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Abstract 

 

 
This dissertation is a study of four-dimensional automata. In 1936, Turing machine was 

introduced as a simple mathematical model of computers. In theoretical computer science, 

Turing machine has played a number of important roles in understanding and exploiting 

basic concepts and mechanisms in computing and information processing. After that, it has   

become increasingly apparent that the characterization and classification of powers of the 

restricted Turing machines should be of great importance. Such a study was called automata 

theory, and it was active in 1950’s and 1960’s. In 1967, Blum M. and Hewitt C. first 

proposed two-dimensional automata as a computational model of two-dimensional pattern 

processing, and investigated their pattern recognition abilities. Since then, many researchers 

in this field have been investigating many important properties about automata on a two-

dimensional tape. By the way, the question of whether processing three-dimensional digital 

patterns is much more difficult than two-dimensional ones is of great interest from the 

theoretical and practical standpoints. Recently, due to the advances in many application 

areas such as computer vision, robotics, and so forth, it has become increasingly apparent 

that the study of four-dimensional pattern processing has been of crucial importance. Thus, 

the research of four-dimensional automata as a computational model of four-dimensional 

pattern processing has also been meaningful. 

The main purpose of this dissertation is to investigate a couple of properties of four- 

dimensional Turing machine and four-dimensional automata. 

This dissertation consists of six chapters. 

Chapter 1 provides the background and the motive of the study of four-dimensional 
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automata, and summarizes the main results in this dissertation. 

Chapter 2 summarizes the formal definitions and notations necessary for the studies from 

Chapters 3 through 6. 

Chapter 3 introduces a seven-way four-dimensional Turing machine, and investigates 

fundamental properties of 4-NMA1 whose input tapes are restricted to rectangular ones. 

Necessary space for seven-way four-dimensional Turing machine to simulate four-

dimensional one-marker automata are investigated.  

Chapter 4 proposes a four-dimensional alternating Turing machine whose input tape 

restricted to cubic ones, and we presented a technique which we can show a four-dimensional 

language is not accepted by space-bounded alternating Turing machines.  

In Chapter 5, first, we proposed a homogeneous systolic pyramid automata with four-

dimensional layers. Second, we compared four-dimensional homogeneous systolic pyramid 

automata with one-way four-dimensional cellular automata (1-4CA). 

In Chapter 6, we conclude this dissertation by summarizing the results and discussing the 

problems which have been argued throughout the dissertation. 
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Glossary 
 

 

 

 
 

(1) Symbolic Logic 

 

 
 

Term Interpretation 

∀x for each x 

∃x for some x 

⇒ If . . . then 

⇔ if and only if 

 

 
(2) Set Theory 

 

 
 

Term Interpretation 
 

φ empty 

∞ infinity 

|A| cardinality of a set A 

a∈A a is an element of A 

a∈/A a is not an element of A 

A⊆B A is a subset of B 

AÇB A is a proper subset of B 

A∪B union of sets A and B 

A∩B intersection of sets A and B 

Ā complement of a set A 
 

A−B complement of B in A 

A×B Cartesian product of sets A and B 

Ak k-fold Cartesian product of a set A 

P(A) = 2A power set of a set A 

N the set of natural numbers 



 

v  

 

Z the set of integers 
 

R the set of real numbers 

⌈𝑥⌉ greatest integer smaller than or equal to x 

⌊𝑥⌋ smallest integer greater than or equal to x 

f : A ↦ B f is a mapping from a set A into a set B 

g : o(f ) g is a function such that for every r>0 and for all but finitely 

many m, g(m)<rf (m) 

g : O(f ) g is a function such that for some positive constant r>0  

and for all but finitely many m, g(m) ≤ rf (m) 

g : Ω(f ) g is a function such that for some positive constant r>0  

and for all but finitely many m, g(m) > rf (m) 

 
 

(3) Symbols for Input Tapes 

 

 
 

Term Interpretation 
 

Σ∗ set of all strings over Σ 
 

Σ+ set of all nonempty strings over Σ 

|w| length of a string w 

Σ(3) set of all three-dimensional tape over Σ 

Σ(4) set of all four-dimensional tape over Σ 
 

lj (x) length of three-dimensional tape x along the j-th axis  

(1≤j≤4) 

x[(i1, i2, i3,i4), (i’1, i’2, i’3, i’4)] [(i1, i2, i3,i4), (i’1, i’2, i’3, i’4)]-segment of four-dimensional  
 

tape x 
 

L[M ] class of the sets of all input tapes accepted by the 

automata M ’s 
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(4) Abbreviations for Three-Dimensional Automata 

 

 
 

Term Interpretation 
 

ATM three-dimensional alternating Turing machine 

3-NTM three-dimensional nondeterministic Turing machine 
 

3-DTM three-dimensional deterministic Turing machine 
 

FV 3-ATM five-way three-dimensional alternating Turing machine 
 
 

FV 3-NTM five-way three-dimensional nondeterministic Turing machine 
 

FV 3-DTM five-way three-dimensional deterministic Turing machine  

3-ATM (L(m)) L(m) space-bounded three-dimensional alternating 
 

Turing machine 
 

 

3-NTM (L(m)) L(m) space-bounded three-dimensional nondeterministic 
 

Turing machine 
 

3-DTM (L(m)) L(m) space-bounded three-dimensional deterministic 
 

Turing machine 
 

 

FV 3-ATM (L(m)) L(m) space-bounded five-way three-dimensional 
 

alternating Turing machine 
 

FV 3-UTM (L(m)) L(m) space-bounded five-way  three-dimensional 
 

alternating Truing machine with only universal states 
 

FV 3-NTM (L(m)) L(m) space-bounded five-way three-dimensional 
 

nondeterministic Turing machine 
   

FV 3-DTM (L(m)) L(m) space-bounded five-way three-dimensional 
 

deterministic Turing machine  

 

3-AFA three-dimensional alternating finite automaton 
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3-NFA three-dimensional nondeterministic finite automaton 
 

3-DFA three-dimensional deterministic finite automaton 
 

FV 3-AFA                             five-way three-dimensional alternating finite 

automaton 

FV 3-NFA five-way three-dimensional nondeterministic finite 

automaton 

FV 3-DFA five-way three-dimensional deterministic finite 

automaton 

3-NFA(k-heads) k heads 3-NFA 
 

3-DFA(k-heads) k heads 3-DFA 
 

3-NMk three-dimensional nondeterministic k-marker automaton 
 

3-DMk three-dimensional deterministic k-marker automaton 

 
 

 

(5) Abbreviations for Four-Dimensional Automata 

 
 

Term Interpretation 
 

4-ATM four-dimensional alternating Turing machine 

4-NTM four-dimensional nondeterministic Turing machine 
 

4-DTM four-dimensional deterministic Turing machine 
 

SV 4-ATM seven-way four-dimensional alternating Turing machine 
 

SV 4-NTM seven-way four-dimensional nondeterministic Turing machine 
 

SV 4-DTM seven-way four-dimensional deterministic Turing machine  

 

4-ATM (L(m)) L(m) space-bounded four-dimensional alternating 
 

Turing machine 
 

4-NTM (L(m)) L(m) space-bounded four-dimensional nondeterministic 
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Turing machine 
 

4-DTM (L(m)) L(m) space-bounded four-dimensional deterministic 
 

Turing machine 
 

SV 4-ATM (L(m)) L(m) space-bounded seven-way four-dimensional 
 

alternating Turing machine 
 

SV 4-NTM (L(m)) L(m) space-bounded seven-way four-dimensional 
 

nondeterministic Turing machine 
   

SV 4-DTM (L(m)) L(m) space-bounded seven-way four-dimensional 
 

deterministic Turing machine  

 

4-AFA three-dimensional alternating finite automaton 
 

3-NFA three-dimensional nondeterministic finite automaton 
 

3-DFA three-dimensional deterministic finite automaton 
 

FV 3-AFA                           five-way three-dimensional alternating finite  

automaton 

FV 3-NFA                        five-way three-dimensional nondeterministic finite  

automaton 

FV 3-DF                            five-way three-dimensional deterministic finite  

automaton 

 

4-NMk four-dimensional nondeterministic k-marker automaton 
 

4-DMk four-dimensional deterministic k-marker automaton 

   

1-4CA                                   one-way four dimensional cellular automaton 
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Chapter 1 

Introduction 

 
There are two major components in computer science: The first one is the fundamental 

mathematics and theories underlying computing, and the second one is engineering 

techniques for the design of computer systems, including hardware and software. 

Theoretical computer science falls under the first area of the two major components. It 

begins in various fields: physics, mathematics, linguistics, electric and electronic 

engineering, physiology, and so on. Most of these studies have become important ideas and 

models that are central to theoretical computer science [1, 12]. 

In theoretical computer science, the Turing machine has played a number of important 

roles in understanding and exploiting basic concepts and mechanisms in computing and 

information processing. It is a simple mathematical model of computers which was 

introduced by Turing A. M. in 1936 to answer one of the fundamental issues in computer 

science ― “What kind of logical work can we effectively perform?” [81]. If the restrictions 

in its structure and move are placed on the Turing machine, the restricted Turing machine 

is less powerful than the original one. However, it has become increasingly apparent that the 

characterization and classification of powers of the restricted Turing machines should be of 

great important.  Such a study was active in 1950’s and 1960’s.  On the other hand, many 
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researchers have been making their efforts to investigate another fundamental issue of 

computer science ― “How complicated is it to perform a given logical work?”. The concept 

of computational complexity is a formalization of such difficulty of logical works. 

In the study of computational complexity, the complexity measures are of great 

importance. In general, it is well known that the computational complexity has originated 

in a study of considering how the computational powers of various types of automata are 

characterized by the complexity measures such as space complexity, time complexity, or 

some other related measures. Especially, the concept of complexity is very useful to 

characterize various types of automata from a viewpoint of memory requirements [32]. This 

study was motivated by Stearns R. E., Hartmanis J., and Lewis P.  M. in 1965 [74].  They   

introduced an L(m) space-bounded one-dimensional Turing machine to formalize the notion 

of space complexity, and investigated its computing ability.  Some results were refined by 

Hopcroft J. E. and Ullman J. D. [10-12].  Moreover, Chandra A. K., Kozen D. C., and 

Stockmeyer L. J. introduced an alternating Turing machine as a theoretical model of parallel 

computation in 1981 [5]. An alternating Turing machine, whose state set is partitioned into 

two disjoint sets, the set of universal states and the set of existential states, is a generalization 

of a non- deterministic Turing machine. A nondeterministic Turing machine is an alternating 

Turing machine which has only existential states. In related paper, several investigations of 

these machines have been continued [8, 13, 32, 33, 35, 44, 45, 48, 75]. 

After that, the development of the processing of pictorial information by computer was 

rapid in those days.  Therefore, the problem of computational complexity was also arisen   

in the two-dimensional information processing. Blum M. and Hewitt C. first proposed two-

dimensional automata ― two-dimensional finite automata and marker automata, and 

investigated their pattern recognition abilities in 1967 [3].   Since then, many    researchers 
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in this field have been investigating properties about automata on a two-dimensional tape. 

For example, Morita K., Umeo H., and Sugata K. proposed an L(m, n) space-bounded two-

dimensional Turing machine and its variants to formalize memory limited computations in 

the two-dimensional information processing [37-40].  Ito A., Inoue K., Takanami   I, and 

Taniguchi H. introduced two-dimensional alternating Turing machines as a generalization 

of two-dimensional nondeterministic Turing machines and as a mechanism to model parallel 

computation. Restricted version of two-dimensional alternating Turing machines were 

investigated [22, 24-26]. Special types of two-dimensional Turing machines (two- 

dimensional pushdown automata, stack automata, multicounter automata, multihead 

automata, and marker automata) were investigated [14, 20, 72, 73, 76]. Moreover, cellular 

automata on a two-dimensional tape were investigated not only from the viewpoint of formal 

language theory, but also from the viewpoint of pattern recognition. Cellular automata on a 

two-dimensional tape can be classified into three types. The first type, called a two-

dimensional cellular automaton, is investigated [2, 7, 8]. Especially, many properties of two-

dimensional on-line tessellation acceptors, which are restricted type of two-dimensional 

cellular automata, are investigated [15-17, 19]. The second type of cellular automata on a 

two-dimensional tape is investigated [18, 46, 47, 78].  Two typical models of this type   are 

parallel / sequential array automata and one-dimensional bounded cellular acceptors.  The 

third type, called a pyramid cellular acceptor, is investigated [21]. More detailed survey of 

two-dimensional automata theory is done by Inoue K. and Takanami I. [23]. 

By the way, the question of whether processing three-dimensional digital patterns is 

much difficult than two-dimensional ones is of great interest from the theoretical and 

practical standpoints both.  In recent years, due to the advances in many application areas 

such as computer graphics, computer-aided design / manufacturing, computer vision, image 
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processing, robotics, and so on, the study of three-dimensional pattern processing has been 

of crucial importance. Thus, the research of three-dimensional automata as the 

computational model of three-dimensional pattern processing has been meaningful. 

However, it is conjectured that the three-dimensional pattern processing has its own 

difficulties not arising in two-dimensional case. One of these difficulties occurs in 

recognizing topological properties of three-dimensional patterns because the three-

dimensional neighborhood is more complicated than two-dimensional case. Generally 

speaking, a property or relationship is topo- logical only if it is preserved when an arbitrary 

“rubber-sheet” distortion is applied to the pictures. For example, adjacency and 

connectedness are topological; area, elongatedness, convexity, straightness, etc. are not. 

During the past about thirty years, automata on a three-dimensional tape have been 

proposed and several properties of such automata have been obtained. Inoue K. and 

Nakamura I. proposed an n-dimensional on-line tessellation acceptor which can decide 

whether an n-dimensional tape is accepted or not by the on-line and parallel processing [16].      

Blum M. and Sakoda W. J. investigated the capability of finite automata in two-dimensional 

and three-dimensional space [4]. Yamamoto Y., Morita K., and Sugata K. introduced a three- 

dimensional k-marker automaton, an L(m) space-bounded three-dimensional Turing ma- 

chine and an L(m) space-bounded five-way three-dimensional Turing machine [83]. They 

studied the problem of recognizing connectedness of three-dimensional patterns by these 

machines. Taniguchi H., Inoue K., and Takanami I. investigated the relationship between the 

accepting powers of three-dimensional finite automata and five-way three-dimensional Turing 

machines [77]. They also proposed a k-neighborhood template A-type two-dimensional 

bounded cellular acceptor which consists of a pair of a converter and a configuration-reader, 

as the computational model of three-dimensional pattern process. The converter converts the 
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given three-dimensional tape to the two-dimensional configuration, and the configuration-

reader determines the acceptance or nonacceptance of given three-dimensional tape, de- 

pending on whether or not the derived two-dimensional configuration is accepted [78, 79]. 

Nakamura A. and Aizawa K. proposed the interlocking component which is a chainlike 

connectivity a new topological property of three-dimensional digital pictures, and 

investigated the recognizability of interlocking components [42]. Sakamoto M. et al. 

proposed several three- or four-dimensional automata, and showed their properties [43, 49-59]. 

Moreover, Ito T. et al. investigated about synchronized alternation and parallelism for three-

dimensional automata [27-30, 59]. 

In this dissertation, we introduce some four-dimensional automata and investigate their 

various properties. The dissertation has six chapters in addition to this Introduction. Chapter 

2 gives definitions and notations necessary for Chapters 3 through 6. 

We show in Chapter 3 many investigations about four-dimensional automata which have 

been accomplished until now. We can observe the historical review of properties of four- 

dimensional automata before beginning the main subject. 

In Chapter 4, we investigate some accepting powers of four-dimensional alternating 

Turing machines whose input tapes are restricted to cubic ones and show the space lower 

bound technique for four-dimensional alternating Turing machines. 

In Chapter 5, we deal with four-dimensional homogeneous systolic pyramid automata. 

We first proposed a four-dimensional homogeneous systolic pyramid automaton. Next, we 

compared a four-dimensional homogeneous systolic pyramid automaton with one-way a 

four-dimensional cellular automaton. 

In Chapter 6, we summarize the results and discuss the problems which have arisen 

throughout the study. 
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It has often been noticed that we can easily get several properties of four-dimensional 

automata by directly applying the results of one- or two- or three-dimensional case, if the 

input tapes are not restricted to cubic ones. So we state these subjects only for cubic tapes in 

Chapters 5. 
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Chapter 2 

Definitions and Notations 

 

This chapter summarizes the formal definitions and notations necessary for this 

dissertation. We first define a four-dimensional tape which is the input tape of four-

dimensional automata. Next, we define four-dimensional Turing machine, and their 

related notations. 

 

2.1 Four-Dimensional Tape 

Definition 2.1. Let Σ be a finite set of symbols. A four-dimensional tape over Σ is a 

four-dimensional rectangular array of elements of Σ. The set of all the four-

dimensional tapes over Σ is denoted by Σ(4). Given a tape x ∈ Σ(4), for each integer j (1 

≤ j ≤ 4), we let lj (x) be the length of x along the jth axis. The set of all x ∈ Σ(4) with 

l1(x) = n1, l2(x) = n2, l3(x)=n3 and l4(x)=n4 is denoted by Σ(n1,n2,n3, n4).  When 1 ≤ ij  ≤ 

lj (x) for each j (1 ≤ j ≤ 4),  let x(i1, i2, i3,i4) denote the symbol in x with coordinates 

(i1, i2, i3,i4) as shown in Fig.  2.1.  

Furthermore, we define 

x[(i1, i2, i3,i4), (i
'
1, i

'
2, i

'
3, i

'
4)], 

when 1 ≤ ij ≤ i'j ≤ lj (x) for each integer j (1 ≤ j ≤ 4), as the four-dimensional input tape 
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satisfying the following (i) and (ii): 

(i) for each j (1 ≤ j ≤ 3), lj (y) = i'j − ij + 1; 

 

(ii) for each r1,r2,r3,r4 (1 ≤ r1 ≤ l1(y), 1 ≤ r2 ≤ l2(y), 1 ≤ r3 ≤ l3(y), 1 ≤ r4 ≤ l4(y)), y 

(r1,r2,r3,r4) = x(r1+i1−1, r2+i2−1, r3+i3−1, r4+i4−1). (We call x[(i1, i2, i3,i4), (i
'
1, i

'
2, i

'
3, 

i'4)] the [(i1, i2, i3,i4), (i
'
1, i

'
2, i

'
3, i

'
4)]-segment of x.). 

 

Fig. 2.1: Four-dimensional input tape and coordinates of each cell. 

 

2.2 Four-Dimensional Turing Machine 

We now introduce a four-dimensional Turing machine. 

 

Definition 2.2. As four-dimensional Turing machine has a 6-tuple 

M = (Q, q0, F , Γ, Σ, δ), 

where 
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(1) Q  is a finite set of states, 

(2) q0 ∈ Q is the initial state, 

(3) F ⊆ Q is the set of accepting states, 

 

(4) Σ is a finite input alphabet (# ∈/  Σ is the boundary symbol), 

(5) Γ is a finite storage tape alphabet containing the special blank symbol B. 

 

(6) δ ⊆ (Q × (Σ ∪ {#}) × Γ) × (Q× (Γ − {B}) × {east, west, south, north, up, down,  

no move} × {left, right, no move}) is the next move relation.  

 

A step of M consists of reading one symbol from each tape, writing a symbol on the 

storage tape, moving the input and storage tape heads in specified directions, and entering 

a new state, according to the next move relation δ. When entering accepting state, it stops 

processes. 

 

Fig.  2.2 : Four-dimensional Turing machine
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Chapter 3 

Necessary Spaces for Seven-Way Four-

Dimensional Turing Machines to 

Simulate Four-Dimensional One-Marker 

Automata 

 

An improvement of picture recognizability of the finite automaton is the reason why the 

marker automaton was introduced. That is, a two-dimensional one-marker automaton can 

recognize connected pictures. This automaton has been widely investigated in the two- or 

three-dimensional case [55]. A multi-marker automaton is a finite automaton which keeps 

marks as ‘pebbles’ in the finite control, and cannot rewrite any input symbols  but can make 

marks on its input with the restriction that only a bounded number of these marks can exist 

at any given time[3]. 

As is well known among the researchers of automata theory, one-dimensional one-

marker automata are equivalent to ordinary finite state automata. In other words, there is no 

need of working space usage for one- way Turing machines to simulate one-marker 

automata, as well as finite state automata. 

In the two-dimensional case, the following facts are known : the necessary and sufficient 

space for three-way two-dimensional deterministic Turing machines TR2-DTM’s to 

simulate two-dimensional deterministic (nondeterministic) finite automata 2-DFA’s (2-
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NFA’s) is mlogm (m2) and the corresponding space for three-way two-dimensional 

nondeterministic Turing machines TR2-NTM’s is m (m), whereas the necessary and 

sufficient space for three-way two-dimensional deterministic Turing machines TR2-DTM’s 

to simulate two-dimensional  deterministic  (nondeterministic)  one-marker automata 2-

DMA1’s (2-NMA1’s) is 2mlogm ( 2𝑚2
) and the corresponding space for TR2-NTM’s is    

mlogm(m2), where m is the number of columns of two-dimensional rectangular input tapes. 

In the three-dimensional case, the following facts are known : the necessary and 

sufficient space for five-way three-dimensional deterministic Turing machines FV3- DTM’s 

to simulate three-dimensional deterministic (nondeterministic) finite automata 3-DFA’s (3-

NFA’s) is m2logm (m3) and the corresponding space for five-way three-dimensional 

nondeterministic Turing machines FV3-NTM’s is m2 (m2), whereas the necessary and 

sufficient space for five-way three-dimensional deterministic Turing 

machines FV3-DTM’s to simulate three-dimensional deterministic (nondeterministic) one-

marker automata 3-DMA1’s (3-NMA1’s) is 2lmloglm (2𝑙2𝑚2
) and the corresponding space for 

FV3-NTM’s is lmloglm (l2m2), where l(m) is the number of rows (columns) on each plane of 

three-dimensional rectangular input tapes. In the four-dimensional case, we showed the 

sufficient spaces for four-dimensional Turing machines to simulate four-dimensional one-

marker automata [41]. In this paper, we continue the investigations, and deal with the 

necessary spaces for four-dimensional Turing machines to simulate four-dimensional one-

marker automata. 

 

3.1 Preliminaries 
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An ordinary finite automaton cannot rewrite any symbols on input tape, but a marker 

automaton can make a mark on the input tape. We can think of the mark as a ‘pebble’ that M 

puts down in a specified position. If M has already put down the mark, and wants to put it 

down elsewhere, M must first go to the position of the mark and pick it up. Formally, we define 

it as follows. 

 

Definition 3.1.1 We now introduce a space bounded seven-way four-dimensional Turing 

machine. 

A space bounded seven-way four-dimensional Turing machine (denoted by (SV 4-

TM(L(l,m,n)) ) has a 6-tuple 

M = (Q, q0, F , Γ, Σ, δ), 

where 

(7)           Q  is a finite set of states, 

(8)           q0 ∈ Q is the initial state, 

(9)           F ⊆ Q is the set of accepting states, 

(10) Σ is a finite input alphabet (# ∈/  Σ is the boundary symbol), 

(11) Γ is a finite storage tape alphabet containing the special blank symbol B. 

 

(12)          δ ⊆ (Q × (Σ ∪ {#}) × Γ) × (Q× (Γ − {B}) × {east, west, south, north, up, down,   

no move} × {left, right, no move}) is the next move relation.  

 

A step of M consists of reading one symbol from each tape, writing a symbol on the storage 

tape, moving the input and storage tape heads in specified directions, and entering a new state, 
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according to the next move relation δ. When entering accepting state, it stops processes. 

 Let L(l, m, n) : N3  →  R be a function. A seven-way four-dimensional Turing machine M 

is said to be L(l, m, n) space-bounded if for each l, m, n≥ 1 and for each x with l1(x) = l, l2(x) 

= m, and l3(x) = n, if x is accepted by M. 

 

 

Fig. 3.1 : Space bounded seven-way four-dimensional Turing machine 

 

Definition 3.1.2. A four-dimensional nondeterministic one-marker automaton (4-NMA1) is 

defined by the 6-tuple M = (Q, q0, F, Σ, { +, - }, δ), where 

(1) Q is a finite set of states ; 

(2) q0  ∈ Q  is the initial state ; 

(3) F ⊆ Q is the set of accepting states ; 

(4) Σ is a finite input alphabet (# ∉ Σ is the boundary symbol); 
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(5) {+,－} is the pair of signs of presence and  absence of the marker ; and 

(6)  δ :  (Q × {+, −})  ×  ((Σ ∪ {#})  × {+, −})  → 2𝑄×{+,−}  × ((  Σ ∪ {#}   )    × {+, −}   )   × 

{east, west, south, north, up, down, future, past, no move} is the next-move function, satisfying 

the following : For any q, q’∈ Q, any a, a’ ∈ Σ, any u, u’, v, v’∈ {+, −}, and any d ∈{east, 

west,  south, north,  up,  down,  future, past, no move}, if ((q’, u’), (a’, v’),d)  ∈ 𝛿((q, v), (a, 

v))    then 𝑎   =   𝑎′      and   (𝑢,  𝑣,  𝑢′,  𝑣′)   ∈   {(+,  −,  +,  −), (+, −, −, +),  (−, +, −, +), (−, +, 

+, −), (−, −, −, −)}. 

We call a pair (𝑞, 𝑢) in Q × {+, −} an extended state, representing the situation that M holds 

or does not hold the marker in the finite control according to the sign 𝑢 = + or 𝑢 = −, 

respectively.  A pair (𝑎, 𝑣) in Σ × {+, −} represents an input tape cell on which the marker 

exists or does not exist according to the sign 𝑢 = +   or 𝑢 = −, respectively. 

Therefore, the restrictions on 𝛿 imply the following conditions. (i) When holding the marker, 

M can put it down or keep on holding. (ii) When not holding the marker, and  ① if the marker 

exists on the current  cell, M can pick it up or leave it there, or ② if the marker does not exist 

on the current cell, M cannot create a new marker any more. 

 

Definition 3.1.3. Let Σ be the input alphabet of 4-NMA1 M. An extended input tape �̃� of M is 

any four-dimensional tape over Σ × {+, −} such that for some 𝑥 ∈ Σ(4), 

(i) for each  𝑗(1 ≤ 𝑗 ≤ 4),  𝑙𝑗(�̃�) = 𝑙𝑗(𝑥), 

(ii)  for  each  𝑖1(1 ≤ 𝑖1  ≤ 𝑙1(�̃�)),  𝑖2(1 ≤ 𝑖2  ≤ 𝑙2(�̃�)), 𝑖3(1 ≤ 𝑖3  ≤ 𝑙3(𝑥 ̃)) ,  and  𝑖4(1 ≤ 𝑖4  ≤ 

𝑙4(�̃�)) ,   �̃�(𝑖1, 𝑖2, 𝑖3, 𝑖4)=𝑥((𝑖1, 𝑖2, 𝑖3, 𝑖4), 𝑢) for some 𝑢 ∈ {+, −}.  
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Fig. 3.2 : Four-dimensional one marker automaton 

 

 

Definition 3.1.4. A configuration of 4-NMA1 M = (Q, q0, F, Σ, { +,  - }, δ) is a pair of an 

element of      ((Σ ∪ {#}) ×{+, −} and   an   element   of   C    = (𝐍 ∪ {0})(4) × (𝑄 × {+, 

−}). The first component of a configuration 𝑐 = (𝑥 ̃, ((𝑖1, 𝑖2, 𝑖3, 𝑖4), (𝑞, 𝑢))) represents the 

extended input tape of M. The second component (𝑖1, 𝑖2, 𝑖3, 𝑖4) of 𝑐 represents the input head 

position. The third component (𝑞, 𝑢) represents the extended state.  An element of 𝐶𝑀 is called 

a semi-configuration of M. If q is the state associated with configuration c, then c is said to be 

an accepting configuration if q is an accepting state.  The  initial  configuration  of  M  on  input  

x is 𝐼𝑀(𝑥) = (𝑥−, ((1,1,1,1), (𝑞0, +))), where 𝑥− is the special    extended    input    tape    of    M    

such     that 𝑥−(𝑖1, 𝑖2, 𝑖3, 𝑖4) = (𝑥(𝑖1, 𝑖2, 𝑖3, 𝑖4), −)       for   each 𝑖1, 𝑖2, 𝑖3, 𝑖4 (1 ≤ 𝑖1  ≤ 𝑙1(𝑥−), 1 ≤ 𝑖2  

≤ 𝑙2(𝑥−), 1 ≤ 𝑖3 ≤ 𝑙3(𝑥−), 1 ≤ 𝑖4 ≤ 𝑙4(𝑥−)). If M moves deterministically, we call M a four-

dimensional deterministic one-marker automaton (4-DMA1). 
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Definition 3.1.5. Given a 4-NMA1 M = (Q, q0, F, Σ, {+, -}, δ), we write 𝑐 ˫ 𝑀 𝑐′ and say 𝑐′ is 

a successor of c if configuration 𝑐′ follows from configuration 𝑐 in one  step of M, according 

to the transition rules 𝛿 .  ˫∗ denotes the reflexive transitive closure of ˫ 𝑀. The relation ˫ 𝑀 is 

not necessarily single-valued, because   is not. A computation path of M on 𝑥 is a sequence 𝑐0 

˫𝑀 𝑐1 ˫𝑀 … ˫𝑀 𝑐𝑛(𝑛 ≥ 0), where 𝑐0 = 𝐼𝑀(𝑥) . An accepting computation path of M on x is a 

computation path of M on x which ends in an accepting configuration. We say that M accepts 

x if there is an accepting computation path of M on input x. 

Let L(l, m, n) : N3  →  R be a function. A seven-way four-dimensional Turing machine M 

is said to be L(l, m, n) space-bounded if for each l, m, n≥ 1 and for each x with l1(x) = l, l2(x) = 

m, and l3(x) = n, if x is accepted by M, then there is an accepting computation path of M on x 

in which M uses no more than L(l, m, n) cells of the storage tape. We denote an L(l, m, n) 

space-bounded SV4- DTM (SV4-NTM) by SV4-DTM(L(l, m, n)) (SV4- NTM(L(l, m, n))). 

 

Definition 3.1.6. For any four-dimensional automaton M with input alphabet Σ, define T(M) 

= {x ∈ Σ(4) | M accepts x}. Furthermore, for each X ∈ {D,N}, define L[4-XMA1] = {T | T = 

T(M) for some 4-XMA1}, L[SV4-XTM(S(l,m,n))] = {T | T = T(M) for some SV4-XTM(S(l,m,n)) 

M}, and L[SV4-XTM(L(l,m))] = {T | T = T(M) for some SV4- XTM((l,m)) M}. 

 

 

3.2 Necessary Space 

In this section, we investigate the necessary spaces (i.e., lower bounds) for seven-way 

Turing machines to simulate one-marker automata. 
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Definition 3.2.1. Let x be in Σ(4) (Σ is a finite set of symbols) and l1(x) = l, l2(x) = m, l3(x) = n. 

For each j (1 ≤ j ≤ Q[l4(x)/lmn]) (where Q[l4(x)/lmn] denotes the quotient when l4(x) is divided 

by lmn), x[(1, 1, 1, (j-1)lmn+1), (l, m, n, jlmn)] is called the jth (l, m, n)-block of x. We say 

that the tape 

x has exactly k (l, m, n)-blocks if l4(x)=klmn, where k is a positive integer. 

Definition 3.2.2. Let (l1, m1, n1), (l2, m2, n2), … , be a sequence of points (i.e., pairs of three 

natural numbers), and let {(li, mi, ni)} denote this sequence. We call a sequence {(l1, m1, n1)} 

the regular sequence of points if (li, mi, ni) ≠ (lj, mj, nj) for i ≠ j. 

 

Lemma 3.2.1. Let T1={x ∈ {0, 1}(4) | ∃ l ≥1, ∃m≥1, ∃n≥1[l1(x)=l and l2(x)=m and l3(x)=n 

and (each cuboid of x contains exactly one ‘1’) and ∃d ≥ 2 [(x has exactly d(l, m, n)-blocks, 

i.e., l4(x)=dlmn) and (the last (l, m, n)-block is equal to some other (l, m, n)-block)]]}. Then, 

(1) T1 ∈L[4-DMA1], but 

(2) T1 ∉ L[SV4-DTM(2L(l, m, n))] (so, T1∉L[SV4-NTM(L(l, m, n))]) for any function L(l, m, n) 

such that  

lim
𝑖→∞

[𝐿(𝑙𝑖, 𝑚𝑖, 𝑛𝑖)/(𝑙𝑖𝑚𝑖𝑛𝑖log𝑙𝑖𝑚𝑖𝑛𝑖)]  = 0. 

for some regular sequence of points {(li, mi, ni)}. 

 

Proof: (1): We construct a 4-DMA1 M accepting T1 as follows. Given an input x with l1(x) = 

l, l2(x) = m, and l3(x) = n, M first checks, by sweeping cuboid by cuboid, that each cuboid of x 

contains exactly one ‘1’, and M then checks, by making a zigzag of 45°-direction from top 

cuboid to bottom cuboid, that x has exactly d (l, m, n)-blocks for some integer d ≥ 2. After that, 
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M tests by utilizing its own marker whether the last (l, m, n)-block is identical to some other 

(l, m, n)-block. M then finds the ‘1’ position on the cuboid and move up vertically from this 

position. In this course, each time M meets a ‘1’ position, it checks whether or not there is a 

marker on the cuboid (containing the ‘1’ position). 

(i):If there is a marker on the cuboid, M knows that the kth cuboids of the hth and the last (l, 

m, n)-blocks are identical, and so M then tries to check whether the next (k+1)th cuboids of the 

hth and the last (l, m, n)-blocks are identical. 

(ii):If there is no marker on the cuboid, M goes back to the ‘1’ position on the cuboid, and 

vertically moves up again to find the next ‘1’ position. In this case, if M eventually encounters 

the top boundary, M knows that the kth cuboids of the hth and the last (l, m, n)-blocks are 

different (thus, the hth (l, m, n)-block is not identical to the last (l, m, n)-block), and so M then 

tries to check whether the next (h+1)th (l, m, n)-block is identical to the last (l, m, n)-block. 

In this way, M enters an accepting state just when it finds out some (l, m, n)-block, each of 

whose cuboids is identical to the corresponding cuboid of the last (l, m, n)-block. It will be 

obvious that T(M)= T1. 

(2):Suppose to the contrary that there exists an SV4-DTM(2L(l, m, n)) M accepting T1, where L(l, 

m, n) is a function such that 

lim
𝑖→∞

[𝐿(𝑙𝑖, 𝑚𝑖, 𝑛𝑖)/(𝑙𝑖𝑚𝑖𝑛𝑖log𝑙𝑖𝑚𝑖𝑛𝑖)]  = 0. 

For some regular sequence of points {(li, mi, ni)}. Let s and t be the numbers of states in the 

finite control and storage tape symbols of M, respectively. We assume without loss of 

generality that if M accepts an input, then M enters an accepting state on the bottom boundary. 

For each l ≥ 1, m ≥ 1, n ≥ 1, let V(l, m, n)= {x∈T1 | l1(x)=l and l2(x)=m and l3(x)=n and (x has 

exactly ((lmn)lmn+1) (l, m, n)-blocks)}. For each x∈V(l, m, n), let B(x)={b∈{0, 1}(4) 
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|∃h(1≤h≤(lmn)lmn) [b is the hth (l, m, n)-block of x] }, and let S(l, m, n)= {B(x) | x∈ 𝑉(l, m, 

n)}. Note that for each x∈ (l, m, n), there is a sequence of configurations of M which leads M 

to an accepting state. Let conf(x) be the semi-configuration just after M leaves the second-to-

last (l, m, n)-block of x. Then, we get following proposition. 

 

Proposition 3.2.1. For any two tapes x, y∈V(l, m, n), if B(x) ≠ B(y), then conf(x) ≠ conf(y). 

 

Proof of Lemma 3.2.1(continued): There are at most E (l, m, n)=(l+2)(m+2)(n+2)s2L(l, m, 

n)𝑡2𝐿(𝑙,𝑚,𝑛)
 different semi-configurations of M just when M enters the last (l, m, n)-block of tapes 

in V(l, m, n). On the other hand, |S(l, m, n)|=2r-1 (r=(lmn)lmn). 

Thus, from the assumption concerning the function L(l, m, n), it follows that there exists a 

point (li, mi, ni) such that |S(li, mi, ni)|＞E(li, mi, ni). For such (li, mi, ni), there exist two tapes x, 

y in V(li, mi, ni) such that B(x) ≠ B(y) and conf(x) = conf(y). This contradicts Proposition 3.2.1. 

This completes the proof of (2). □ 

 

From Lemma 3.1, we can conclude as follows. 

 

Theorem 3.2.1. To simulate 4-DMA1’s, 

(1) SV4-NTM’s require Ω(lmn(loglmn)) space, and 

(2) SV4-DTM’s require 2Ω(lmn(loglmn)) space. 

By using the same technique as in the proof of Theorem 3.2.1, we can get as follows. 
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Theorem 3.2.2. To simulate 4-NMA1’s, 

(1) SV4-NTM’s require Ω(l2m2n2) space, and 

(2) SV4-DTM’s require 2Ω(𝑙2𝑚2𝑛2) space. 

 
 

3.3 Concluding Remarks 
 

In this chapter, we showed the necessary spaces for four-dimensional Turing machines to 

simulate four-dimensional one-marker automata. It will be interesting to investigate how 

much space is necessary and sufficient for seven-way four-dimensional deterministic or 

nondeterministic Turing machines to simulate four-dimensional ‘alternating’ one-marker 

automata. 
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Chapter 4 

A Space Lower-Bound Technique for 

Four-Dimensional Alternating Turing 

Machines 

 
Alternating Turing machines were introduced in 1981 as a generalization of 

nondeterministic Turing machines and as a mechanism to model parallel computation. On 

the other hand, we have no enough techniques which we can show that some concrete four-

dimensional language is not accepted by any space-bounded four-dimensional alternating 

Turing machines. The main purpose of this paper is to present a technique which we can 

show that some four-dimensional language is not accepted by any space-bounded four-

dimensional alternating Turing machines. 

Concretely speaking, we show that the set of all four-dimensional input tapes over {0,l}, 

which each top half part is equal to each bottom half part, is not accepted by any L(m) space-

bounded four-dimensional alternating Turing machines for any function L(m) smaller than 

logm. 

 

4.1 Preliminaries 
 

We have no enough techniques which we can show that some concrete four-dimensional 

language is not accepted by any space-bounded four-dimensional alternating Turing 
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machines [5, 50]. The main purpose of this paper is to present a technique which we can show 

that some four-dimensional language is not accepted by any space-bounded four-dimensional 

alternating Turing machines. Concretely speaking, we show that the set of all four-

dimensional input tapes over {0,l}, which each top half part is equal to each bottom half part, 

is not accepted by any L(m) space-bounded four-dimensional alternating Turing machines for 

any function L(m) such that limm→∞[L(m)/log m] = 0. We let each side-length of each four-

dimensional input tape of these automata be equivalent in order to increase the theoretical 

interest. 

Let Σ be a finite set of symbols. A four-dimensional tape over Σ is a four-dimensional 

rectangular array of elements of Σ. The set of all four-dimensional tapes over Σ is denoted by 

Σ(4). Given a tape x ∈ Σ(4), for each integer j( 1 ≤ j ≤ 4 ), we let mj(x) be the length of x along 

the jth axis. The set of all x ∈ Σ(4) with l1(x) = m1, l2(x)=m2, l3(x)=m3, and l4(x)=m4 denoted 

by Σ(𝑚1,𝑚2,𝑚3,𝑚4). If 1 ≤ij≤lj(x) for each j(1 ≤ j ≤ 4) , let x(i1,i2,i3,i4) denote the symbol in x 

with coordinates (i1,i2,i3,i4). 

Furthermore, we define x[(i1,i2,i3,i4),(i’1,i’2,i’3,i’4)], when 1 ≤ ij  ≤ i’j(x) for each integer j(1 

≤  j ≤ 4) , as the four-dimensional tape y satisfying the following (i) and (ii): 

(i) for each j(1≤j≤4), lj(y)=i’j-ij+1; 

(ii) for each r1, r2, r3, r4(1 ≤ r1 ≤ l1(y), 1 ≤ r2 ≤ l2(y), 

1≤ r3 ≤l3(y), 1 ≤ r4 ≤l4(y)), y(r1, r2, r3, r4) = x(r1+i1-1, r2+i2-1, r3+i3-1, r4+i4-1). (We call x[(i1, 

i2, i3, i4), (i’1, i’2, i’3, i’4)]-segment of x.); 

A four-dimensional alternating Turing machine (4-ATM) M is defined by the 7-tuple M = 

(Q, q0, U, F, Σ, Γ, δ), where (1) Q is a finite set of states; (2) q0∈Q is the initial state; (3) U 
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⊆ Q is the set of universal states; (4) F⊆Q is the set of accepting states; (5) Σ is a finite 

input alphabet (#∈Σ is the boundary symbol); (6) Γ is a finite storage-tape alphabet (B∈Γ 

is the boundary symbol), and (7) δ ⊆(Q ×{#}) × Γ) × (Q × (Γ - {B}) × {east, west, south, 

north, up, down, past, future, no move} ×{right, left, no move}) is the next-move relation. 

A state q in Q - U is said to be existential. The machine M has a read-only four-dimensional 

input tape with boundary symbols # 's and one semi-infinite storage tape, initially blank. Of 

course, M has a finite control, an input head, and a storage-tape head. A position is assigned 

to each cell of the read-only input tape and to each cell of the storage tape. A step of M 

consists of reading one symbol from each tape, writing a symbol on the storage tape, moving 

the input and storage heads in specified directions, and entering a new state, in accordance 

with the next-move relation δ. Note that the machine cannot write the blank symbol. If the 

input head falls off the input tape, or if the storage head falls off the storage tape (by moving 

left), then the machine M can make no further move. 

A configuration of a 4-ATM M = (Q, q0, U, F, Σ, Γ, δ) is a pair of an element of Σ(4) and an 

element of CM = (N∪{0})(3) × SM , where SM = Q × (Γ-{B})* × N and N denotes the set 

of all the positive integers. The first component x of a configuration c = (x, ((il, i2, i3, i4), (q, 

α, j))) represents the input to M. The second component (il, i2, i3, i4) of c represents the input-

head position. The third component (q, α, j) of c represents the state of the finite control, 

nonblank contents of the storage tape, and the storage-head position. An element of CM is 

called a semi-configuration of M and an element of SM is called a storage state of M. If q is 

the state associated with configuration c, then c is said to be a universal (existential, 

accepting) configuration if q is a universal(existential, accepting) state. The initial 

configuration of M on input x is IM (x) = (x, (1, 1, 1, 1), (q0, λ, 1)), where λ is the null string. 
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Given M = (Q, q0, U, F, Σ, Γ, δ) , we write c ┠M c' and say c' is a successor of c if 

configuration c' follows from configuration c in one step of M, according to the transition 

rules δ. The relation ┠M is not necessarily single-valued, because δ is not. A computation 

path of M on x is a sequence. C0 ┠M Cl ┠M …┠M Cn (n ≥ 0), where C0 = IM (x). A 

computation tree of M is a finite, nonempty labeled tree with the following properties: (1) 

Each node v of the tree is labeled with a configuration l(v), (2) If v is an internal node (a 

nonleaf) of the tree, l(v) is universal and {c | l(v)┠M c} = {cl,…, ck}, then v has exactly k 

children v1,…,vk such that l(vi) = ci (1≤ i ≤ k), and (3) If v is an internal node of the tree and 

l(v) is existential, then v has exactly one child u such that l(v)┠M l(u). A computation tree of 

M on input x is a computation tree of M whose root is labeled with IM (x). An accepting 

computation tree of M on x is a computation tree of M on x whose leaves are all labeled with 

accepting configurations. We say that M accepts x if there is an accepting computation tree 

of M on input x. Define T(M) = {x ∈Σ(4)| M accepts x}. 

In this paper, we shall concentrate on investigating the properties of 4-ATM's whose each 

side-length of each four-dimensional input tape is equivalent and whose storage tapes are 

bounded (in length) to use. 

Let L(m) : N → N be a function with one variable m. With each 4-ATM M we associate a 

space complexity function SPACE that takes configurations to natural numbers. That is, for 

each configuration c = (x, ((il, i2, i3, i4), (q, α, j))), let SPACE(c) =|α|. We say that M is L(m) 

space-bounded if for all m ≥ 1 and for each x with l1(x) = l2(x) = l3(x) = l4(x) = m, if x is 

accepted by M, then there is an accepting computation tree of M on input x such that for each 

node v of the tree, SPACE(l(v)) ≤ L(m). We denote an L(m) space-bounded 4-ATM by 4-ATM 

(L(m)). L[4-ATM (L(m))] = {T | T = T(M) for some 4-ATM (L(m)) M}. 
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4.2 Main Result 

 
Theorem 4.2.1 Let T={x ∈{0, 1}(4) |∃m ≤ 1 [l1(x) = l2(x) = l3(x) = l4(x) =2m & x[(l, 1, 1, 1), 

(2m, 2m, 2m, m)] = x[(l, 1, 1, m + 1), (2m, 2m, 2m, 2m)]]). Then, T ∉ L[4-ATM (L(m))] for any 

L(m) = o(log m). 

(Proof) Suppose that there exists a 4-ATM (L (m)) M accepting T, where L(m) = o(log m). 

We assume, without loss of generality, that M moves a storage-tape head after changing its 

state and writing a new symbol on the storage tape, and moves an input head finally. 

For each m ≤ 1, let V (m) = {x ∈T | l1(x) = l2(x) = l3(x) = l4(x) = 2m}. For each x in V(m), let 

t(x) be one fixed accepting computation tree of M on x such that each node v of the tree satisfies 

SPACE(l(v)) ≤ L(2m), where for each node v of t(x), l(v) represents the label of v. Without loss 

of generality, we assume that for any t(x); (i) any two different nodes on any path of t(x) are 

labeled by different configurations, and, (ii) if any different nodes of t(x) have the same label, 

then the subtrees [of t(x)] with these nodes as the roots are identical. 

For each x in V(m), let t(m), which we call the reduced accepting computation tree of M on 

x, be a tree obtained from t(x) by the following procedure [for each node v of t(x), we denote 

by d(v) the length of the path from the root of t(x) to v (i.e., the number of edges from the root 

of t(x) to v)]: 

Begin 

1. Tr = t(x) 

2. i = 1 

3. Let N(i) ≜ {v | v is node of Tr and d(v) ≤ i}. Divide N(i) as follows: N(i) = P(l) ⋃ P(2) ⋃…⋃ 

P(ji), where: (1) if ia = ib(l≤ ia, ib ≤ ji), then P(ia) ∩ P(ib) = φ, and (2) for each ia(1 ≤ ia ≤ ji) and 

for each va, Vb ∈ P(ia), l(va) = l(vb) (i.e., the labels of va and vb are identical). For each ia (1 ≤ 
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ia ≤ ji), let dis(ia) = min{d(v) | v ∈ P(ia)} and let n(ia) be the leftmost node among those nodes 

v in P(ia) such that d(v) = dis(ia). Further, let N'(i) = N(i) - {n(l), n(2), …, n(ji)}. By removing 

from Tr all the subtrees whose roots are included in N'(i), we make the new Tr. 4. If the height 

of Tr (i.e., the length of the longest path of Tr ) is less than or equal to i, then we let t'(x) = Tr. 

Otherwise, we let i = i + 1 and go to step 3. 

end 

[Example 1] Let x ∈ V(m) and t(x) be a tree. Here, suppose that nodes A and D have the same 

label, nodes B and C have the same label, and other nodes each have different labels. [From 

the preceding assumption (ii) concerning t(x), identical.] Then, t'(x) is a tree. That is, t'(x) is 

obtained from t(x) by moving the subtree with nodes C and D as the roots from t(x). 

It is easily seen that for each x in V (m), all the nodes of t'(x) have labels different from one 

another, and the set of all the paths from root of t'(x) to the leaves of t'(x) represents necessary 

and sufficient accepting computations of M on x. From t'(x), we now define an extended 

crossing sequence (ECS) at the boundary between the top and bottom halves of x. The concept 

of ECS was first introduced in [84]. We relabel each node v of t'(x), as follows. (We denote 

this new labeling by l'.) For each node v of t'(x), let f(v) denote the father node of v. Then, for 

each node v of t'(x), where x ∈ V(m), let if, for some storage states (q, α, j) and (q', α', j'), 

(i) l(f(v)) = (x, (il , i2, i3, m), (q', α', j')) and l(v) = (x, (il , i2, i3, m +1), (q, α, j)) , or 

(ii) l(f(v)) = (x, (il , i2, i3, m +1), (q', α', j')) and l(v) = (x, (il , i2, i3, m), (q, α, j)) , then l'(v) = 

((il , i2, i3), (q, α, j)) 

else 

l'(v) = *. 

That is, if the movement of M from f(v) to v represents the action of crossing the boundary 

between the top and bottom halves of x, then v is newly labeled by (il , i2, i3), (q, α, j)), where 
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(q, α, j) is the storage state component of l(v). Otherwise, v is newly labeled by *. From the 

newly labeled t'(x), we extract those nodes v such that l'(rn) = *, and by using these nodes, we 

construct a tree t"(x) satisfying the following condition: 

(A) For any node v of t"(x), nodes v1, v2, …,vS are children of v if and only if v1, v2, …,vS are 

descendants of v in t'(x) and l'(u) = * for each node u on the path rom v to each vi. In general, 

there can be two or more uth trees t"(x). Let these trees be t1"(x), … , tn"(x). For each node v 

of each ti"(x) (l ≤ i ≤ n), we now define an element of ECS (EECS) inductively as follows: Let 

l'(v) = ((il , i2, i3), (q, α, j)). 

(1) If v is a leaf, then [((il , i2, i3), (q, α, j))] is an EECS of v. 

(2) If v has only one child v1 and Q1 = [((i11 , i21, i31), (q1, α1, j1))P] is an EECS of v1, then [((il , 

i2, i3), (q, α, j)) ((i11 , i21, i31), (q1, α1, j1))P] is an EECS of v. 

(3) If v has d(≥2) children v1, …, vd and Q1, …, Qd are EECS's of v1, …, vd, respectively, then 

[((il , i2, i3), (q, α, j)) Qσ(1)…Qσ(d)] is an EECS of v for any permutation σ : {1, …, d}→{1, 

…, d}. 

(4) An EECS of v is defined only by the preceding statements (1), (2), and (3). 

Now, let Q1, …, Qn be EECS's of the root nodes of t1"(x),…, tn"(x), respectively. Then, for 

any permutation σ : {1, …, n}→{l, …, n}, we call Qσ(1), …, Qσ(n) an ECS of x. As is easily 

seen from the definitions, there can be two or more EECS's of each node v of each t"(x), and 

there can be two or more ECS's of x. Let Q1 and Q2 be any two EECS's. If the following 

condition (B) is satisfied, we say Q1 and Q2 are equivalent and write Q1 ≡ Q2: 

(B) Let Q1 = [((i11 , i21, i31), (q1, α1, j1)) …((i1n , i2n, i3n), (qn, αn, jn)) P1 …PS], Q2 = [((i’11 , i’21, 

i’31), (q’1, α’1, j’1)) …((i’1n’ , i’2n’, i’3n’), (q’n’, α’n’, j’n’)) P’1 …P’S’]. Then n = n', s = s', and 

((i1k , i2k, i3k), (qk, αk, jk))= ((i’1k , i’2k, i’3k), (q’k, α’k, j’k)) for each k (1 ≤ k ≤ n), and there exists 

a permutation σ : {1, …, s} →{1, …, s} such that Pi ≡ P’σ(i) for each i(1 ≤ i ≤ s), where n, s ≥ 

0, and ((il , i2, i3), (q, α, j))'s and ((i'l , i'2, i'3), (q’, α’, j’))'s are pairs (coordinates along the 
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fourth axis, storage state), and further P, P' are EECS's. 

Let Q = Q1 …Qn, Q’ = Q’1 …Q’n be any two ECS's. We say that Q and Q' are equivalent if 

n = n' and there exists a permutation σ : {1, …, n} →{1, …, n } such that Qi ≡ Q’σ(i) for each i 

(1 ≤ i ≤ n). [As is easily seen from the definition, any two ECS's of x are equivalent for any x 

in V(m).] For any ECS Q, the length of Q is the number of pairs (coordinates along the fourth 

axis, storage state) in Q, and is denoted by | Q |. For each m ≥ 1, let E(m) = {Q | Q is an ECS 

of x for some x in V(m)}. Then, the following two propositions must hold :  

 

Proposition 4.2.1 | E(m) | = Z(m)dZ(m), where Z(m) = (2m + 2)3rL(2m)sL(2m), r and s are the 

numbers of states (of the finite control) and storage-tape symbols of M, and d 

is a positive constant. 

 

Proposition 4.2.2 Let x and y be any two different tapes in V(m), and let Qx and Qy be any 

ECS's of x and y, respectively. Then, Qx and Qy are not equivalent. 

Clearly, |V(m) |=28t (t=m4) . Because L(m) = o(log m), it follows from Proposition 1 that 

|V(m) | > | E(m) | for large m. For such a large m, there must exist two different tapes x, y ∈V 

(m) such that some ECS of x and some ECS of y are equivalent, which contradicts Proposition 

2. This completes the proof. □ 
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Fig. 4.1 : Four-dimensional input tape which we 

use in the main theorem 

 

4.3 Concluding Remarks 

In this chapter, we presented a technique which we can show that a four-dimensional 

language is not accepted by any space-bounded alternating Turing machines. It will be 

interesting to investigate infinite space hierarchy properties of the classes of sets accepted 

by 4-ATM's with spaces of size smaller than log m. 
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Chapter 5 

Four-Dimensional Homogeneous Systolic 

Pyramid Automata 

 
Cellular automaton is famous as a kind of the parallel automaton. Cellular automata were 

investigated not only in the viewpoint of formal language theory, but also in the viewpoint 

of pattern recognition. Cellular automata can be classified into some types. A systolic 

pyramid automata is also one parallel model of various cellular automata. A homogeneous 

systolic pyramid automaton with four-dimensional layers (4-HSPA) is a pyramid stack of 

four-dimensional arrays of cells in which the bottom four-dimensional layer (level 0) has 

size an (a≥1), the next lowest 4(a-1), and so forth, the (a-1)st four-dimensional layer (level 

(a-1)) consisting of a single cell, called the root. Each cell means an identical finite-state 

machine. The input is accepted if and only if the root cell ever enters an accepting state. A 

4-HSPA is said to be a real-time 4-HSPA if for every four-dimensional tape of size 4a  (a≥1) 

it accepts the four-dimensional tape in time a-1. Moreover, a one-way four-dimensional 

cellular automaton (1-4CA) can be considered as a natural extension of the one-way two- 

dimensional cellular automaton to four-dimension. The initial configuration is accepted if 

the last special cell reaches a final state. A 1-4CA is said to be a real- time 1-4CA if when 

started with four-dimensional array of cells in nonquiescent state, the special cell reaches a 

final state. In this paper, we propose a homogeneous systolic automaton with four-
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dimensional layers (4-HSPA), and investigate some properties of real-time 4-HSPA. 

Specifically, we first investigate a relationship between the accepting powers of real-time 4-

HSPA’s and real-time 1-4CA’s. We next show the recognizability of four-dimensional 

connected tapes by real-time 4-HSPA’s. 

 

5.1 Introduction 

 
In recent years, due to the advances in many application areas such as dynamic image 

processing, computer animation, VR(virtual reality), AR (augmented reality), and so on, the 

study of four-dimensional pattern processing has been of crucial importance. And the 

question of whether processing four-dimensional digital patterns is much more difficult than 

three-dimensional ones is of great interest from the theoretical and practical standpoints. Thus, 

the study of four-dimensional automata as a computational model of four-dimensional pattern 

processing has been meaningful[34, 55-71, 80, 82]. On the other hand, cellular automata were 

investigated not only in the viewpoint of formal language theory, but also in the viewpoint of 

pattern recognition. Cellular automata can be classified into some types [31]. A systolic 

pyramid automaton is also one parallel model of various cellular automata. In this chapter, 

we propose a homogeneous systolic pyramid automaton with four-dimensional layers (4-

HSPA) as a new four-dimensional parallel computational model, and investigate some 

properties of real-time 4-HSPA. 

 

5.2 Preliminaries 
 

Let Σ be a finite set of symbols. A four-dimensional tape over Σ is a four-dimensional 

rectangular array of elements of Σ. The set of all four-dimensional tapes over ∑ is denoted by 
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Σ(4). Given a tape x ∈ Σ(4), for each integer j (1≤ j ≤4), we let lj(x) be the length of x along the 

jth axis. The set of all x ∈ Σ(4) with l1(x) = n1, l2(x) = n2, l3(x) = n3, and l4(x) = n4 is denoted by 

Σ(𝑛1,𝑛2,𝑛3,𝑛4). When 1≤ ij≤ lj(x) for each j(1≤ j ≤4), let x(i1, i2, i3, i4) denote the symbol in x with 

coordinates (i1, i2, i3, i4). Furthermore, we define  

 

x [(i1, i2, i3, i4), (i’1, i’2, i’3, i’4)], 

 

when 1 ≤ ij ≤ i’j ≤ lj(x) for each integer j(1≤ j ≤4), as the four-dimensional input tape y 

satisfying the following conditions : 

 

(i)for each j(1≤ j ≤4), lj(y)= ij - ij+1; 

 

(ii)for each r1, r2, r3, r4 (1≤ r1 ≤ l1(y), 1 ≤ r2 ≤ l2(y), 1 ≤ r3 ≤ l3(y), 1 ≤ r4 ≤ l4(y)), y(r1, r2, r3, r4) 

= x(r1 + i1 - 1, r2 + i2 - 1, r3 + i3 - 1, r4 + i4 - 1). (We call x[(i1, i2, i3, i4), (i’1, i’2, i’3, i’4)] the [(i1, 

i2, i3, i4), (i’1, i’2, i’3, i’4)]-segment of x.) 

 

For each x ∈ Σ(𝑛1,𝑛2,𝑛3,𝑛4) and for each 1 ≤ i1 ≤ n1, 1 ≤ i2 ≤ n2, 1 ≤ i3 ≤ n3, 1 ≤ i4 ≤ n4, x[(i1, 1, 

1, 1), (i1, n2, n3, n4), x[(1, i2, 1, 1), (n1, n2, n3, n4)], and x[(1, 1, i3, 1), (n1, n2, n3, n4)] are called 

the i1th (2-3) plane, the i2th (1-3) plane, and the i3th (1-2) plane of each time of x, and are 

denoted by x[i1, ∗, ∗, ∗], x[∗, i2, ∗, ∗], and x[∗, ∗, i3, ∗], respectively. x[∗, ∗, ∗, i4] also has 

analogous meaning. 

A four-dimensional homogeneous systolic pyramid automaton (4-HSPA) is a pyramidal 

stack of four-dimensional arrays of cells in which the bottom four-dimensional layer (level 0) 

has size 4a (a ≥ 1), the next lowest 4(a − 1), and so forth, the (a−1)st four-dimensional layer 
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(level (a − 1)) consisting of a single cell, called the root . Each cell means an identical finite-

state machine, M = (Q, Σ, 𝛿, #, F), where Q is a finite set of states, Σ ⊆ Q is a finite set of input 

states, # ∈ 𝑄−Σ is the quiescent state, F ⊆ Q is the set of accepting states, and 𝛿: 𝑄17 → Q is 

the state transition function, mapping the current states of M and its 16 son cells in a 2 × 2 × 

2× 2 block on the four-dimensional layer below into M’s next state. The input is accepted if 

and only if the root cell ever enters an accepting state. A 4-HSPA is said to be a real-time 4-

HSPA if for every four-dimensional tape of size 4a (a ≥ 1) it accepts the four-dimensional tape 

in time a − 1. By £R[4-HSPA] we denote the class of the sets of all the four-dimensional tapes 

accepted by a real-time 4-HSPA[6].  

 

 

 
 

Fig.5.1 : Four-dimensional homogeneous systolic  

pyramid automaton. 

 



 

34  

A one-way four-dimensional cellular automaton (1-4CA) can be considered as a natural 

extension of the one-way two-dimensional cellular automaton to four dimensions [31]. The 

initial configuration of the cellular automaton is taken to be an l1(x) × l2(x) ×l3(x) × l4(x) array 

of cells in the nonquiescent state. The initial configuration is accepted if the last special cell 

reaches a final state.  

 

Fig. 5.2 : One-way four-dimensional cellular automaton 

 

A 1-4CA is said to be a real-time 1-4CA if when started with an l1(x) × l2(x) ×l3(x) × l4(x)  

array of cells in the nonquiescent state, the special cell reaches a final state in time l1(x) + l2(x) 

+ l3(x) × l4(x) − 1. By £R[1-4CA] we denote the class of the sets of all the four-dimensional 

tapes accepted by a real-time 1-4CA [31]. 

 

 

5.3 Results 
 

We mainly investigate a relationship between the accepting powers of real-time 4-HSPA’s 

and real-time 1-4CA’s. The following theorem implies that real-time 4-HSPA’s are less 

powerful than real-time 1-4CA’s.  
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Theorem 5.3.1. £R[4-HSPA] ⊊ £R[1-4CA] if input tape V is as follows. 

V = { x ∈{0,1}(4) | l1(x) = l2(x) = l3(x)= l4(x) & ∀𝑖1 ,∀𝑖2 ,∀𝑖3,∀𝑖4 (1 ≤ i1 ≤ l1(x), 1 ≤ i2 ≤ l2(x), 1 

≤ i3 ≤ l3(x) , 1 ≤ i4 ≤ l4(x))[x(i1, i2, i3, 1) = x(i1, i2, i3, l4(x))]]}. 

 

Proof :  It is easily shown that V ∈ £R[1-4CA]. Below, we show that V ∉ £R[4-HSPA]. Suppose 

that there exists a real-time 4-HSPA accepting V. For each t ≥ 4, let  

 

W(n) = { x ∈{0,1}(4)| l1(x) = l2(x) = l3(x) = l4(x) & x[(1, 1, 1, 2), (t, t, t,t-1)] ∈ {0}(4)}. 

  

Sixteen sons of the root cell A(t−1,1,1,1,1) of M A(t−2,1,1,2,1), A(t−2,1,2,2,1), A(t−2,2,1,2,1), A(t−2,2,2,2,1), 

A(t−2,1,1,3,1), A(t−2,1,2,3,1), A(t−2,2,1,3,1), A(t−2,2,2,3,1), A(t−2,1,1,2,2), A(t−2,1,2,2,2), A(t−2,2,1,2,2), A(t−2,2,2,2,2), 

A(t−2,1,1,3,2), A(t−2,1,2,3,2), A(t−2,2,1,3,2), A(t−2,2,2,3,2) are denoted by C(UNWP), C(USWP), C(USEP),C(UNEP), 

C(DNWP), C(DSWP), C(DSEP), C(DNEP), C(UNWF), C(USWF), C(USEF),C(UNEF), C(DNWF), C(DSWF), C(DSEF), 

C(DNEF), respectively. For each x in W(n), x(UNWP), x(USWP), x(USEP), x(UNEP), x(DNWP), 

x(USWP), x(USEP), x(UNEP), x(UNWF), x(USWF), x(USEF), x(UNEF), x(DNWF), 

x(USWF), x(USEF), x(UNEF) are the states of C(UNWP), C(USWP), C(USEP),C(UNEP), C(DNWP), 

C(DSWP), C(DSEP), C(DNEP), C(UNWF), C(USWF), C(USEF),C(UNEF), C(DNWF), C(DSWF), C(DSEF), C(DNEF), at 

time t-2, respectively. Let 𝜎(𝑥) = (x(UNWP), x(USWP), x(USEP), x(UNEP), x(DNWP), 

x(USWP), x(USEP), x(UNEP)), 𝛾(𝑥)=(x(UNWF), x(USWF), x(USEF), x(UNEF), x(DNWF), 

x(USWF), x(USEF), x(UNEF)), and 𝜌(𝑥) = (x(UNWP), x(USWP), x(USEP), x(UNEP), 

x(DNWP), x(USWP), x(USEP), x(UNEP), x(UNWF), x(USWF), x(USEF), x(UNEF), 

x(DNWF), x(USWF), x(USEF), x(UNEF)). Then, the following two propositions must hold. 
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Proposition 5.3.1. (i) For any two tapes x, y ∈ W(n) whose 1st cubes are same, 𝜎(𝑥) = 𝜎(𝑦). 

(ii) For any two tapes x, y ∈ W(n) whose nth cubes are same, 𝛾(𝑥) = 𝛾(𝑦) . 

 

[Proof : From the mechanism of each cell, it is easily seen that the states of C(UNWP), C(USWP), 

C(USEP),C(UNEP), C(DNWP), C(DSWP), C(DSEP), C(DNEP) are not influenced by the information of 1st 

cube. From this fact, we have (i). The proof of (ii) is the same as that of (i). □] 

 

Proposition 5.3.2. For any two tapes x, y ∈ W(t) whose 1st cube are different, 𝜎(𝑥) ≠ 𝜎(𝑦).  

 

[Proof : Suppose to the contrary that 𝜎(𝑥) = 𝜎(𝑦). We consider two tapes x’, y’ ∈ W(t) 

satisfying the following :  

(i) 1st cube of x and nth cube of x are equal to 1st cube of x’, respectively  

(ii) 1st cube of y’ is equal to 1st cube of y, and nth cube of y′ is equal to 1st cube of x.  

 

As is easily seen, x′ ∈ V and so x′ is accepted by M. On the other hand, from Proposition 2.1(ii), 

𝛾(𝑥′) = 𝛾(𝑦′). From Proposition 2.1(i), 𝜎(𝑥) = 𝜎(𝑥′), 𝜎(𝑦) = 𝜎(𝑦′). It follows that y′ must be also 

accepted by M. This contradicts the fact that y′ is not in V . □] 

 

Proof of Theorem 5.3.1 (continued) : Let p(t) be the number of tapes in W(t) whose 1st cubes 

are different, and let Q(t) = { 𝜎(𝑥) | x ∈ W(t)}, where k is the number of states of each cell of 

M. Then, p(t) =2𝑡2
, and Q(t) ≤ k4. It follows that p(n) > Q(t) for large t. Therefore, it follows 

that for large t, there must be two tapes x, y in W(t) such that their 1st cubes are different and 

𝜎(𝑥) = 𝜎(𝑦). This contradicts Proposition 2.2, so we can conclude that V ∉ £R[4-HSPA]. In the 

case of four-dimension, we can show that V ∉ £R[4-HSPA] by using the same technique. This 
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completes the proof of Theorem 2.1.                                                      □ 

 

We next show the recognizability of four-dimensional connected tapes by real-time 4-HSPA’s 

by using the same technique of Ref.[31]. Let x in {0,1}(4). A maximal subset P of N4 satisfying 

the following conditions is called a 1-component of x.  

 

(i)For any (i1, i2, i3, i4 ∈ P, we have 1≤i1≤l1(x), 1≤i2≤l2(x), 1≤i3≤l3(x), 1≤i4≤l4(x), and x(i1, i2, i3, 

i4) = 1.  

(ii) For any (i1, i2, i3, i4), (i1’, i2’, i3’, i4’) ∈ P, there exists a sequence (i1,0,i2,0,i3,0,i4,0),(i1,1,i2,1, 

i3,1,i4,1), . . . , (i1,4,i2,4,i3,4,i4,4) of elements in P such that (i1,0,i2,0,i3,0,i4,0) = (i1,i2,i3,i4), 

(i1,4,i2,4, i3,4, i4, 4) = (i′1, i′2, i′3, i′4), and |i1, j -i1, j−1| + |i2, j -i2, j−1| +  |i3, j -i3, j−1| + |i4, j –i4, 

j−1|≤ 1(1 ≤ j ≤ 4). A tape x ∈ {0, 1}(4) is called connected if there exists exactly one 1- 

component of x.  

Let Tc be the set of all the four-dimensional connected tapes. Then, we have  

 

Theorem 5.3.2. Tc ∉ £R[4-HSPA]. 

 

 

5.4 Concluding Remarks 

 
The technique of AR (augmented reality) or VR(virtual reality) progresses like the Pokemon 

GO and the Virtual Cinema in the world. The virtual technique will spread steadily among our 

societies in future. Thus, we think that the study of four-dimensional automata is very 

meaningful as a computational model of four-dimensional pattern processing. In this paper, 

we proposed a homogeneous systolic pyramid automaton with four-dimensional layers, and 

investigated a relationship between the accepting powers of homogeneous systolic pyramid 
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automaton with four-dimensional layers(4-HSPA) and one-way four-dimensional cellular 

automata (1-4CA) in real time, and showed that real-time 4-HSPA’s are less powerful than real 

time 1-4CA’s. 

It will be interesting to investigate about an alternating version or synchronized alternating 

version  of homogeneous systolic pyramid automaton with four-dimensional layers. Moreover, 

we think that there are many interesting open problems for digital geometry. Among them, the 

problem of connectedness, especially topological component is one of the most interesting 

topics[67]. 

Finally, we would like to hope that some unsolved problems concerning this paper will be 

explicated in the near future. 
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Chapter 6 

Conclusion 

 
In recent years, due to the advances in computer animation, dynamic image processing, 

and so forth, the study of four-dimensional information processing has been very important. 

For example, in the Internet environment, new protocols have been proposed for virtual 

reality communication on the WWW. In the medical field, we can easily get the precise 

three-dimensional volumetric images along the axis of time about a human body by 

excellent equipments such as X-ray CT scanner and MRT scanner. Thus, the study of four-

dimensional automata has meaningful as the computational model of four-dimensional 

information processing. 

In this dissertation, we have mainly studied several properties of four-dimensional 

alternating automata and four-dimensional parallel Turing machines, and have also studied 

about recognizability of topological components in three-dimensional input tapes. We 

believe that it is useful for analyzing four-dimensional images to explicate the properties of 

four-dimensional automata. 

In Chapter 3, we investigated the accepting powers of necessary space for seven-way 

four-dimensional Turing machines to simulate four-dimensional one marker automata. We 

first define four-dimensional deterministic or nondeterministic one-marker automata and 

second, investigated necessary space for seven-way Turing machines to one-marker 

http://www/
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automata. In results, we proved seven-way four-dimensional nondeterministic Turing 

machine require Ω(lmnloglmn) space, and in case of deterministic, require 2Ω(lmnloglmn) space 

to simulate four-dimensional one-marker automata. 

In Chapter 4, we showed a space lower-bound technique for four-dimensional 

alternating Turing machines. First, we introduced space-bounded four-dimensional 

alternating Turing machines. Second, we proved that when each side-length of input tape is 

equivalent and we limited space of storage tape to logm, four-dimensional alternating Turing 

machine cannot accept this input tape. 

In Chapter 5, we investigated the recognizability of four-dimensional homogeneous 

systolic pyramid automata. First, we introduced preliminaries for four-dimensional 

homogeneous systolic pyramid automata and one-way four-dimensional cellular automaton. 

Second, we investigated a relationship between those automata. 

Finally, we would like to hope that some unsolved questions concerning this dissertation 

will be explicated in the near future. Moreover, theory of four-dimensional automata has a lot 

of potential because this study is fundamental study. We would like to continue, sophisticate, 

and apply this study to another theoretical study and practical study. In the case of theoretical 

study, we can apply four-dimensional automata theory to various mathematical feature such 

as topological and differential features. On the other hand, in the case of practical study, we 

can apply four-dimensional automata theory to the high-dimensional information processing 

such as VR, AR, CV (computer vision) and so on. For example, by taking aim at complexity 

in programming of VR, AR or CV using four-dimensional automata theory, we can make it 

easy to create a computer program in VR, AR or CV, because we can understand how 

computer move by using four-dimensional automata theory. 
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