直列ギャップ付 ZnO 避雷器の V-t 特性の改善に関する研究

堀江 響心・迫田 達也か・久保 克隆の・水谷 学の・深野 孝人の

Study on Improvement of V-t Characteristic of ZnO Surge Arrester with a Series Gap

Hibiki HORIE, Tatsuya SAKODA,

Katsutaka KUBO, Manabu MIZUTANI, Takato FUKANO

Abstract

Surge arrester with a spark gap has been installed for reducing the electrical failures in Japanese distribution systems. The top and the bottom of a ceramic spacer for sustaining an electrode gap in a surge arrester contact with electrodes, in which there are triple junction points formed among the ceramic spacer, the gap electrodes, and the atmosphere. Electric field at the triple-junction point becomes large; therefore, the triple junction point may influence the discharge characteristics.

We prepared some electrodes with a small step edge on an inclined plane of each electrodes, which played a role like a triple junction point. We investigated how the shape of the electrodes influences on discharge characteristics such as discharge ignition. The results showed that formation of a step edge on an inclined plane of each electrode contribute on lowering a discharge voltage and shortening a discharge time lag.

Keywords: V-t characteristics, Spacer, Surge arrester, Series gap

1. はじめに

高度情報化社会の発展に伴い、電力の安定供給が強く 求められている。しかし、配電系統において、自然災害 による事故停電を完全に避けることは困難である。その 中でも、落雷による停電は、依然として事故件数に占め る割合が高い。そのため、配電系統においては、雷から 電力機器を保護するための配電用ギャップ付避雷器が数 多く設置されている。これらの電力機器は、動作目的に 合わせて、放電を精度良く制御できることが望ましい。 しかしながら、大気圧中の放電は電極形状、印加電圧、 電界といった諸要因により影響を受ける。ギャップ付避 雷器においては、放電ギャップを形成するために、ギャ ップを保持するためのスペーサ(絶縁管)が利用されてい る。このスペーサにより、大気、スペーサ、ギャップ電極 が接する箇所においては局所的に電界が高くなる三重点 が形成される。このような高電界部は部分放電の発生箇 所となり、放電特性にどのような影響を与えるか詳細に 把握しておくことが望ましい。著者らは、ギャップ電極 とスペーサから成る放電ギャップにおいて形成される高 電界部がギャップ間の雷インパルス放電特性に与える影 響および放電特性の改善に関しての検討を行っている。

a)工学研究科工学専攻エネルギー系コース大学院生 b)工学教育研究部教授 c)株式会社東芝エネルギーシステムソリューション社 本論文では、ギャップ電極の形状の変更によって、初期 電子生成に影響を与えるであろう電界強度や初期電子生 成部から電極頂点までの距離の短縮化が、電インパルス 放電の V-1 特性に与える影響を評価した結果について述べ る。

2. 実験方法と電界解析

2.1 作製した電極の形状および電界計算条件

図1に示すような4種類の放電電極を作製し、実機と 同様に、スペーサを用いて同じ形状の電極を対向配置して 8mmの放電ギャップを形成した。また、全ての電極の頂 上部にはアーク圧力を解放できるような孔を設けた。電極 A及びBの孔径は、電極の斜面に設けた高電界部と電極 頂点部までの距離を短くするために既製品(3mm)よりも 大きな7mmとした。更に、電極Bについては、電極斜面 に、電界が高くなり、初期電子の生成率に影響を与えると 考えられる図1(b)に示す高さ4.5mmのエッジを設けた。 電極Cの孔径は更に広げて8mmとし、電極斜面のエッジ は電極Bと同様とした。電極Dの凸部の孔径は9mmに 広げ、凸部斜面のエッジは電極Bと同様とした。なお、 ギャップ電極頂点の曲率半径は全ての電極で2.5mmとし た。

図2に、解析モデルの一例として、ギャップ電極Aと

ギャップ長を保持する円筒型スペーサから構成されるギ ャップ電極を示す。円筒型スペーサは内径が20mm、高さ 25.5mmとなっており、ギャップ電極のギャップ長は8mm となっている。ギャップ電極と円筒型スペーサにはそれぞ れ、銅、セラミックスの導電率を与え、上部電極に30kV の電位を与えた時の条件で電界強度分布を計算した。

2.2 電界解析結果

図 3 から図 6 に電極 A~D の電界解析結果を示す。これ らの図において白い部分は電界強度が 5 kV/mm を超えた 箇所を示す。

初期電子生成部から電極頂点部までの最短距離と、最大 電界強度を表1に示す。電極斜面にエッジが無い電極A の三重点近傍の電界強度が2.4 kV/mmであるのに対し、エ ッジ有りの電極Bではエッジ部の電界強度が16.5 kV/mm と著しく高くなり、電極頂点部よりも高い電界領域が形成 される。また、電極 C、電極 D でも同じ傾向がある。こ のことからエッジを設けることによって電界強度が高く なり、放電が起こるための初期電子の供給量が多くなるた め放電特性が安定すると考えられる。更に、エッジを設け、 孔径を広げることにより、エッジ部から頂点までの距離を 短くした電極 B、電極 C、電極 D において、エッジ部から 頂点までの距離が短いほど、生成された初期電子が放電部 までに到達する時間が速くなり、電子雪崩を形成する火花 統計遅れが短くなると考えられる。

以上のような電界計算によって得られた効果を V-t 特性 試験で明らかにすることとした。つまり、電極 A と電極 B の結果を比較することで三重点もしくはエッジ部の電界 強度が与える影響を明らかにでき、電極 B と電極 C と電 極 D を比較することで初期電子生成部から頂点までの距 離が放電特性に与える影響を明らかにすることが出来る。

図4. 電極 B を用いた場合の電界強度分布

図 5. 電極 C を用いた場合の電界強度分布

図 6. 電極 D を用いた場合の電界強度分布

表 1.	初期電子生成部の最大電界強度及び
	電極頂点までの最短距離

Туре	Shortest distance (mm)	Maximum E. (kV/mm)
А	7.06	2.46
В	4.03	16.5
С	3.51	15.6
D	3.05	12.2

2.3 雷インパルス放電試験条件

AからDの4種類のギャップ電極とスペーサを用いて 構成した放電ギャップを碍管容器無しの避雷器内部要素 を湿度制御が可能な容器内に配置し、湿度が放電特性に与 える影響を小さくするために、容器内の絶対湿度を約 5[g/m³]に調整した。雷インパルス電圧は、図7に示す1.2/50 µsの標準雷インパルス電圧発生回路において、充電電圧 を25 kVから最大40 kVの範囲で出力することとし、3分 間隔で1 kV ずつ昇圧して印加した。放電電圧(V)と放電時 間(t)はディジタルオシロスコープで記録した。

3. 放電ギャップの放電特性試験結果

図8から図11に、電極Aから電極Dで得られたV-t特性を示 す。表2に、火花放電開始電圧、火花放電電圧の範囲、火 花放電の時間、標準偏差を示す。図8及び表2より、電極A においては火花放電時間(放電遅れ)が顕著であり、放電時 間の標準偏差が大きくなっていることが分かる。電極Bは、 電極Aの結果と比較すると、火花放電電圧の範囲は比較的 狭く、放電に至る時間も短いため、標準偏差も小さい。以 上のことから、電極斜面にエッジを設けることで放電特性 が改善されることが分かる。また、電極C、電極Dにおい ても、より放電特性が改善しており、特に電極Dでは火花 放電電圧が低く、放電に至る時間も短くなっており、放電 特性が大きく改善している。以上のように、ギャップ電極 の孔径を広げ、初期電子生成部(エッジ部)から電極頂点ま での距離を短くすることによって、放電特性を安定させる ことができる。

茭	2.	電極	A-D	におけ	5	V	-t	特性	

	Ignition	Range of	Range of time	Standard
Туре	voltage of	sparkover	to sparkover	deviation
	sparkover	voltage	(µs)	
	(kV)	(kV)		
А	30	25~35	1.0~10	1.37
В	25	25~30	0.7~2.2	0.34
С	25	25~30	0.6~1.8	0.40
D	25	20~25	0.4~1.2	0.21

4. 結論

電極の形状が放電遅れにどのような影響を与えるか明 らかにするために、形状の異なる電極を用いて、放電特性 試験及び電極周辺の電界計算を行った。その結果、電極の 斜面にエッジを設けることによりエッジ部の電界強度は、 スペーサ、大気、電極の間に形成される三重点近傍の電界 強度より高くなることを示した。また、放電特性は電極頂 点の曲部とエッジとの距離を短くすることで安定するこ とが明らかとなった。

参考文献

- Masanori Hara, Takashi Kurihara, Susumu Kozuru, Junya Suehiro, Noriyuki Hayashi, "Estitimation of partial discharge onset characteristics in gasses around a triple-junction", IEEJ Transsactions on FM, vol.116, No.7, 2002, pp.650-657
- Tadashi Kawamoto, Tadasu Takuma, Hisashi Goshima, Hiroyuki Shinkai, Hideo, Hideo Fujinami, "Triple-junction effect and its electric field relaxation in three dielectrics, IEEJ Transsactions on FM, vol.127, No.2, 2007, pp.59-64
- Yasushiti Gosyo, "Anomalous decrease of time lag of breakdown of gaps in gases by mixing water vapor", IEEJ Transsactions on FM, vol.116, No.6, 1996, pp.488-493
- 4) Tatsuya Tokunaga, Shinnosuke Nishikawa, Tatsuya Sakoda, Takato Fukano, "Influence of triple-junction on sparkover voltage for a series gap of arrester", Electrical Insulation Conference (EIC), 2013 IEEE