

フォトルミネッセンス法による加工 Si 基板上半極性 (1-101) 面 GaN薄膜の発光再結合特性評価

メタデータ	言語: jpn				
	出版者: 宮崎大学工学部				
	公開日: 2020-06-21				
	キーワード (Ja):				
	キーワード (En):				
	作成者: 杉原, 圭二, 中野, 真理菜, 岩元, 杏里, 大堀, 大介,				
	本田, 善央, 天野, 浩, 碇, 哲雄, 福山, 敦彦, Sugihara, Keiji,				
	Nakano, Marina, Iwamoto, Anri, Ohori, Daisuke, Honda,				
	Yoshio, Amano, Hiroshi				
	メールアドレス:				
	所属:				
URL	http://hdl.handle.net/10458/5881				

フォトルミネッセンス法による加工 Si 基板上半極性(1-101)面 GaN 薄膜の発光再結合特性評価

杉原 圭二 a)・中野 真理菜 a)・岩元 杏里 b)・大堀 大介 o) 本田 善央 d)・天野 浩 e)・碇 哲雄 f)・福山 敦彦 g)

Investigation of Radiative Recombination of Semi-Polar (1-101)GaN Films Grown on Patterned (001)Si Substrate

Keiji SUGIHARA, Marina NAKANO, Anri IWAMOTO, Daisuke OHORI, Yoshio HONDA, Hiroshi AMANO, Tetsuo IKARI, Atsuhiko FUKUYAMA

Abstract

We investigated the radiative recombination properties of semi-polar $(1\overline{1}01)$ GaN films grown on patterned (001)Si substrate by using photoreflectance (PR) and photoluminescence (PL) spectroscopies. The X-ray diffraction (XRD) method was also used for investigating strain content. Estimated bandgap energy (E_g) by Kramers-Kronig transformation of PR spectrum showed about 35 meV lower energy side than that of polar (0001)GaN. It was found that the strain of growth direction (=[111]Si) did not exist from the XRD 20- ω scan. Therefore, reduction of E_g may be caused by the tensile strain along the [110]Si or [112]Si direction. From the low temperature PL and PR measurements, we could confirm the several radiative peaks caused by donor-bound exciton, acceptor-bound exciton, and donor-to-acceptor pair recombination.

Keywords: (1101)GaN grown on patterned (001)Si, Photoreflectance, Photoluminescence, X-ray diffraction

1. はじめに

窒化物ガリウム(GaN)は、In や Al と混晶を形成させる ことで、そのバンドギャップエネルギー(Eg)を深紫外から 近赤外領域に至る幅広い範囲で変化させることができる ¹⁾。近年、天野らによるバッファー層技術により高品質結 晶の作製が可能となり、白色 LED 照明など我々の身近な ものとなった。一方、高輝度・高出力光源としての GaN 系レーザーダイオード(Laser Diode: LD)は、より高品質な 結晶が必要なため、非常に高価な GaN 基板を用いて作製 されている。その結果、高コストな特殊光源への応用に 限定されているのが現状である。そのため、安価かつ集 積回路に用いられる(001)Si 基板上への GaN 系 LD の作製 が試みられている。Si 基板上 LD が実現すれば、コスト 抑制だけでなく、LD を駆動系と同一基板内に作製できる ため小型化しやすく、将来的には光集積回路への応用が 期待できる。

- a) 応用物理学専攻大学院生
- b) 電子物理工学科学部生
- c) 農学工学総合研究科博士課程院生
- d) 名古屋大学工学研究科准教授
- e) 名古屋大学工学研究科教授
- f) 電子物理工学科特任教授
- g) 電子物理工学科教授

Si 基板上に GaN 結晶を成長させる際の問題は、Si と GaN の格子定数や熱膨張係数の違いにより、成長させた GaN 中に多くの欠陥やクラックが発生することである。 この問題の解決策として、Si 基板を加工して成長領域を 限定することで高品質な GaN 結晶を得ることが試みられ ている。この手法の更なる利点として、Si 加工の傾斜面 によって成長面の傾きを任意に制御できるため、従来用 いられている結晶面とは異なる面の利用が可能となる。

GaN の結晶構造は六方晶であり、Ga と N 原子の電気 陰性度の差により発生する自発分極^{2,3)}や、歪により発生 するピエゾ電界⁴⁾が c 軸方向に生じている。そのため、 試料表面が c 軸の法線方向である(0001)面は極性面と呼 ばれており、デバイス特性に強く影響を及ぼす。つまり、 自発分極および歪起因ピエゾ電界によって発光層のバン ドが傾斜し、電子と正孔の波動関数の重なりが減少する ことで LD の発光再結合確率が低下する。

これに対して c 軸を傾けて成長させることで試料表面 を自発分極やピエゾ電界の小さい半極性面[(1122)面、 (1101)面]や無極性面[(1120)面、(1100)面]に制御でき、 これらの面を LD に用いることで再結合確率の低下を防 ぐことが期待できる。これに対して、名古屋大学の本田 らによって加工 Si 基板上に良質な半極性面 GaN 膜を成 膜できることが報告された^{5,6}。これは(001)Si 基板を微 細加工し、(111)Si 面を成長面として GaN を選択成長させ ることで、試料表面を半極性面である(1101)面にする技 術である。この技術によって転位やクラックの低減を達 成でき、基板に Si を使用することで低コスト・大面積化 できる利点がある。この構造を用いた青色レーザー光が 発振することも報告されており、今後はさまざまな波長 の LD への応用が期待できる。しかしながら、これまで 加工 Si 基板上 GaN の光学的特性の詳細な測定は不十分 である。成長面が変わっても、Si と GaN の格子定数や熱 膨張係数の違いは存在するため歪によって Egが変化する 可能性が高いが、詳細な報告はない。また、(111)Si面上 に成長させた GaN の場合、伝導帯と重い正孔が形成する 価電子帯(HH)間遷移に付随した励起子(A 励起子)による 発光⁷⁾が報告されているが、加工 Si 基板上 GaN での A 励起子は未だ報告されていない。そこで本研究では、加 工 Si 基板上(1101)GaN に対して、Egの同定が可能なフォ トリフレクタンス(Photoreflectance: PR)法と、発光再結合 を検出するフォトルミネッセンス(Photoluminescence: PL) 法を適用した。また、X 線回折(X-Ray diffraction: XRD) 法を用いて歪みの測定も行い、Eg変化の原因を議論した。

2. 実験

2.1 サンプル詳細

表1に今回実験に用いた試料の詳細を示す。本研究で は3つの試料を用意した。すべての GaN 膜は、Ⅲ族原料 としてトリメチルアルミニウム(TMA)とトリメチルガリ ウム(TMG)を、V族原料として NH3を用いて有機金属気 相成長法により成長させた。試料表面が半極性面である (1101)GaN 試料は、(001)Si 面を基準に 8° 傾斜させた基板 にエッチングを行い、(111)Si 面を露出させ、バッファ層 として AIN を 1180°C で 70 nm 体積させた。その後 1090°C で GaN をストライプ状に選択成長させて、それらを結合 させることで結晶表面が半極性面である(1101)GaNを作 製させた(以降、半極性 GaN 試料)。Si との界面から試 料表面までの膜厚は1100 nm であった。また、比較試料 として(001)Si 基板と一般的なサファイア基板上に、極性 面である(0001)GaNを成長させた2つの試料も用意した。 (001)Si 基板上 GaN (極性 GaN 試料) はバッファ層に AlN を用い、膜厚は1100 nm であった。一方のサファイア基 板上 GaN (GaN-on-Sap.試料) はバッファ層に低温で成長

表	1.	サ	ン	プ	ル	詳細

	半極性 GaN	極性 GaN	GaN-on-Sap.
表面	半極性面	極性面	極性面
成長法	MOVPE	MOVPE	MOVPE
膜厚	1100 nm	1100 nm	800 nm
基板	8°加工(001)Si	(001)Si	(0001)Sap.
緩和層	AlN	AlN	低温 GaN

させた GaN を用い、膜厚は 800 nm であった。

2.2 実験方法

PR 測定は、キセノン光を分光器により任意の波長に分 光した光を試料表面に照射し、断続化した He-Cd レーザ ー(325 nm)照射により変調された反射光を、Si フォトダ イオードで検出した。また、PL 測定は He-Cd レーザーを 励起光源として照射した際の励起キャリアの発光再結合 信号を光電子増倍管検出器で検出した。PR および PL 測 定は 20 K から室温の範囲で行った。XRD 測定では X 線 を試料に照射することによって起こる回折現象を利用し 試料内部の原子配列を主とした特性を測定でき、今回は 試料内部にかかる歪の有無を測定した。

実験結果および考察

図 1 に 20 K における PR 測定で得られた信号を、 Kramers-Kronig の関係式を用いて絶対値化したスペクト ルを示す。Lorentz 関数でピークフィッティングを行って E。を算出したところ、それぞれ半極性 GaN 試料で 3.46、 極性 GaN 試料で 3.50、GaN-on-Sap.試料で 3.51 eV と同定 された。GaN-on-Sap.試料には低エネルギー側にもう一つ 遷移エネルギー(Ecr)が算出されたが、結晶性の悪さから 不純物バンドが形成されている可能性が高く、詳細は明 らかになっていない。今回の PR 解析から、半極性 GaN 試料のE。が他の2つの試料よりも低エネルギー側に位置 していることが分かった。そこで、20から300Kに渡る 広範囲の試料温度に対しても同様の測定ならびにピーク フィッティング解析を実施した。算出されたそれぞれの 試料の E_g の温度変化を図2に示す。同図にはまた、Varshni の式⁸⁾から算出されたバルク結晶 GaN の Egの期待値も実 線で示した。ここで、Varshniの式は

$$E = E_{g}(0) - \frac{\alpha T^{2}}{(T+\beta)}$$
(1)

で表される。ここで、 $E_g(0)$ は0Kにおける E_g 、Tは測定 温度、 $\alpha \ge \beta$ は定数である。今回はGaNの値⁹である $E_g(0)$ = 3.507 eV、 α = 0.909 meV/K、 β = 830 K を用いて計算を 行った。図から明らかなように、GaN-on-Sap.試料の E_g は Varshni の式による期待値とよい一致を示した。また、 極性GaN 試料の E_g は全測定温度範囲において10 meV 程 度低い値であったが、半極性GaN 試料の E_g はそれより も更に低く、Varshni の式による期待値から 35 meV(測 定温度範囲の平均値)も低い値であった。つまり PR 解 析から、加工Si 基板上半極性(1ī01)GaN の E_g はバルク GaN 結晶よりも縮小していることが明らかになった。こ の原因として、基板であるSi との格子定数差から生じる 歪が考えられることから、次に、(1ī01)GaN に内在する 歪について議論する。

今回用いた半極性 GaN 試料は、図3に示す様に(111)Si 面に垂直な方向に GaN を成長させている。この時、GaN はSi 基板との格子定数差に起因する歪を受ける。その歪

図 3. (111)Si 基板上 GaN の概略図.

は、[1**ī**0]Si 方向に発生する引っ張り歪(①)と、①の歪 の影響によって生じる[111]Si 方向(②)および[11**2**]Si 方向の圧縮歪(③)の3つである。この中でも①の引っ 張り歪が大きく、この引っ張り歪のために *E*g が縮小して いると考えられる。

そこで、半極性(1ī01)GaN に内在する歪を測定するために、XRD 法を用いた 20-ωスキャンを行った。この測定で成長方向(図中の②)に対しての歪の有無が確認できる。図4に XDR 測定の結果を示す。半極性 GaN 試料の(0002)GaN と(111)Siの回折ピークがそれぞれ 34.588°と 28.487°に確認できた。ここで(0002)GaN と(111)Siの回折ピーク位置の理論値を求める。立方晶と六方晶の面間隔はそれぞれ式(2)と(3)で表され、それらを式(4)のブラッグの公式に代入することで回折ピークの理論値が求められる。

$$d(hkl) = \frac{a}{\sqrt{h^2 + k^2 + l^2}} \tag{2}$$

$$d(hkl) = \frac{1}{\sqrt{\frac{(2h+k)^2+k^2}{3a^2} + \frac{l^2}{c^2}}}$$
(3)

$$2d\sin\theta = n\lambda \ (n = 1, 2, 3...) \tag{4}$$

計算された(0002)GaN と(111)Si の回折ピークはそれぞれ 34.632°と28.470°であった。(0002)GaN の実験値との差は 0.06°と非常に小さく、②の方向の歪はほとんど存在しな いことが分かった。従って、①あるいは③の方向の歪が 半極性(1101)GaN の Egを縮小させていると考えられる。 ①と③の方向の歪測定には逆格子マッピングが必要であ るが、今回は実施できなかった。ただし、Egを縮小させ るには圧縮歪ではなく引張歪が必要な点を考慮すると、 ①の方向の引張歪の可能性が高いことが示唆される。

ここで、(0002)GaN の回折ピーク強度が(111)Si よりも

図 4. 半極性 GaN の X 線回折スペクトル

大きく観測された点について言及する。回折ピーク強度 は格子点の数に比例するので、基板である(001)Siの回折 ピーク強度が膜の(0002)GaNより大きくなるはずである。 今回の測定では、(0002)GaNの回折ピークが最大になる 光軸調整を行ったところ、(111)Siの回折ピーク強度が (0002)GaNより小さくなった。これは、基板の[111]Si 方向に対して、膜の(0002)GaN成長方向がずれているこ とを示唆している。

次に、発光特性について議論する。図5に半極性 GaN 試料の20KにおけるPLスペクトルを示す。ピークフィ ッティングを行い4つのピークに分離した。GaNの発光 遷移に特徴的なものとして、励起子発光がある。GaNの 励起子束縛エネルギーは25 meV 程度と非常に大きく¹⁾、 室温においても支配的な発光過程である。また、GaNの 価電子帯は、その縮退がとけてA,、B、Cの3つに分離 している。

いくつかの文献^{10,11,12)}では、GaNの伝導帯から価電子 帯Aバンドへの発光に付随する励起子(A励起子)は3.48 eV付近に観測されている。今回の実験で得られた3.48 eV の PL ピーク I を A 励起子とすると、前述の PR 解析か ら同定した $E_g = 3.46 \text{ eV}$ よりも A 励起子ピークが高エネ ルギー側に位置することになり、この同定は適切ではな いことが分かる。また GaNのA励起子の束縛エネルギー は25 meV¹³⁾と報告されているが、PL ピーク II から IV も A 励起子には該当しないと判断できる。彦坂ら¹⁴⁾による (1101)GaN の PL 測定結果においても、観測された 4 つ の PL ピークを、ドナー束縛励起子(DBE: 3.43)、アクセプ ター束縛励起子(ABE: 3.41)、欠陥起因発光(3.33)、ドナー -アクセプターペア発光(DAP: 3.27 eV)と同定しており、 A 励起子発光は観測されていない。また、別の報告¹⁵⁾で も A 励起子は観測されず、3.29 eV の PL ピークを LO フ ォノンレプリカと同定し、これが(1101)GaN 面特有の発 光と結論付けている。更に本田らの報告¹⁰によると 3.451

eV に酸素起因の欠陥準位による PL ピークが報告されて いる。これらの報告をもとに、我々は、PL ピーク II を DBE、III を ABE、IV を欠陥起因の発光信号と同定した。 残念ながら、PL ピーク I の起因は現時点では同定できな かった。

比較として行った GaN-on-Sap.試料の PL 測定結果を、 図 6 に示す。ピークフィッティング解析と文献値¹⁷⁾との 比較から、図中に示すように半極性 GaN 試料で同定した DBE、ABE、欠陥起因のPLピークに加えて、A励起子(FX_A) と B 励起子 (FX_B)の発光ピークが観測された。また、 図 5 と 6 の比較から、半極性 GaN 試料の PL ピーク形状 が、GaN-on-Si 試料に比べて非常に幅広いことがわかる。 これらのことから、半極性 GaN 結晶の結晶性がいまだ不 十分であることが示唆された。

4. 結論

本研究では加工 Si 基板上の半極性(1 $\overline{1}$ 01)GaN の発光特 性を評価した。試料温度 20 K での PR 解析から、それぞ れの試料の E_g が半極性 GaN 試料で 3.46、極性 GaN 試料 で 3.50、GaN-on-Sap.試料で 3.51 eV と同定できた。Varshni の式から算出したバルク結晶 GaN の E_g の期待値と比較 したところ、半極性 GaN 試料の E_g は全ての測定温度範 囲 (20~300 K) において期待値よりも 35 meV 程度小さ い値を示し、 E_g が縮小していることが確認できた。

 E_g の縮小原因として、Si 基板との格子定数差に起因す る歪が考えられることから XRD 測定を行った。2 θ - ω ス キャンから、GaN の(0002)回折ピークは理論値とほぼ同 じピーク位置であり、成長方向に関しては歪が無いこと がわかった。そのため E_g の縮小原因は他の方向の引張歪 による可能性が高い。

試料温度20KでのPLスペクトルにはI~IVの4つの発

光ピークが観測された。PR 解析から得られた E_g の位 置を併せて考慮すると PL ピーク I は A 励起子ではない ことがわかった。他の3 つの PL ピークについては、文献 値との比較から II を DBE、III を ABE、IV を欠陥起因の 発光と同定した。現在一般的に用いられているサファイ ア基板上の GaN 試料(GaN-on-Sap.試料)の PL スペクト ルと比較すると、今回の加工 Si 基板上半極性(1 $\overline{101}$)GaN は未だ結晶性が低いことが示唆された。しかしながら、 半極性面を Si 基板上に成長できたことは今後の GaN 系 LD 開発には有益であり、今後さらなる膜質改善が期待さ れる。

参考文献

- 1) 赤崎勇: "Ⅲ族窒化物半導体", 倍風館 (1999).
- 2) 福原裕次郎: "N 極性 GaN テンプレートを用いた GaN 格子極性反転構造の作製",東京大学修士論文, pp.3-4, (2010).
- F. Bernardini, V. Fiorentini, D. Vanderbilt: "Spontaneous polarization and piezoelectric constants of III-V nitrides", Phys. Rev. B 56, R10024 (1997).
- 4) S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C.-C. Pan, C.-C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Keller, U. Mishra, J. S. Speck, S. Nakamura: "Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays", Acta Materialia 61, pp. 945-951 (2013).
- Y. Hond, Y. Kawaguchi, Y. Ohtake, S. Tanaka, M.Yamaguchi, N. Sawaki: "Selective area growth of GaN microstructures on patterned (111) and (001) Si substrates", J. Cryst. Growth.230, pp. 346-350 (2001).
- Y. Honda, N. Kameshiro, M. Yamaguchi, N. Sawaki: "Growth of (1101) GaN on a 7-degree off-oriented (001) Si substrate by selective MOVPE", J. Cryst. Growth. 242, pp. 82-86 (2002).

- Jacques I. Pankove: "Optical Processes in semiconductors", p. 27, (Courier Corporation, 1971).
- I. H. Lee, S.J Lim, Y. Park: "Growth and optical properties of GaN on Si(111) substrates", J. Cryst. Growth 235, pp. 73-78 (2002).
- I. Vurgaftman, J. R. Meyer L. R. Ram-Mohan: "Band parameters for III-V compound semiconductors and their alloys", J. Appl. Phys. 89, 5815 (2001).
- 10) A. K. Viswanath, J. I. Lee, C. R. Lee, J. Y. Leem, D. Kim, "Free exciton transitions and Varshni's coefficients for GaN epitaxial layers grown by horizontal LP-MOCVD", Sol. Stat. Commun. **108**, pp.483-487 (1998).
- B. Monemar: "Luminescence in III-nitrides", Materials Science and Engineering B 59, pp. 122-132 (1999).
- 12) A. V. Rodina: "Free excitons in wurtzite GaN", Phys. Rev. B 64, 115204 (2001).
- A. V. Rodina, M. Dietrich, A. Göldner, L. Eckey, A. Hoffmann, Al. L. Efros, M. Rosen, and B. K. Meyer: "Free excitons in wurtzite GaN", Phys. Rev. B 64, 115204 (2001).
- 14) T. Hikosaka, Y. Honda, M. Yamaguchi, N. Sawaki: "Time-resolved spectroscopy in an undoped GaN (1-101)", phys. stat. sol. (c) 5, pp. 367-369 (2008).
- 15) T. Hikosaka, T. Narita, Y. Honda, M. Yamaguchi, N. Sawaki: "Optical and electrical properties of (1-101)GaN grown on a 7° off-axis (001)Si substrate", Appl. Phys. Lett. 84, 4717 (2004).
- 16) Y. Honda, T. Ishikawa, Y. Nishimura, M. Yamaguchi, N. Sawaki: "HVPE Growth of GaN on a GaN Templated (111) Si Substrate", phys. stat. sol. (c) 0, pp. 107-111 (2002).
- 17) B. Monemar, J.P. Bergman, T. Lundström, C.I. Harris, H. Amano, I. Akasaki, T. Detchprohm, K. Hiramatsu, N. Sawaki: "Optical characterisation of GaN and related materials", Sol. Stat. Electronics, 41, 181 (1997).