratio | Shear Modulus | Shear Wave Velocity
g/em?® . kg*/cm? m/sec
1 Sand 1.80 0.48 133.0 85.0
2 Sand 1.70 0.48 287.0 125.0
3 Clay 1.50 0.48 612.0 200.0
4 Gravel 1.90 0.48 2050.0 325.0
5 Sandstone 2.10 0.48 ©5360.0 500.0
6 Sandstone 2.20 0.48 14367.0 800.0
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Figure 1 Cross section of the soil profile used in the numerical example. The vertical

subsections are also shown in the Figure.

Figure 2 Spatial correlation funetions for the predominant ground frequency of the
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Figure 3 Total surface motion {displacement) power spectral density, Sy,(w), normal-
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Figure 7 Variation of rms strain over rms ground velocity (o/ow) with the apparent

propagation velocity of the motions (c)
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