

チョッパースタビライゼーションを用いた増幅器に おける増幅回路の周波数帯域に関する一考察とその 試作

メタデータ	言語: jpn
	出版者: 宮崎大学工学部
	公開日: 2020-06-21
	キーワード (Ja):
	キーワード (En):
	作成者: 工藤, 涼太, 淡野, 公一, 田村, 宏樹, 外山, 貴子,
	Kudo, Ryota
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10458/5885

チョッパースタビライゼーションを用いた増幅器における 増幅回路の周波数帯域に関する一考察とその試作

工藤 涼太*・淡野 公一*・田村 宏樹*・・外山 貴子*

Consideration of Bandwidth of Amplifier Block in Chopper Stabilization Amplifier

Ryota KUDO, Koichi TANNO, Hiroki TAMURA, Takako TOYAMA

Abstract

This thesis presents a consideration of bandwidth of amplifier block in chopper stabilization amplifier. In the theory of the amplifier using chopper stabilization technique, Fourier series expansion often is used. However, frequency band of amplifier circuit is not considered in conventional theory despite using Fourier series expansion. Then, I analyzed chopper stabilization technique in consideration of frequency band of amplifier circuit. As a result, Influence on output signal is not the distortion, but an amplitude reduction. And developed the expression for The attenuation rate of the output signal. To verify the theoretical formula, I designed prototype of the amplifier using the chopper Stabilization technique by 0.6 µm CMOS process.

Keywords: Chopper Stabilization Technique, Fourier series, Attenuation Rate,

1. はじめに

生体信号は医学分野においておおく利用されてきた。そ して近年では、この信号を工学分野で活用する取り組みが 行われている」。人が手を動かしたり歩いたりという運動 を行っているとき、その駆動力は筋の収縮によって生み出 される。このような筋の状態を知る方法として、生理学的 な生体信号の一つである筋電位を測定することが用いら れる²⁾。筋電位を用いた様々な応用についての研究は盛ん に行われ、腕の筋の収縮に連動する義手や指の筋の収縮に 伴うロボットなどへ応用されている。さらに、筋電位は電 気生理学的な基礎研究や臨床医学だけでなく、スポーツや リハビリテーションの分野へと応用範囲を広げている。そ の筋電位を測定するための一つとして、身体の表面に貼付 した電極によって、皮膚表面に伝えられる表面筋電位を捉 える手法が広く用いられる。筋電位の振幅が数百 mVppで あるのに対し、表面筋電位は筋電位が体表面までに筋や皮 膚などの経路を通過することで減衰するために、振幅が数 μV から数 mV の微弱信号として観測され、その周波数帯 域は数Hzから数百Hz程度と低周波である。したがって、 表面筋電位信号を電気的に処理する場合には初期の段階

a)電気電子工学専攻大学院生 b)電気電子工学科教授 c)環境ロボティクス学科教授 d)技術職員

で増幅する必要がある。その増幅回路を集積化に適してい る MOSFET を用いて構成する際は、表面筋電位の帯域が 低周波であることからフリッカーノイズが問題となる。フ リッカーノイズの帯域は CMOS 製造プロセス間でも大き く異なるが、そのスペクトルは周波数に反比例する³⁾。そ のため、フリッカーノイズの対策として用いる手法の一つ にチョッパースタビライゼーション技術があるり。この手 法は増幅器の前後でスイッチを用いた変調・復調を行うこ とでフリッカーノイズと信号を分離する技術である。この スイッチは、クロック信号を用いて切り替えを行う。なお、 クロック信号の周波数には、フリッカーノイズの影響を考 慮し、コーナー周波数以上の周波数を設定することが望ま しい。また、この技術は変調・復調にクロック信号を使用 するため、フーリエ級数展開を行うと、無限の高調波が発 生する。しかし実際には、増幅回路の周波数帯域は有限で ある。これにより復調後の最終的な出力信号は、何らかの 影響を受けると考える。

そこで本論文では、チョッパースタビライゼーション技術を用いた増幅器における増幅回路の周波数帯域が増幅器の出力に与える影響について考察する。さらに、フェニテックセミコンダクタ社 0.6µm CMOS プロセスのモデルパラメータを用いてチョッパースタビライゼーション技術を用いた完全差動型オペアンプを設計し、HSPICEによる評価及び、試作チップの評価を行うことにより理論解析結果の検証を行う。

本章は6章から成り立っており、構成は以下の通りであ る。第2章では、チョッパースタビライゼーション技術の 動作原理を述べる。第3章では、増幅回路の周波数帯域が 最終出力に与える影響について理論的な解析を行う。第4 章では、シミュレーション結果及び、試作回路の評価結果 を示す。第5章では、評価結果についての考察を行う。第 6章では、本論文のまとめと今後の課題について述べる。

2. チョッパースタビライゼーション技術

図1にチョッパースタビライゼーション技術を示す。点線で囲まれた部分はチョッパースイッチであり、増幅器の入力側と出力側にそれぞれ接続されている。チョッパースイッチに用いるクロック(CLK、 \overline{CLK})信号は重なり合わない二相クロックである。このチョッパースイッチにより信号成分は変調・復調が行われ、フリッカーノイズ成分のみ高周波へと変調されることで、2種の信号を分離する。次に詳細動作を理論的に述べる。入力信号 v_{in} には $V_{in}sin(\omega_{in}t)$ を入力し、CLK は図2(a)に示すような関数で、その振幅はチョッパースイッチを ON できる十分な電圧であるものとする。また、CLKの周波数 f_{CLK} は入力信号の周波数 f_{in} より十分高く、増幅回路の利得はA倍とする。

CLK、CLKのクロック信号の角周波数をω_{CLK}とし、それぞ れフーリエ級数展開を行った式を式(1)、式(2)に示す。

$$CLK = \frac{1}{2} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin\{(2n-1)\omega_{CLK} t\}(1)$$

$$\overline{\text{CLK}} = \frac{1}{2} - \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin\{(2n-1)\omega_{\text{CLK}} t\}(2)$$

図 2. CLK 信号

ここで、g_(t)を式(3)と置くと、式(4)、式(5)を得る。g_(t)は図 2(b)に示すように CLK を振幅方向に-1/2 平行移動した波 形であることがわかる。

$$g(t) = \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin\{(2n-1)\omega_{CLK}t\}$$
(3)

$$CLK = \frac{1}{2} + g(t) \tag{4}$$

$$\overline{\text{CLK}} = \frac{1}{2} - g(t) \tag{5}$$

次に、図1中に示される V_a では、入力信号が前段のチョッパースイッチによりスイッチングされ、 v_{in} とCLKの積と、- v_{in} とCLKの積との和で表せる。 V_a を式(6)に示す。

$$V_{a} = v_{in} \cdot \left\{ \left(\frac{1}{2} + g(t) \right) \sin(\omega_{in}t) - \left(\frac{1}{2} - g(t) \right) \sin(\omega_{in}t) \right\}$$
$$= 2g(t)v_{in} \sin(\omega_{in}t) \tag{6}$$

このように式(6)では、入力信号とクロック信号の乗算が 行われるが、三角関数の積和公式、

$$\sin\theta \times \sin\varphi = \frac{1}{2} \{ -\cos(\theta + \varphi) + \cos(\theta - \varphi) \}$$

(7)

から分かるように二つの信号の乗算を行うことで、二つの 信号の周波数の和を持つ信号と、周波数の差を持つ信号は チョッピング周波数 f_{CLK} 付近に変調される。次に V_b では、 増幅回路の入力換算ノイズ $v_n(t)$ が加わることで式(8)のよ うに表される。

$$V_{b} = 2g(t)v_{in}\sin(\omega_{in}t) + v_{n}(t)$$
(8)

ここで、v_n(t)はフリッカーノイズを考慮して低周波において支配的であるものとする。次にV_cでは、利得 A 倍の増幅回路に入力されるので式(9)のように表される。

$$V_{c} = A\{2g(t)v_{in}\sin(\omega_{in}t) + v_{n}(t)\}$$
(9)

ここで入力信号は前段のチョッパースイッチにより高周 波側に変調されているので、フリッカーノイズの影響が少 ない領域で増幅される。次にVoutは、Vcが後段のチョッパ ースイッチによりスイッチングされ、Vcと CLK の積と-Vc とCLKの積との和となるので、

$$V_{out} = V_c \left(\frac{1}{2} + g(t)\right) + \left\{-V_c \left(\frac{1}{2} - g(t)\right)\right\}$$

$$= A\{4g(t)^{2}v_{in}\sin(\omega_{in}t) + 2g(t)v_{n}(t)\}$$
(10)

と表され、-Voutも同様の過程から、

$$-V_{out} =$$

$$-A\{4g(t)^{2}v_{in}\sin(\omega_{in}t) + 2g(t)v_{n}(t)\}$$
(11)

と表される。ここでg(t)²は、g(t)が図2(b)に示すように1/2、 -1/2 の周期関数であることから 1/4 となる。したがって、 式(10)、式(11)にそれぞれ代入すると式(12)、式(13)を得る。

$$V_{out} = A\{v_{in}\sin(\omega_{in}t) + 2g(t)v_n(t)\}$$
(12)

$$-V_{out} = -A\{v_{in}\sin(\omega_{in}t) + 2g(t)v_n(t)\}$$
(13)

式(12)、式(13)より、信号成分は復調され、フリッカーノイ ズ成分はG(t)により高周波に変調されていることが分か る。すなわち、信号成分はチョッパースイッチを2回通過 することで変調・復調が行われ、入力換算のノイズ成分は チョッパースイッチを1回しか通過しないため、高周波側 に変調されたままとなることで、信号と入力換算ノイズを 分離することができる。ただし、変調されたフリッカーノ イズを除去するために通常は後段にフィルタが必要であ る。

3. 理論解析

第2章ではCLK 信号が無限次項の高調波を有している ことを示した。一方、実際の増幅回路において、その周波 数帯域は有限である。したがって、復調後の信号はこの影 響を受けると考えられる。そこで本章では、増幅回路の周 波数帯域が有限である場合の出力信号への影響について 理論的な解析を行う。なお、ここでは簡単のためにノイズ の影響は無視する。

3.1 歪みに対する影響

変調された信号は積和公式、

$$\sin\theta \times \sin\varphi = \frac{1}{2} \{ -\cos(\theta + \varphi) + \cos(\theta - \varphi) \}$$
(14)

から分かるように、変調に用いた信号と同じ信号を乗算することで復調することができる。ここで、増幅回路の伝達関数を $A_v=A/(1+s\tau)$ と仮定すると、図1の V_c は増幅回路の

帯域制限を受けたVcとなり式(15)のように表すことができる。

$$V_{c} = \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{2A_{v}v_{in}}{2n \cdot 1} \sin(\omega_{in}) \cdot \sin\{(2n \cdot 1)\omega_{CLK} t\}$$
(15)

このようにV_cでは、入力信号sin (ω_{in}t)がフーリエ級数展開 の各項に乗算され、図3で示すように、ぞれぞれの項で変 調が行われる。

図 3. Vcの信号スペクトル

次に、V_{out}はV_cが後段のチョッパースイッチを通過することで式(16)を得る。

$$V_{out}^{'} = \left[\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{4A_{v}v_{in}}{2n \cdot 1} \sin(\omega_{in}) \cdot \sin\{(2n \cdot 1)\omega_{CLK} t\}\right] \\ \times \left[\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n \cdot 1} \sin\{(2n \cdot 1)\omega_{CLK} t\}\right]$$
(16)

式(16)から分かるように、 V'_{out} は各項のそれぞれで復調が可能である。ここで例として、 V'_{out} の1次(n=1)で復調される信号 V'_{out1} は高調波に移動した信号を無視すると、

$$V_{out} = \frac{8A_v v_{in}}{\pi^2} \sin(\omega_{in} t)$$
(17)

となる。このことから、増幅回路の周波数帯域が有限であってもsin(ω_{in}t)は復調される。したがって信号成分の周波数は理論上、増幅回路の周波数帯域の影響を受けることはないと考えられる。

3.2 振幅に対する影響

復調される理想の振幅は入力信号の利得倍された信号 である。しかし、振幅は式(16)から分かるように、フーリ エ級数展開の各項で復調した信号の総和であることから、 増幅回路の帯域制限の影響を受けて減衰すると考えられ る。本節では、出力信号振幅の減衰率について考える。増 幅回路の持つ時定数をτとすると、フーリエ級数展開の各 周波数における利得|Av|は、

$$|A_{v}| = \frac{A}{\sqrt{1 + \{(2n-1)\omega_{CLK}\tau\}^{2}}}$$
(18)

となる。ここで減衰係数αを、

$$\alpha = \frac{1}{\sqrt{1 + \{(2n-1)\omega_{\text{CLK}}\tau\}^2}}$$
(19)

と置くと、増幅回路が帯域制限を持つときの利得を次のように表すことができる。

$$|A_{v}| = \alpha A \tag{20}$$

式(20)を式(16)に代入すると、式(21)に示すように帯域制限の影響を受けた場合の出力信号 Voutを得る。

$$V_{out}^{'} = \left[\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{4\alpha A v_{in}}{2n \cdot 1} \sin(\omega_{in}) \cdot \sin\{(2n \cdot 1)\omega_{CLK} t\}\right]$$
$$\times \left[\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n \cdot 1} \sin\{(2n \cdot 1)\omega_{CLK} t\}\right]$$
(21)

となる。また減衰率 e [%]を、帯域制限のない増幅回路を 用いた場合の出力信号に対する帯域制限により生じた誤 差の割合と定義する。すると e は、 V_{out}とV_{out}を用いて 式(22)のように表すことができる。

$$e = \frac{V_{out} - V'_{out}}{V_{out}} \times 100$$
$$= \left\{ 1 - \frac{4}{\sqrt{2\pi}} \sqrt{\sum_{n=1}^{\infty} \left(\frac{\alpha}{2n-1}\right)^2} \right\} \times 100$$
(22)

ここで、n はフーリエ級数展開における次数であり、αを 決定することで出力振幅の減衰率を知ることができる。例

図 4. 周波数に対する利得|A_v|

として、増幅回路の利得がカットオフ周波数 280kHz を境に-20dBの傾きで減衰する帯域を想定すると、図4のよう

図 5. 減衰率

な増幅回路の周波数特性を得る。図4の周波数特性を持つ 増幅回路に CLK の周波数f_{CLK}で変調された信号が通過し たときの減衰率を図5に示す。

4. 検証

第3章で増幅回路の周波数帯域が出力信号に与える影響を理論的に解析した。本章では、フェニテックセミコン ダクタ社 0.6μm CMOS プロセスのモデルパラメータを用 いてチョッパースタビライゼーション技術を用いた増幅 器を設計し、HSPICE による評価を行うことで解析結果を 確認する。

4.1 回路構成

シミュレーションを行った回路構成を図6に示す。

図 6. 回路構成

チョッパースタビライゼーション技術は入力信号、出力信 号共に差動信号を用いており、チョッパースイッチの内部 抵抗の影響を受けないことが望ましいので、図6のような 回路構成を選択した。図6は二組の入力端子を持つ完全差 動型のオペアンプを構成しており、利得を決定する帰還経 路を入力端子から独立させることで高入力インピーダン スを実現し、チョッパースイッチの内部抵抗の影響を低減 している。また、チョッパースイッチは CMOS スイッチ を用いており、帰還抵抗R₁、R₂は増幅回路の利得を決定し ている。次に図6に用いる増幅回路とCMOS スイッチを それぞれ図7、図8に示す。図7のM₂₁-M₂₂とM₂₃-M₂₄は2 組の入力を構成しており、2組のソース結合対は、1組の 電流源負荷を共有することで、各入力からの差動小信号電 圧利得を等しくしている。コモンモードフィードバック (CMFB)ループは、図6のV_{cm}によりM₃₁とM₃₂のゲート電 圧を制御することで、出力バイアスの安定化を図っている。 図8のCMOS スイッチはCLK信号とインバータで反転さ せたCLKを用いてスイッチングを制御している。

図 8. CMOS スイッチ

4.2 シミュレーション結果

表1に図6のシミュレーションを行うときの設定値を 示す。利得を決めるためにR₁、R₂はそれぞれ5[kΩ]、 500[kΩ]を用いて40.1[dB]としている。また、表面筋電位信 号の帯域は数Hzから数百Hzであるため、入力信号の周 波数は100Hzとする。このときの増幅回路の周波数特性 と出力信号のシミュレーション結果をそれぞれ図9、図10 に示す。また、図10の出力波形はフィルタにより変調雑 音を取り除いた波形である。図10は、図9の周波数特性 において、スイッチングを行わない場合とCLKの周波数 を 30kHz、50kHz、80kHz、100kHzと変化させた出力信号 を示している。図10より、CLKの周波数が高くなると増 幅回路の帯域制限を受けて、出力振幅が減衰していること が分かる。表2に理論的に求めた減衰率とシミュレーショ ンによる減衰率を示す。表2から、振幅の減衰率が理論値 に比較的近い値であることが分かる。また、増幅回路のカ ットオフ周波数に CLK の周波数が近くなると減衰率が大 きくなっていることが分かる。

表1. 設定値

項目	設定値
電源[V]	±2.5
利得[dB]	40.1
カットオフ周波数[kHz]	280
入力振幅[mV]	1
入力周波数[Hz]	100
CLKの周波数f _{CLK} [kHz]	30, 50, 80, 100
$R_1[k\Omega]$	5
$R_2[k\Omega]$	500

図 9. 周波数特性

図 10. 出力波形

表 2. 誤差率

CLKの周波数[kHz]	理論値[%]	Sim.[%]
30	7.9	5.2
50	11.5	9.6
80	15.9	16.0
100	18.5	20.4

4.3 検証回路の試作・評価結果

解析結果とシミュレーション結果を検証するために 0.6µm CMOS プロセスを用いて試作を行い、実チップによ る評価を行った。図6のマスクレイアウトとチップ写真を それぞれ図11、図12に示す。また、表3に図12の評価 結果を示す。表3、図13は異なる20チップにおいてシミ ュレーションと同様に減衰率の評価を行い、測定した各チ ップの減衰率の平均値を示したものである。表3、図13か ら分かるように、CLKの周波数が高くなると出力振幅が 減衰していることが分かる。また表3より、測定結果の減 衰率は表2と近い値を示していることが分かる。

図 11. マスクレイアウト

図 12. チップ写真

5. 考察

ここでは、シミュレーション結果の減衰率が理論値より も大きくなった原因について考察する。ここまでは、増幅 回路の利得と周波数の関係のみに着目してきた。しかし、 位相と周波数の関係も考慮する必要がある。そこで本章で は、位相の変化が出力信号に与える影響について考える。 図1のVcは帯域制限の影響を受けるため各高調波では 位相の変化が起こる。このときの出力信号は、式(15)のn=1

表 3. 測定結果

CLKの周波数[kHz]	測定值[%]
30	6.9
50	10.6
80	16.6
100	20.4

図 13. 測定結果

における復調過程を知ることで確認できる。ここで、 ω_{CLK} は ω_{in} に対して十分大きく、 V'_{c1} で発生した二つの信号の位 相変化が等しいと仮定すると、位相が ϕ_e だけ変化したと きの V'_{c1} は、

$$V_{c1}^{'} = \frac{2A_{v}v_{in}}{\pi} \{\cos(\omega_{CLK}t - \omega_{in}t + \phi_{e}) - \cos(\omega_{CLK}t + \omega_{in}t + \phi_{e})\}$$
(23)

となる。次に、 V'_{c1} はsin (ω_{CLK} t)が乗算されることで復調するので、 V'_{out1} は次のように表される。

$$V_{c1}^{'} = \frac{4A_{v}v_{in}}{\pi^{2}} \{\sin(\omega_{in}t \cdot \phi_{e}) + \sin(\omega_{in}t + \phi_{e}) \\ = \frac{8A_{v}v_{in}}{\pi^{2}} \sin(\omega_{in}t)\cos(\phi_{e})$$
(24)

式(24)において、 $\cos(\varphi_e)$ は定数であり、 $\cos(\varphi_e) \leq 1$ である。 したがって、増幅回路による信号の位相変化は出力振幅を 減衰させ、このことからシミュレーション結果の減衰率が 理論値よりも大きくなった原因は、帯域内信号の位相変化 によるものと考えられる。

6. まとめ

本論文では、チョッパースタビライゼーション技術を用 いた増幅器における増幅回路の周波数帯域が出力信号に 及ぼす影響について考察した。まず、出力信号の歪みに関 しては、増幅回路の周波数帯域には無関係であることを理 論的に証明した。次に、振幅に関しては帯域制限によって 減衰することが分かり、減衰率を定義し、それを理論的に 導出した。

以上のことを検証するために、0.6µm CMOS プロセスの モデルパラメータを用いてチョッパースタビライゼーシ ョン技術を用いた増幅器を設計・試作した。その結果、振 幅の減衰率は理論的な減衰率と比較的近い値となった。ま た、増幅回路のカットオフ周波数に CLK の周波数が近く なると減衰率が大きくなることが分かった。減衰率が増加 する原因として、増幅回路が持つ位相変化が考えられる。 そこで、帯域内信号の位相変化が出力信号に与える影響に ついて考察したところ、位相変化は信号振幅の減衰をもた らすことが分かった。以上の結果は、チョッパースタビラ イゼーション技術を用いた増幅器を設計する際の増幅回 路の周波数帯域と CLK の周波数を決定する指標となる。 今後の課題はチョッパースイッチに用いる CMOS スイッ チの内部抵抗が出力信号に与える影響について考察を行 うことである。

参考文献

- 1)星宫望, 塚田稔, 石井直宏, 井手英人
- "生体情報工学", 森北出版社, 1986年.
- 2)赤澤堅造,"生体情報工学,"東京電機大学出版局, 2001年.
- 3)山越憲一, 戸川達男, "生体用センサと計測装置," コロ ナ社, 2000年, 9月.
- 4) 星宫望,"生体情報工学,"森北出版社,1997年,7月.
- 5)木塚朝博, 增田正, 木竜徹, 佐渡山亜兵, "表面筋電図," 東京電機大学出版局, 2006 年, 3月.
- 6) X. Zou, X. Xu, L. Yao and Y. Lian, "A 1-V 450-nW Fully Integrated Programmable Biomedical Sensor Interface Chip," *IEEE J. Solid-State Circuits*, Vol. 44, No. 4, PP. 1067–1077, Apr. 2009.
- 7) 西村和将、"チョッパースタビライゼーション技術を用いたインスツルメンテーションアンプに関する研究、" 宮崎大学大学院電気電子工学専攻修士論文、2012 年 2 月.
- L. Toth, Y. P. Tsividis, "Generalization of the Principle of Chopper Stabilization", *IEEE Tran. Circuits and Systems*, Vol. 50, No. 8, pp. 975–983, Aug. 2003.
- 9) A. Agnes, A. Cabrini, F. Maloberti, G. Martini, "Cancellation of Amplifier Offset and 1/JNoise: An Improved Chopper Stabilization Technique", *IEEE Tran. Circuits and Systems*, Vol. 50, No. 8, pp. 975–983, Aug. 2003.
- 10) H. Alzaher, M. Ismail," CMOS Fully Balanced Differential Difference Amplifier and Its Applications, "IEEE Trans. on Circuits and Systems II, Vol. 48, No. 6, June 2001.
- E. Sackinger, W. Guggenbuhl, "A Versatile Building Block: The CMOS Differential Difference Amplifier, "IEEE Jour. of Solid-State Circuits, Vol. 22, No. 2, Apr. 1987.
- 12) 矢野 眞大,"連続時間デルタ・シグマ変調器の試作 と低ノイズ化への改良,"平成24 年度宮崎大学工学部電 気電子工学科修士論文,2012 年2月.