T Ikeda. et al 1

1	TBCD may be a causal gene in progressive neurodegenerative encephalopathy with atypical
2	infantile spinal muscular atrophy
3	
4	Running title: TBCD variation in atypical SMA and brain atrophy
5	
6	Toshio Ikeda ¹ *, Akihiko Nakahara ² , Rie Nagano ³ , Maiko Utoyama ¹ , Megumi Obara ¹ , Hiroshi
7	Moritake ¹ , Tamayo Uechi ⁴ , Jun Mitsui ⁵ , Hiroyuki Ishiura ⁵ , Jun Yoshimura ⁶ , Koichiro Doi ⁶ , Naoya
8	Kenmochi ⁴ , Shinichi Morishita ⁶ , Ichizo Nishino ⁷ , Shoji Tsuji ⁵ , and Hiroyuki Nunoi ¹
9	
10	¹ Division of Pediatrics, Department of Developmental and Urological-Reproductive Medicine
11	Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
12	² Department of Pediatrics, National Hospital Organization Miyazaki Hospital, Miyazaki, 889-1301,
13	Japan
14	³ Department of Pediatrics, Aisenkai Nichinan Hospital, Miyazaki, 887-0034, Japan
15	⁴ Frontier Science Research Center, University of Miyazaki, Miyazaki, 889-1692, Japan
16	⁵ Department of Neurology, The University of Tokyo, Graduate School of Medicine, Tokyo,
17	113-8655, Japan
18	⁶ Department of Computational Biology and Medical Sciences, Graduate School of Frontier
19	Sciences, The University of Tokyo, Chiba, 277-8568, Japan
20	⁷ Department of Neuromuscular Research, National Institute of Neuroscience, National Center of

- 1 Neurology and Psychiatry, Tokyo, 187-8551, Japan
- 2 * Correspondence to: toshio_ikeda@med.miyazaki-u.ac.jp

1 Abstract

2	Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder caused by
3	survival motor neuron gene mutations. Variant forms of SMA accompanied by additional clinical
4	presentations have been classified as atypical SMA and are thought to be caused by variants in as
5	yet unidentified causative genes. Here, we present the clinical findings of two siblings with an
6	SMA variant followed by progressive cerebral atrophy, and the results of whole exome sequencing
7	analyses of the family quartet that was performed to identify potential causative variants. We
8	identified two candidate homozygous missense variants, R942Q in the tubulin-folding cofactor D
9	gene (TBCD), and H250Q in the bromo-adjacent homology domain and coiled coil-containing 1
10	gene (BAHCC1), located on chromosome 17q25.3 with an interval of 1.4 Mbp. In silico analysis of
11	both variants suggested that TBCD rather than BAHCC1 was likely the pathogenic gene (TBCD
12	sensitivity, 0.68; specificity, 0.97; BAHCC1 sensitivity, 1.00; specificity, 0.00). Thus, our results
13	show that TBCD is a likely novel candidate gene for atypical SMA with progressive cerebral
14	atrophy. TBCD is predicted to have important functions on tubulin integrity in motor neurons as
15	well as on the central nervous system.
16	Keywords: Spinal muscular atrophy, Atypical, Cerebral atrophy, Tubulin-folding cofactor D,
17	Bromo-adjacent homology domain and coiled coil-containing 1, Whole exome family quartet
18	analysis
19	

1 Introduction

2	Infantile spinal muscular atrophy (SMA) is a frequent autosomal disease that specifically affects the
3	motor neurons of the spinal anterior horn and lower cranial nerve nuclei. ^{1,2} Peripheral nerve
4	involvement or other organ malformations are conventionally regarded as exclusion criteria for
5	infantile SMA. However, recent reports indicate that although the neurological features are obvious
6	early in childhood, the somatic features appear later in childhood, suggesting an apparent lack of
7	boundaries between purely neurological and multiorgan syndromes over time. ¹⁻³ SMA is caused by
8	mutations in the survival motor neuron genes 1 and 2 (SMN1 and SMN2) on chromosome $5q13$. ⁴
9	The homozygous absence of SMN1 is responsible for SMA, whereas SMN2 copy number is
10	associated with the SMA phenotype. ⁴
11	Atypical forms of the disease have been described. Patients with these forms have unusual
12	additional neurological features (e.g., diaphragmatic palsy) that are known as atypical SMA, SMA
13	variant, non-5q-SMA entities, or SMN1-negative proximal SMA. ^{5–8} Based on the mode of
14	inheritance and involvement of other organs or peripheral nerves, atypical SMA types have been
15	reported along with the causative genes, including pontocerebellar hypoplasia (PCH) with infantile
16	SMA (PCH1A, VRK1; PCH1B, EXSOC3), SMA and progressive myoclonic epilepsy (PMESMA,
17	ASAH1), and SMA with cranial nerve disorders. $^{5-13}$
18	Progressive loss of neurological function along with the involvement of the central nervous system
19	other than the motor neuron system is diagnosed as a neurodegenerative disease and is classified
20	into five major categories: polioencephalopathies, leukoencephalopathies, corencephalopathies,

1 spinocerebellopathies, and diffuse encephalopathies.

2	Here, we present two cases, siblings, who showed symmetrical proximal neurogenic muscle
3	atrophy complicated by cognitive dysfunction and progressive cerebral atrophy. We investigated
4	the possibility that these siblings were affected by atypical SMA with autosomal recessive
5	inheritance. To this end, we conducted whole exome sequencing analyses on the two affected
6	siblings and their parents, identifying variants in the tubulin-folding cofactor D gene (TBCD) and
7	the bromo-adjacent homology domain and coiled coil-containing 1 gene (BAHCC1) located on
8	chromosome 17q25.3 with an interval of 1.4 Mbp. Our results suggested that TBCD was the likely
9	causative variant for these sibling cases.
10	

1 Materials and methods

 $\mathbf{2}$ **Ethics**

3 All studies were performed with the informed consent of the patients' parents and the approval of

4 the Institutional Review Boards at the University of Miyazaki and the University of Tokyo.

 $\mathbf{5}$

6 **Participants**

- 7 Two Japanese familial patients with atypical SMA were enrolled in this study. Their pedigree chart 8 is shown in Figure 1. The detailed clinical features of the sibling cases are provided in the Results 9

section. Their parents were non-consanguineous.

10

11 **Exome sequencing**

- 12Genomic DNA was extracted using standard protocols from peripheral blood leukocytes or the
- 13umbilical cord of the two patients and their parents. Whole exome sequencing and bioinformatics
- analysis were performed on the two patients (cases 1 and 2) as previously described.^{14,15} Briefly, 14
- 15exonic sequences were enriched using a SureSelect v4+UTRs kit (Agilent, CA) and subjected to
- 16 massively parallel sequence analysis using an Illumina HiSeq 2500 sequencing system (Illumina,
- CA). The Burrows–Wheeler Aligner¹⁶ and SAMtools¹⁷ programs were used with the default 17
- 18 parameter settings for alignment of raw reads and variation detection (human GRCh37/hg19).
- 19 Single nucleotide variants were filtered using 800 Japanese, in-house, healthy control exome data
- 20collected at the University of Tokyo.

1	
2	SNP genotyping
3	Genotyping of single nucleotide polymorphisms (SNPs) were performed using a Genome-Wide
4	SNP Array 6.0 (Affymetrix). The availability of genomic DNA enabled genotyping of the genomic
5	DNA of one patient (case 1) and the parents. SNP calling was performed using Genotyping
6	Console software (Affymetrix). PLINK software was used to obtain a pairwise identity-by-descent
7	(IBD) estimation. ¹⁸
8	
9	Sanger sequencing
10	Sanger sequencing was performed to validate each candidate variant detected by exome
11	sequencing. The entire exon 31 from TBCD was amplified by polymerase chain reaction (PCR)
12	using an appropriate primer pair, TBCD-F 5'-GCATGTCCTCGTGGTGCTTG-3' and TBCD-R
13	5'-GCCAATGATCTCGCCATGGC-3', and AmpliTaq Gold (Life Technologies Japan, Tokyo,
14	Japan). Similarly, the portion of exon 5 from BAHCC1 harboring another candidate mutation was
15	amplified by PCR using an appropriate primer pair, BAHCC1-F
16	5'-GAGTCAGTGCCAGCTGGTGTC-3' and BAHCC1-R
17	5'-CTGCTGCCTCCTTGCACAG-3' and AmpliTaq Gold.
18	Direct nucleotide sequence analysis was performed using the BigDye Terminator v3.1 kit and an
19	ABI PRISM 3130 Genetic Analyzer instrument (Life Technologies Corporation, Carlsbad, CA,
20	USA).

-	
_	

2 Database analyses

- 3 Sequences were compared with wild-type sequences using the online Basic Local Alignment
- 4 Search Tool (BLAST; http://blast.ncbi.nlm.nih.gov/Blast.cgi) and the National Center for
- 5 Biotechnology Information (NCBI) database (http://www.ncbi.nlm.nih.gov/homologene). Variants
- 6 were tested for potential pathogenicity using the following bioinformatics software online tools:
- 7 Polymorphism Phenotyping v2 (PolyPhen2; http://genetics.bwh.harvard.edu/pph2/index.shtml),
- 8 Scale-Invariant Feature Transform (http://sift.jcvi.org/), and Align GVGD
- 9 (http://agvgd.hci.utah.edu).^{10,19-20} Protein structure predictions were performed using JPred 4
- 10 (http://www.compbio.dundee.ac.uk/jpred/) and I-TASSER
- 11 (http://zhanglab.ccmb.med.umich.edu/I-TASSER/).^{21,22}
- 12

1 Results

2	Case reports
---	--------------

3	Case 1: A 1-month-old girl was referred to our hospital with hypotonia and developmental
4	problems. She was the first child of unrelated, healthy Japanese parents (Fig. 1) and was born
5	weighing 3,080 g at 38 weeks' gestation via uterine inertia without fetal and neonatal hypoxemia.
6	Her vital signs and weight gain were normal, but she exhibited a frog-leg posture and head lag. She
7	had no dysmorphic facial features or hepatosplenomegaly. Her mental status was alert and she was
8	visually attentive. She cried weakly. Her eye positions were normal, there were no ocular deviations,
9	and her pupils were equal, round, and reactive to light. Her face moved symmetrically. She was
10	able to swallow during the initial visit. A high-arched palate was not noted. The tongue was midline
11	and fasciculations were suspected. She had almost normal bulk with marked hypotonia. The Scarf
12	sign was positive, with diffuse muscle weaknesses encompassing the trunk, limb symmetries, and
13	proximal muscle dominance. She was unable to lift her arms or legs against gravity, but had some
14	movement of her hands and feet. Facial muscular weakness was noted. Pes equinus of both feet
15	was noted. Involuntary movements were not observed. She exhibited some withdrawal and
16	grimacing to pain. Although bilateral plantar flexor responses were absent, the Babinski reflex was
17	positive, showing contraction of the extensor hallucis longus muscle. The Moro reflex was positive
18	but weak. At her first visit, serum biochemical markers (creatine kinase, lactate, pyruvate, amino
19	acid levels, and other blood serology) were in the normal range. Brain magnetic resonance imaging
20	(MRI) (Fig. 2a) results showed no obvious abnormal signal. No deletions or mutations in exons 7

1	and 8 of the SMN gene were identified from nucleotide sequence analyses of the PCR products,
2	excluding typical infantile SMA.
3	At 3 months of age, tongue fasciculations were clearly apparent, and her voluntary smile and visual
4	attention were lost. She was admitted again at 7 months due to a failure to thrive. Cerebral atrophy
5	was confirmed by a computed tomography (CT) scan and also by brain MRI (Fig. 2b), with no
6	findings of cerebellar atrophy or brainstem changes. Her head circumference was 0.23 SD at 1
7	month, but -2.1 SD at 8 months. Psychomotor retardation was clearly apparent and progressive.
8	Symptomatic partial seizure was observed, which was intractable to antiepileptic drugs. In addition
9	to a weak cough and cry, respiratory distress and dysphagia with a bell-shaped chest and
10	paradoxical respirations were confirmed at 9 months of age. She began to have difficulty
11	swallowing. By 12 months she was profoundly mentally and physically retarded, with a
12	developmental quotient less than 20. She was confined to bed, lost spontaneous movements,
13	communication, or interaction with the environment, and she needed continuous tracheotomy
14	positive-pressure ventilation and tube nutrition. Although mild optic atrophy was observed, macular
15	cherry-red spots and retinal pigmentary changes were not noted. Pupil responses, eye positions, and
16	ocular movements were normal, but reaction to light became incomplete. Optokinetic nystagmus,
17	pursuit, saccade, and eye contact were lost. These findings indicated progressively deteriorating
18	visual functions, especially due to cortical visual impairment. Click-evoked auditory brainstem
19	response (ABR) thresholds at 9 months of age were 30 dB nHL (right) and 40 dB nHL (left).
20	Latencies of waves I (right 1.68 ms, left 1.54 ms; normal 1.60 ± 0.46), III (right 3.70 ms, left 3.48

1	ms; normal 4.30 \pm 0.50), and V (right 6.12 ms, left 5.28 ms; normal 6.63 \pm 0.78) were obtained
2	using 90 dB high-click stimuli at 9 months. These findings indicated normal auditory peripheral
3	nerve and brainstem functions.
4	Reduced nerve conduction velocity (27 m/see; normal 42.3 \pm 6.4) and reduced compound muscle
5	action potential (2.5 mV; normal 5.5 \pm 2.0) were observed in the median nerve. Reduced nerve
6	conduction velocity (24 m/see; normal 38.5 \pm 5.5) and reduced compound muscle action potential
7	(0.93 mV; normal 14.1 \pm 2.6) were also observed in the posterior tibial nerve (Fig. 2d).
8	Lysosomal enzyme activities that are relevant to neurodegeneration involving the central nervous
9	system and hypotonia (e.g., glycosidases, lysosomal proteases, and sulfatases) were in normal
10	ranges. Normal serum levels of very long chain fatty acids excluded fatty acid beta oxidation cycle
11	disorders, medium-chain acyl-coenzyme A dehydrogenase deficiency, long chain
12	3-hydroxyacyl-coenzyme A dehydrogenase deficiency, very long chain acyl-coenzyme A
13	dehydrogenase deficiency, and glutaric acidemia type II. G-banded chromosomal analysis was
14	normal. Cardiovascular, hepatic, and renal functions were also normal. Echocardiography showed
15	no signs of cardiomyopathy. At 3 years of age, a muscle biopsy specimen confirmed large grouped
16	atrophy with fiber hypertrophy (Fig. 2e). Sural nerve biopsy was normal upon optical microscopic
17	examination (Fig. 2f). She died of aspiration pneumonia at 6 years of age.
18	
19	Case 2: The second patient was the younger sister of case 1 (Fig. 1). She was born at 39 weeks'

20 gestation via normal delivery without fetal and neonatal hypoxia, and weighed 3,060 g. She was

1	referred to our hospital at 6 months of age with hypotonia, developmental problems, and pes
2	equines. Her vital signs and weight gain were normal, but she exhibited a frog-leg posture and head
3	lag. At the initial visit, her head circumference was within the normal range but became smaller
4	than the reference range with increasing age. Her tongue was midline with fasciculations. Her
5	respiratory condition, mental status, other symptoms, and sensory and reflex responses were the
6	same as those described for her sister. She also had severe psychomotor retardation. Intractable
7	symptomatic partial seizure occurred at 8 months. Respiratory distress and dysphagia were
8	progressive, and she needed a tracheostomy at 7 months. She has been mechanically ventilated to
9	date, and is currently bedridden with profound mental retardation. She is still alive at the age of 7
10	with tracheotomy positive-pressure ventilation, home-based respirator care.
11	Her serum biochemical markers were normal. Brain MRI showed severe cerebral atrophy (Fig. 2c),
12	but no apparent cerebellar atrophy or brainstem changes. An interictal electroencephalogram
13	showed occasional multi-foci paroxysmal sharp waves on a background activity of dysmorphic
14	high-normal voltage delta and theta waves. This electroencephalogram did not indicate
15	hypsarhythmia. Cardiovascular and hepatic functions were normal. A congenital solitary kidney
16	was detected. At 7 years of age, eyelash and light reflexes were lost. Chromosomal G-band analysis
17	and array comparative genomic hybridization (27K; Agilent Technologies) found no chromosomal
18	abnormality or copy number variations. She has lived a life similar to her elder sister.
19	Differential diagnoses are listed in the Supplementary online material (Supplement 1).

1 Exome sequence analysis

2	A total of 142 rare protein-altering and splice-site variants, whose minor allele frequencies (MAFs)
3	were less than 0.5% in 800 exomes from in-house, healthy controls, were identified in one or both
4	cases. All variants in each participant were surveyed for compound heterozygous or homozygous
5	variants that were consistent with an autosomal recessive trait in the family (Table 1).
6	Only two homozygous variants, c.750C>A (H250Q) in BAHCC1 and c.2825G>A (R942Q) in
7	TBCD, at 17q25.3 were shared between the siblings (Table 2). Their parents were heterozygous for
8	the same variants of the alleles. R942Q in TBCD was present neither in the exomes from the 800
9	in-house, healthy controls nor in the Exome Aggregation Consortium data set, whereas H250Q in
10	BAHCC1 was observed in 2 of the 800 in-house, healthy controls (2 in 1,600 alleles) (Fig. 3).
11	
12	In silico functional prediction of the variants
12 13	<i>In silico</i> functional prediction of the variants PolyPhen2 predicted the <i>BAHCC1</i> variant to be benign with a score of 0.000 (sensitivity, 1.00;
12 13 14	<i>In silico</i> functional prediction of the variants PolyPhen2 predicted the <i>BAHCC1</i> variant to be benign with a score of 0.000 (sensitivity, 1.00; specificity, 0.00). By contrast, the <i>TBCD</i> variant was predicted to be probably damaging, with a
12 13 14 15	<i>In silico</i> functional prediction of the variants PolyPhen2 predicted the <i>BAHCC1</i> variant to be benign with a score of 0.000 (sensitivity, 1.00; specificity, 0.00). By contrast, the <i>TBCD</i> variant was predicted to be probably damaging, with a score of 0.995 (sensitivity, 0.68; specificity, 0.97). Moreover, Align GVGD predicted the <i>TBCD</i>
12 13 14 15 16	In silico functional prediction of the variants PolyPhen2 predicted the BAHCC1 variant to be benign with a score of 0.000 (sensitivity, 1.00; specificity, 0.00). By contrast, the TBCD variant was predicted to be probably damaging, with a score of 0.995 (sensitivity, 0.68; specificity, 0.97). Moreover, Align GVGD predicted the TBCD variant as more likely than the BAHCC1 variant to interfere with function. SIFT predicted both
12 13 14 15 16 17	In silico functional prediction of the variantsPolyPhen2 predicted the BAHCC1 variant to be benign with a score of 0.000 (sensitivity, 1.00;specificity, 0.00). By contrast, the TBCD variant was predicted to be probably damaging, with ascore of 0.995 (sensitivity, 0.68; specificity, 0.97). Moreover, Align GVGD predicted the TBCDvariant as more likely than the BAHCC1 variant to interfere with function. SIFT predicted bothvariants to affect protein functions, albeit with a postscript that the substitutions may have been
12 13 14 15 16 17 18	In silico functional prediction of the variantsPolyPhen2 predicted the BAHCC1 variant to be benign with a score of 0.000 (sensitivity, 1.00;specificity, 0.00). By contrast, the TBCD variant was predicted to be probably damaging, with ascore of 0.995 (sensitivity, 0.68; specificity, 0.97). Moreover, Align GVGD predicted the TBCDvariant as more likely than the BAHCC1 variant to interfere with function. SIFT predicted bothvariants to affect protein functions, albeit with a postscript that the substitutions may have beenpredicted to affect functions because the sequences used were not sufficiently diverse. Protein
12 13 14 15 16 17 18 19	In silico functional prediction of the variants PolyPhen2 predicted the BAHCC1 variant to be benign with a score of 0.000 (sensitivity, 1.00; specificity, 0.00). By contrast, the TBCD variant was predicted to be probably damaging, with a score of 0.995 (sensitivity, 0.68; specificity, 0.97). Moreover, Align GVGD predicted the TBCD variant as more likely than the BAHCC1 variant to interfere with function. SIFT predicted both variants to affect protein functions, albeit with a postscript that the substitutions may have been predicted to affect functions because the sequences used were not sufficiently diverse. Protein structure predictions suggested that R942Q in TBCD may affect protein conformations and higher

1 Discussion

2	The siblings showed atypical SMA at a very early age during childhood, with hypotonia and
3	muscle weakness indicating lower motor unit dysfunction, but, in addition, progressive
4	complicated central nervous system dysfunctions. Severe infantile generalized weakness with
5	tongue fasciculations and respiratory failure suggested an anterior horn disorder, such as SMA. A
6	muscle biopsy specimen at 3 years of age confirmed grouped atrophy of muscles. The results of the
7	nerve conduction study indicated that the tibial nerve showed axonal-dominant degeneration or
8	motor unit reduction, whereas the results of the sural nerve biopsy suggested that the sural nerve
9	was normal, indicating that the pathology was confined to motor neurons. Brain atrophy was
10	progressive. The patient histories indicated severe developmental delay and regression, hypotonia,
11	loss of visual attention, progressive feeding and respiratory problems, and, ultimately, both patients
12	became bedridden and lost any cognitive function at 3 years of age.
13	Progressive diffuse central nervous system disorders with cognitive (i.e., developmental quotient
14	less than 20) and motor dysfunctions are quite different from those observed in typical SMA, and,
15	furthermore, distinct from any other atypical forms of SMA, emphasizing the uniqueness of the
16	clinical presentations of these sibling cases.
17	After differentiating motor neuron diseases from typical SMA and other disorders with similar
18	clinical features, such as infantile hypotonia or psychomotor regression (see Supplement 1), we
19	considered atypical SMA and amyotrophic lateral sclerosis (ALS). ²³⁻²⁶ Additional features,
20	including arthrogryposis, myoclonic epilepsy, sensory neural deafness, or pontocerebellar

1	hypoplasia, were also investigated. ⁸⁻²⁷ However, none of these features were observed, and ALS
2	was unlikely, because ALS is usually regarded as an adult-onset neurodegenerative disorder. ²⁷
3	Many congenital neurodegenerative diseases or atypical SMA are known for distinct diagnoses of
4	SMA1-like congenital illnesses, for example, SMA with respiratory distress (SMARD1), SMA
5	with progressive myoclonic epilepsy (SMAPME), and pontocerebellar hypoplasia (PCH1A,
6	PCH1B). ⁴⁻⁶ The siblings here exhibited some symptoms of SMARD1 (caused by IGHMBP2
7	mutations), showing severe respiratory distress at the age of 1 to 6 months, but hemiparalysis of the
8	diaphragm, a characteristic finding of SMARD1, was not observed. ^{11,28} Furthermore, SMARD1
9	does not complicate central nervous system disorders. ^{11,28}
10	Pontocerebellar hypoplasia exhibits the most similar clinical course to SMA, and refers to a group
11	of severe neurodegenerative disorders that affect growth and function of the brainstem and
12	cerebellum, eventually resulting in little or no development. ^{8,29,30} Different types of pontocerebellar
13	hypoplasia are classified based on clinical findings and the spectra of pathological changes. ^{8,29,30}
14	Type 1 PCH is characterized by central and peripheral motor dysfunction associated with anterior
15	horn cell degeneration, and resembles infantile SMA, usually leading to early death. ^{29,30} With type
16	2 PCH, there is progressive microcephaly from birth combined with extrapyramidal
17	dyskinesias. ^{29,30} Marked PCH and progressive cerebral atrophy are revealed by brain CT. Here, the
18	siblings showed microcephaly, progressive cerebral atrophy (but not spastic palsy), severe
19	extrapyramidal dyskinesia, and failure to acquire any voluntary skills. There are many other types
20	of PCH (2-7), but hyperreflexia, optic atrophy (PCH3), joint contracture, olivopontocerebellar

1	hypoplasia (PCH4), cerebellar hypoplasia apparent in the second trimester, seizures (PCH5), and
2	mitochondrial respiratory chain defects (PCH6) were not confirmed in the present cases. ^{29,30}
3	Genital abnormalities associated with PCH (PCH7) are only observed in patients with the XY
4	karyotype. ³⁰
5	To the best of our knowledge, the same clinical presentation observed here has not been previously
6	reported; hence, we conducted exome sequencing of the family quartet: the patients (cases 1 and 2),
7	and their parents. Assuming autosomal recessive inheritance, we searched for genes with
8	compound heterozygous or homozygous protein-altering or splice-site variants with MAFs less
9	than 0.5% in the exomes from the 800 in-house, healthy controls, and found that the siblings
10	carried two homozygous missense variants, R942Q in TBCD and H250Q in BAHCC1. Their
11	parents had the same variants of these genes in heterozygous states. R942Q in TBCD is a novel
12	variant, while H250Q in BAHCC1 was observed in 2 of the 800 in-house healthy controls,
13	suggesting that R942Q in TBCD is more likely than H250Q in BAHCC1 to be the causative variant.
14	This notion was further supported by the following findings: (1) a variant of Drosophila TBCD in
15	projection neurons leads to microtubule destruction and axonal degeneration. ³¹ (2) Murine Tbce
16	gene mutants, homologs of human tubulin-folding cofactor E (TBCE), show phenotypic
17	characteristics of SMA-like motor neuropathy. ³²⁻³⁴ (3) In Smn-knockdown cells and SMA-like
18	mice, microtubule density and beta-tubulin levels are reduced. ³⁵ The alpha/beta tubulin heterodimer
19	formation requires participation of a series of chaperone proteins (tubulin-folding cofactors A-E)
20	that function downstream of cytosolic chaperonin as a heterodimer assembly machine, and of

1	which, TBCD forms one of the assemblies. ³⁶ The efficiency with which TBCD affects tubulin
2	disruption in vivo depends on its origin: overexpression of bovine TBCD efficiently destroys
3	tubulin and microtubules in cultured cells. ³⁶ Interestingly, TUBA4A has recently been reported to
4	be associated with familial ALS, supporting that tubulin integrity is essential in motor neurons. ³⁷ (4)
5	Additionally, in many syndromes of conventionally grouped purely neurological disorders,
6	extraneurological or other neurological complications will appear later in childhood. ^{2,3} Giant axonal
7	neuropathy (GAN), related to GAN (gigaxonin) mutations, is known as one of the most
8	recognizable neurodegenerative disorders. ³ GAN controls vimentin organization through a tubulin
9	chaperone (TBCB, TBCE)-independent pathway. ³⁸ Although our cases differed from GAN
10	because of our peripheral nerve biopsy findings, these reports may indicate a relationship between
11	tubulin chaperones and neurodegenerative disorders.
12	According to the protein structure models of Pymol (http://www.pymol.org/) and predicted protein
13	structures, R942 is involved in protein-protein interactions in structured helices, 39,40 and
14	evolutionally conserved among species (Fig. 3). The R942Q variant is suspected to influence
15	protein conformation and function by changing a positive to a neutral amino acid on the protein
16	surface (Fig. 4).
17	While R942Q has not been reported in public databases, two missense changes involving adjacent
18	residues have been annotated (rs753751532, H941Y; rs8072406, G943V). ⁴⁰ The reasons why
19	H941Y and G943V have been reported as not affecting pathogenesis may be that H941Y does not

1	does not alter charged amino acids. Both glycine and valine are nonpolar hydrophobic amino
2	acids. ⁴¹ Therefore, we predict that R942Q causes the loss of the electrostatic stability of the TBCD
3	protein due to the alteration from a positive to a neutral charge in an amino acid. ⁴²
4	The BAHCC1 gene may also be causative in our cases because mice with a knockout of the human
5	BAHCC1 ortholog (KIAA 1447) have overt motor deficits. ⁴³ However, in silico amino acid
6	prediction analyses of both homologous missense mutations using PolyPhen2 and Align GVGD
7	showed that R942Q in TBCD was more likely (sensitivity, 0.68; specificity, 0.97) than H250Q in
8	BAHCC1 (sensitivity, 1.00; specificity, 0.00) to be causative. ^{18,44} Guidelines for using prediction
9	methods recommend the application of several tools, if possible. Herein, we analyzed the results
10	using three different prediction tools. ⁴⁵
11	TBCD and BAHCC1 are both located on chromosome 17q25.3 at an interval of 1.4 Mbp.
12	Moreover, there is a run of homozygosity in the 1.8 Mbp region (chr17 79,429,228-qter) that
13	includes TBCD and BAHCC1 as observed by exome and high-density SNP results (data not
14	shown), which raised the possibility that both parents inherited the variants in TBCD and BAHCC1
15	from a common ancestral individual. IBD estimation of the parents from the SNP data, however,
16	did not suggest that the parents were closely related, because the pi-hat value, which estimates the
17	proportion of IBD between them, was 0.0075. Although R942Q in TBCD is most likely the
18	causative variant, as discussed above, we cannot rule out the possibility of more complex models
19	(i.e., TBCD and BAHCC1 co-expression, or autosomal dominant transmission due to parental
20	germinal mosaicism). Further functional analyses using in vivo and in vitro models will be

1 necessary to investigate how these mutations are involved in the clinical presentation.

2	Recently, three papers describing the similar cases with <i>TBCD</i> variation were published. ⁴⁶⁴⁸ The
3	patients of these papers were described as early-onset cortical atrophy, postnatal microcephaly, and
4	developmental delay/regression. ⁴⁶⁻⁴⁸ Several cases appeared postnatal growth retardation, muscle
5	weakness/atrophy, respiratory failure, seizures, optic nerve atrophy, progressive spasticity, or severe
6	dystonia. ⁴⁶⁴⁸ But our cases would be most severe neurodegenerative conditions as in our paper.
7	These papers include some functional aspects of the linkage between the disease phenotype and
8	TBCD variation, and they determined TBCD as a causal gene of their patients' disease because the
9	phenotypes were quite similar to that of previous report. 4648
10	In conclusion, a homozygous mutation in TBCD, which encodes tubulin cofactor, is likely
11	responsible for a novel and severe neurodegenerative disorder.

12

1 Accession numbers and reference sequences

- 2 Note: Nucleotide sequence data reported are available in the DNA Data Bank of Japan database
- 3 under the accession numbers LC071985 and LC072713.
- 4
- 5 Reference sequences are available from NCBI for the *Homo sapiens TBCD* mutation
- 6 (NC_000017.10 chromosome 17 reference GRCh primary Assembly; NC_000017.11
- 7 chromosome 17 reference GRCh primary Assembly; and NCBI Reference Sequence:
- 8 NG_011721.1), and the *BAHCC1* mutation (NC_000017.10 chromosome 17 reference GRCh
- 9 primary Assembly; and NC_000017.11 chromosome 17 reference GRCh primary Assembly).⁴⁹
- 10

11 Abbreviations

- 12 Spinal muscular atrophy (SMA)
- 13 survival motor neuron gene (SMN)
- 14 pontocerebellar hypoplasia (PCH)
- 15 tubulin-folding cofactor D gene (TBCD)
- 16 single nucleotide polymorphisms (SNPs)
- 17 identity-by-descent (IBD)
- 18 polymerase chain reaction (PCR)
- 19 bromo-adjacent homology domain and coiled coil-containing 1 gene (BAHCC1)
- 20 magnetic resonance imaging (MRI)

- 1 computed tomography (CT)
- 2 standard deviation (SD)
- 3 decibel above normal adult hearing level (dB nHL)
- 4 minor allele frequency (MAF)
- 5 amyotrophic lateral sclerosis (ALS)
- 6 Spinal muscular atrophy with respiratory distress type 1 (SMARD1)
- 7 SMA with progressive myoclonic epilepsy (SMAPME)
- 8 popliteal fossa (Pop Fossa)
- 9 latency (LAT)
- 10 duration (DUR)
- 11 amplitude (AMP)
- 12 conduction velocity (CV)
- 13 microvolt (μ V)
- 14 millisecond (ms)
- 15

16 Authors' Contributions

- 17 TI confirmed the diagnosis in each participating patient, conceived of the study, participated in the
- 18 sequence alignment, designed and performed the experiments, analyzed the data, contributed
- 19 reagents/materials/analysis tools, and drafted the manuscript. AN confirmed the diagnosis for the
- 20 participating patient designated as case 2, conceived of the study, participated in the sequence

1	alignment, designed and performed the experiments, analyzed the data, and helped to draft the
2	manuscript. RN confirmed the diagnosis for the participating patient designated as case 1. MU
3	performed the experiments. MO designed and performed the experiments, and analyzed the data.
4	HM conceived of the study and helped to draft the manuscript. TU conceived and designed the
5	experiments. JM performed the experiments and contributed reagents/materials/analysis tools. HI
6	performed the experiments and contributed reagents/materials/analysis tools. JY performed the
7	experiments and contributed reagents/materials/analysis tools. KD performed the experiments and
8	contributed reagents/materials/analysis tools. NK conceived and designed the experiments. SM
9	performed the experiments and contributed reagents/materials/analysis tools. NI conceived and
10	designed the experiments. ST conceived and designed the experiments and contributed
11	reagents/materials/analysis tools and drafted manuscript. HN conceived of the study, and
12	participated in its design and coordination and helped to draft the manuscript. All authors read and
13	approved the final manuscript.
14	
15	Conflicts of Interest
16	This work was supported in part by Grants-in-Aid for Scientific Research (KAKENHI) for
17	Scientific Research on Innovative Areas (Exploring Molecular Basis for Brain Diseases Based on
18	Personal Genomics), Priority Areas (Applied Genomics), Integrated Database Project, and
19	Scientific Research (A) from the Ministry of Education, Culture, Sports, Science and Technology
20	of Japan, and by a Clinical Research Grant from Miyazaki University Hospital.

1

2 Acknowledgements

3	We thank for their participation in this study the individuals with atypical SMA and their family. We
4	also thank Drs. K. Kanako and S. Yuko (Department of Neuromuscular Research, National
5	institute of Neuroscience, National Center of Neurology and Psychiatry) for their helpful comments
6	on the sural nerve biopsy, and Dr. K. Shiomi (Division of Neurology, Respirology, Endocrinology
7	and Metabolism, Department of Internal Medicine, University of Miyazaki) for help with the nerve
8	conduction study.
9	
10	Supplementary information is available on the website for Journal of Human Genetics.
11	
12	References
13	1. Rudnik-Schöneborn, S., Goebel, HH., Schlote, W., Molaian, S., Omran, H., Ketelsen, U. et al.
13 14	1. Rudnik-Schöneborn, S., Goebel, HH., Schlote, W., Molaian, S., Omran, H., Ketelsen, U. <i>et al.</i> Classical infantile spinal muscular atrophy with SMN deficiency causes sensory neuronopathy.
13 14 15	 Rudnik-Schöneborn, S., Goebel, HH., Schlote, W., Molaian, S., Omran, H., Ketelsen, U. <i>et al.</i> Classical infantile spinal muscular atrophy with SMN deficiency causes sensory neuronopathy. <i>Neurology.</i> 60, 983–987 (2003).
13 14 15 16	 Rudnik-Schöneborn, S., Goebel, HH., Schlote, W., Molaian, S., Omran, H., Ketelsen, U. <i>et al.</i> Classical infantile spinal muscular atrophy with SMN deficiency causes sensory neuronopathy. <i>Neurology.</i> 60, 983–987 (2003).
13 14 15 16 17	 Rudnik-Schöneborn, S., Goebel, HH., Schlote, W., Molaian, S., Omran, H., Ketelsen, U. <i>et al.</i> Classical infantile spinal muscular atrophy with SMN deficiency causes sensory neuronopathy. <i>Neurology.</i> 60, 983–987 (2003). Pierre, L. & Jonathan, B. Early onset (childhood) monogenic neuropathies. <i>Handb. Clin. Neurol.</i>
113 114 115 116 117 118	 Rudnik-Schöneborn, S., Goebel, HH., Schlote, W., Molaian, S., Omran, H., Ketelsen, U. <i>et al.</i> Classical infantile spinal muscular atrophy with SMN deficiency causes sensory neuronopathy. <i>Neurology.</i> 60, 983–987 (2003). Pierre, L. & Jonathan, B. Early onset (childhood) monogenic neuropathies. <i>Handb. Clin. Neurol.</i> 115, 863-891. doi:10.1016/B978-0-444-52902-2.00049-7 (2013).
113 114 115 116 117 118 119	 Rudnik-Schöneborn, S., Goebel, HH., Schlote, W., Molaian, S., Omran, H., Ketelsen, U. <i>et al.</i> Classical infantile spinal muscular atrophy with SMN deficiency causes sensory neuronopathy. <i>Neurology.</i> 60, 983–987 (2003). Pierre, L. & Jonathan, B. Early onset (childhood) monogenic neuropathies. <i>Handb. Clin. Neurol.</i> 115, 863-891. doi:10.1016/B978-0-444-52902-2.00049-7 (2013).

20 3. Pierre, L., Jonathan, B. & Peter D. Hereditary motor-sensory, motor, and sensory neuropathies in

1	childhood. Handb. Clin. Neurol. 113, 1413-1432. doi:10.1016/B978-0-444-59565-2.00011-3.
2	(2013)
3	
4	4. Wirth, B. An update of the mutation spectrum of the survival motor neuron gene (SMN1) in
5	autosomal recessive spinal muscular atrophy (SMA). Hum. Mutat. 15, 228–237 (2000).
6	
7	5. Ursula, FM., Katja, G., Anja, H., Christine, S., Klaus, Z., Christoph, B. et al. Severe spinal
8	muscular atrophy variant associated with congenital bone fractures. J. Child. Neurol. 17, 718-721
9	(2002).
10	
11	6. Klaus, Z. & Sabine, RS. 93rd ENMC international workshop: non-5q-spinal muscular atrophies
12	(SMA) – clinical picture (6–8 April 2001, Naarden, The Netherlands). Neuromuscul. Disord. 13,
13	179–183 (2003).
14	
15	7. Nathalie, G., Jean-Marie, C., Jean-Christophe, C., Jean-Francois, H., Sylvie, J. & Louis, V. Brain.
16	<i>Dev.</i> 30 , 169–178 (2008).
17	
18	8. Kristien, P., Teodora, C. & Albena, J. Clinical and genetic diversity of SMN1-negative
19	proximal spinal muscular atrophies. Brain. 137, 2879-2896. doi:10.1093/brain/awu169 (2014).
20	

1	9. Rudnik-Schöneborn, S., Forkert, R., Hahnen, E., Wirth, B. & Zerres, K. Clinical spectrum and
2	diagnostic criteria of infantile spinal muscular atrophy: further delineation on the basis of SMN
3	gene deletion findings. Neuropediatrics. 27, 8–15 (1996).
4	
5	10. Kumar, P., Henikoff, S. & Ng PC. Predicting the effects of coding non-synonymous variants on
6	protein function using the SIFT algorithm. Nat. Protoc. 4, 1073–1081 (2009).
7	
8	11. Kaindl, AM., Guenther, UP., Rudnik-Schöneborn, S., Varon, R., Zerres, K., Schuelke, M. et al.
9	Spinal muscular atrophy with respiratory distress type 1 (SMARD1). J. Child. Neurol. 23, 199–204
10	(2008).
11	
12	12. Grohmann, K., Markus, S., Alexander, D., Katrin, H., Barbara, L., Coleen, A. et al. Mutations
13	in the gene encoding immunoglobulin μ -binding protein 2 cause spinal muscular atrophy with
14	respiratory distress type 1. Nat. Genet. 29, 75–77 (2001).
15	
16	13. Guenther, UP., Handoko, L., Laggerbauer, B., Jablonka, S., Chari, A., Alzheimer, M. et al.
17	IGHMBP2 is a ribosome-associated helicase inactive in the neuromuscular disorder distal SMA
18	type 1 (DSMA1). Hum. Mol. Genet. 18, 1288–1300 (2009).
19	

20 14. Ishiura, H., Fukuda, Y., Mitsui, J., Nakahara, Y., Ahsan, B., Takahashi, Y. et al. Posterior column

1	ataxia with retinitis pigmentosa in a Japanese family with a novel mutation in FLVCR1.
2	Neurogenetics. 12, 117–121 (2011).
3	
4	15. Ishii, A., Saito, Y., Mitsui, J., Ishiura, H., Yoshimura, J., Arai, H. et al. Identification of ATP1A3
5	mutations by exome sequencing as the cause of alternating hemiplegia of childhood in Japanese
6	patients. PLoS. One. 8, e56120. doi:10.1371/journal.pone.0056120 (2014).
7	
8	16. Heng, L. & Richard, D. Fast and accurate short read alignment with Burrows-Wheeler
9	transform. <i>Bioinformatics</i> . 25, 1754–1760 (2009).
10	
11	17. Heng, L., Bab, H., Alec, W., Tim, F., Jue, R., Nils, H. et al. The Sequence Alignment/Map
12	format and SAMtools. <i>Bioinformatics</i> . 25, 2078–2079 (2009).
13	
14	18. Shaun, P., Benjamin, N., Kathe, TB., Lori, T., Manuel, ARF., David, B. et al. PLINK: A Tool
15	Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet.
16	78, 615–628 (2007).
17	
18	19. Adzhubei, IA., Schmidt, S., Peshkin, L., Ramensky, VE., Gerasimova, A., Bork, P. et al. A
19	method and server for predicting damaging missense mutations. Nat. Methods. 7, 248–249 (2010).
20	

1	20. George, DC., Chakraborty, C., Haneef, SA., Nagasundaram, N., Chen, L., Zhu, H. et al.
2	Evolution- and structure-based computational strategy reveals the impact of deleterious missense
3	mutations on MODY 2 (maturity-onset diabetes of the young, type 2). Theranostics. 4, 366–385
4	(2014).
5	
6	21. Drozdetskiy, A., Cole, C., Procter, J. & Barton, GJ. JPred4: a protein secondary structure
7	prediction server. Nucleic. Acids. Res. 43, 389-394. doi:10.1093/nar/gkv332 (2015).
8	
9	22. Yang, J. & Zhang, Y. I-TASSER server: new development for protein structure and function
10	predictions. Nucleic. Acids. Res. 43, 174-181. doi:10.1093/nar/gkv342 (2015).
11	
12	23. Michel, VJ. In Nelson Textbook of Pediatrics, 17th Edition (Richard, EB., Robert, MK. & Hal,
13	BJ.)2029-2035 (Saunders, Philadelphia, PA, USA, 2001).
14	
15	24. Gerald, MF. Clinical pediatric neurology Asigns and Symptoms Appriach 4th edn (W.B.
16	Saunders, Philadelphia, PA, USA, 2001).
17	
18	25. JEric, PG. Fenichel's Clinical pediatric neurology Asigns and Symptoms Appriach 7th edn
19	(W.B. Saunders, Philadelphia, PA, USA, 2013).
20	

1	26. Sasaki, M., Sugai, K. & Inagaki, M. National Center of Neurology and Psychiatry, Department
2	of child neurology, a manual of diagnosis and treatment 3rd edn (shindantochiryousha, Tokyo,
3	Tokyo, Japan, 2015) (Japanease).
4	
5	27. Drik, B., Kevin, T. & Martin, RT. Advances in motor neurone disease. J. R. Soc. Med. 107,
6	14-21. doi:10.1177/0141076813511451 (2014).
7	
8	28. Matthew, P., Henry, H., Jean, J., Quen, M., Brian, H., Mary, R. et al. Severe infantile neuropathy
9	with diaphragmatic weakness and its relationship to SMARD1. Brain. 126, 2682-2692.
10	doi:10.1093/brain/awg278 (2003).
11	
12	29. Stephen, MM., Kaashif, AA., Yalda, M., Erin, LM., Millan, SP., David, C. et al. Pontocerebellar
13	hypoplasia: review of classification and genetics, and exclusion of several genes known to be
14	important for cerebellar development. J. Child. Neurol. 26, 288-294.
15	doi:10.1177/0883073810380047 (2011).
16	
17	30. Yasmin, N., Peter, GB., Bwee, Tien, PT. & Frank, B. Classification, diagnosis and potential
18	mechanisms in Pontocerebellar Hypoplasia. Orphanet. J. Rare. Dis. 6, 50.
19	doi:10.1186/1750-1172-6-50 (2011).
20	

1	31. Okumura, M., Sakuma, C., Miura, M. & Chihara, T. Linking cell surface receptors to
2	microtubules: tubulin folding cofactor D mediates Dscam functions during neuronal
3	morphogenesis. J. Neurosci. 35, 1979–1990 (2015).
4	
5	32. Martin, N., Jaubert, J., Gounon, P., Salido, E., Haase, G., Szatanik, M. et al. A missense
6	mutation in Tbce causes progressive motor neuronopathy in mice. Nat. Genet. 32, 443-447 (2002).
7	
8	33. Winnie, C., Wim, W., Martin, P., Karoly, S., Jan, W., Edwin, R. et al.
9	Hypoparathyroidism-retardation-dysmorphism syndrome in a girl: a new variant not caused by a
10	TBCE mutation—clinical report and review. Am. J. Med. Genet. 140A, 611–617. (2006)
11	
12	34. Don, WC., Koji, Y. & Pascale, B. Gigaxonin controls vimentin organization through a tubulin
13	chaperone-independent pathway. Hum. Mol. Genet. 18, 1384–1394 (2009).
14	
15	35. Hsin-Lan ,W., Yuan-Ta, L., Chen-Hung, T., Sue, LC., Hung, L., Hsiu, MH. et al. Stathmin, a
16	microtubule-destabilizing protein, is dysregulated in spinal muscular atrophy. Hum. Mol. Genet. 19,
17	1766–1778 (2010).
18	
19	36. Guoling, T., Simi, T. & Nicholas, JC. Effect of TBCD and its regulatory interactor Arl2 on
20	tubulin and microtubule integrity. Cytoskeleton. 67, 706-714 (2010).

-	
п.	
_	

2	37. Smith, BN., Ticozzi, N., Fallini, C., Gkazi, AS., Topp, S., Kenna, KP. et al. Exome-wide Rare
3	Variant Analysis Identifies TUBA4A Mutations Associated with Familial ALS. Neuron. 84,
4	324-331 (2014).
5	
6	38. Cleveland, DW., Yamanaka, K. & Bomont, P. Gigaxonin controls vimentin organization
7	through a tubulin chaperone-independent pathway. Hum. Mol. Genet. (e-pub ahead of print January
8	24 2009 ; doi:10.1093/hmg/ddp044)
9	39. Grynberg, M., Jaroszewski, L. & Godzik, A. Domain analysis of the tubulin cofactor system: a
10	model for tubulin folding and dimerization. BMC. Bioinformatics. 4, 46 (2003).
11	
12	40. Groves, MR. & Barford, D. Topological characteristics of helical repeat proteins. Curr. Opin.
13	Struct. Biol. 9, 383–389 (1999).
14	
15	41. National Center for Biotechnology Information(NCBI). Single Nucleotide Polymorphism
16	Database (dbSNP) (1998). http://www.ncbi.nlm.nih.gov/SNP/. Accessed 22 May 2016.
17	
18	42. Anders, L., Lars, L., Jure, P., Goran, L., Poul, N. & Morten, K. Textbook of structural biology
19	(World Scientific Pub Co Inc, Toh Tuck Link, Singapore, 2009)
20	

1	43. Nakayama, M., Iida, M., Koseki, H. & Ohara, O. A gene-targeting approach for functional
2	characterization of KIAA genes encoding extremely large proteins. FASEB. J. 20, 1718-1720
3	(2006).
4	
5	44. Adzhubei, IA., Schmidt, S., Peshkin, L., Ramensky, VE., Gerasimova, A., Bork, P. et al. A
6	method and server for predicting damaging missense mutations. Nat. Methods. 7, 248-249 (2010).
7	
8	45. Vihinen, M. Guidelines for Reporting and Using Prediction Tools for Genetic Variation
9	Analysis. Hum. Mutat. (e-pub ahead of print 18 January 2013; doi:10.1002/humu.22253).
10	
11	46. Noriko, M., Ryoko, F., Chihiro, O., Takahiro, C., Masayuki, M., Hiroshi, S. et al. Biallelic
12	TBCD Mutations Cause Early-Onset Neurodegenerative Encephalopathy. Am. J. Hum. Genet. 99,
13	950–961 (2016).
14	
15	47. Elisabetta, F., Marcello, N., Serena, C., Isabelle, T., Margaret, GA., Alessandro, C. et al.
16	Biallelic Mutations in TBCD, Encoding the Tubulin Folding Cofactor D, Perturb Microtubule
17	Dynamics and Cause Early-Onset Encephalopathy. Am. J. Hum. Genet. 99, 962-973 (2016).
18	
19	48. Shimon, E., Guoling, T., Hayley, C., Hannah, V., Linh, N., Saiuj, B. et al. Infantile
20	Neurodegenerative Disorder Associated with Mutations in TBCD, an Essential Gene in the Tubulin

1	Heterodimer Assembly Pathway. Hum. Mol. Genet. (e-pub ahead of print 29 August 2016;
2	doi:10.1093/hmg/ddw292).
3	
4	49. National Center for Biotechnology Information(NCBI). Gene. (2003)
5	http://www.ncbi.nlm.nih.gov/gene/. Accessed 12 February 2015.
6	
7	50. Wolf, NI. & van der Knaap, MS. AGC1 deficiency and cerebral hypomyelination, N. Engl. J.
8	Med. 361 , 1997-1998 (2009)
9	
10	51. University of California San Francisco. Database of Comparative Protein Structure Models
11	(ModBase) (2009). http://modbase.compbio.ucsf.edu/modbase-cgi/index.cgi. Accessed 15
12	February 2015.
13	

1 Titles and legends to figures

2	Fig. 1. Family pedigree and chromatograms of two de novo variants identified in TBCD and
3	BAHCC1.
4	Participants with available whole exome sequencing analysis are indicated by dots. Data were
5	obtained by Sanger sequencing during the confirmation process. Direct nucleotide sequence
6	analysis confirmed the TBCD variant (exon 31, c.2825G>A, R942Q) and the BAHCC1 variant
7	(exon 4, c.750C>A, H250Q).
8	
9	Fig. 2. T1- and T2-weighted brain MR imaging, nerve conduction study, and muscle biopsy.
10	a . MRI of case 1 at 1 month of age showing normal findings. b . At 7 months, T1- and T2-
11	weighted brain MR images show progression of cerebral atrophy. Given the severe cerebral
12	atrophy and less homogeneous hyperintensity of the white matter seen on T2-weighted imaging,
13	the MRI findings indicate early-onset neurodegenerative disorder, in which impaired formation of
14	myelin results from neuronal dysfunction. ⁵⁰ c . MRI results of case 2 at 6 months of age also reveal
15	progressive cerebral atrophy with less hyperintensity of the white matter. However, this finding
16	does not mean a primary hypomyelination. ⁵⁰ d . Nerve conduction study of case 1 at 9 months of
17	age. The tibial nerve between the ankle and popliteal fossa shows reduced nerve conduction
18	velocity of 24 m/s (normal 38.5 \pm 5.5) and reduced compound muscle action potential of 0.93 mV
19	(normal 14.1 \pm 2.6). These findings can be accounted for by either axonal-dominant degeneration
20	or motor unit reduction. Pop Fossa, popliteal fossa; LAT, latency (in ms); DUR, duration (in ms);

1	AMP, amplitude (in millivolts, mV); CV, conduction velocity (in meter per second, m/s); μ V,
2	microvolt; ms, millisecond. e. Biceps muscle biopsy from case 1 at 4 years of age showing large
3	grouped atrophy with fiber hypertrophy, coincident with SMA findings (hematoxylin and eosin
4	staining). f. Sural nerve biopsy from case 1 at 4 years of age. This peripheral nerve biopsy specimen
5	shows no axonal degeneration or swollen axons. Myelin sheaths are maintained (toluidine blue
6	staining).
7	Fig. 3. Identification of the putative causative variants in <i>TBCD</i> and <i>BAHCC1</i> .
8	a. Schematic of the BAHCC1 gene, composed of 28 exons, and of the TBCD gene, composed of
9	1,192 amino acids and 39 exons. b , c . Partial amino acid sequence alignment reveals that (b) H250
10	and (c) R942 are evolutionally conserved among species.
11	
12	Fig. 4. Structure models of TBCD showing the R942Q variant.
13	a, b. TBCD protein structure from amino acids 865 to 1170; (a) and (b) show the same structures
14	observed at different angles. PBD ID was downloaded using the Mod database. ⁵¹ R942Q is located
15	on the protein surface and is part of a helical structure, suggesting it may be involved in protein-
16	protein or intermolecular interactions by causing loss of a positively charged amino acid.44,50
17	R942Q is represented using a stick, whereas the other structures are shown as cartoons. c. Protein
18	structure predictions using JPred (left) and I-TASSER (right). ^{22.27} R942Q likely influences an alpha
19	helix. H, alpha helix; C, coil.

b. BAHCC1 H250Q

Case1 Case2 Homo sapiens Macaca mulatta Canis lupus Mus musculus Rattus norvegicus Gallus gallus Xenopus tropicalis Danio rerio EDGGKERQKLVLPVPA EDGGKERHKLVLPVPA EDGGKERHKLVLPVPA DEGGKERHKPVLPMPA EDSGKDRQKLVPPMPA EESSKDRQKLVPPMPA EDDGKERHRAVLPVPP LHHHHQHHPQHHPQGL EDEGKERQKVVLPMSL c. TBCD R942Q

Case1 Case2 Homo sapiens Macaca mulatta Canis lupus Mus musculus Rattus norvegicus Gallus gallus Xenopus tropicalis Danio rerio PPIPHVPHQGELEKLFP PPIPHVPHRGELEKLFP PPIPHVPHRGELEKLFP PPIPHVPHRGQLEELFP PPIPHVPHRKELESLFP PPIPHVPHRKELESLFP PPVPHIPHREELLSIFP PAVPHIPHHEELLSIFP PRIPYIREHSKLLEIFP

R942 ↓ PHVPHRGELEKLFPR |||||||||||||||| CCCCCCHHHHHHHHHH

	Reads	Mapped	Mapped	Mapping	Mapping	Coverage	Coverage
		Reads	Reads	Rate	Rate		(unique)
			(unique)	(%)	(unique)		
					(%)		
Case 1	79,409,1	111,355,9	109,060,26	99.2	97.2	156.3	153.1
	25	84	4				
Case 2	80,887,1	115,004,7	110,418,64	98.9	95.0	99.4	95.4
	20	32	8				

1 Table 1. Novel nonsynonymous variants detected in target regions of case 1 and case 2.

4

Chromo-	Position	Refer-	Alter-	Zygosity	Mean allele	Gene	Amino acid
Some		ence	nation		frequency within		mutation
					in house controls		
Chr17	79,409,125	С	А	Homo	2/800(0.25%)	BAHCC1	H250Q
Chr17	80,887,120	G	А	Homo	0/800	TBCD	R942Q

2 Table 2. Candidate homozygous variants detected in case 1 and case 2.

4

Gene	Mutation	Polyphen2	SIFT	Align GVGD
BAHCC1	H250Q	Benign	Affects protein function	Class C15 [*]
TBCD R942Q		Probably	Affects protein function	Class C35 [*]
		Damaging		

3 Table 3. Predictions on the effect of missense substitutions in BAHCC1 and TBCD.

4 *Classifiers are ordered along a spectrum (C0, C15, C25, C35, C45, C55, and C65) from most

5 likely to interfere with function (C65) to least likely (C0).