

固相反応法によって作製したX 線照射前後のサマリウムを添加したホウリン酸塩蛍 光体の発光特性

メタデータ	言語: jpn
	出版者: 宮崎大学工学部
	公開日: 2020-06-21
	キーワード (Ja):
	キーワード (En):
	作成者: 有村, 啓太, 前田, 幸治, 境, 健太郎, Arimura, Keita
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10458/5873

固相反応法によって作製した X 線照射前後の サマリウムを添加したホウリン酸塩蛍光体の発光特性

有村 啓太^{a)}·前田 幸治^{b)}·境 健太郎^{c)}

Luminescence Properties of X-ray Irradiated Sm doped Borophosphate Phosphor Prepared by Solid-state Reaction

Keita ARIMURA^a), Kouji MAEDA^{b)}, Kentaro SAKAI^{c)}

Abstract

Sm doped borophosphate phosphors, SrBPO₅, BaBPO₅, Ba3BP₃O₁₂, and Sr₆BP₅O₂₀, were prepared by solid-state reaction method. These samples were in good agreement with the reported powder patterns and a signal phase by the powder X-ray diffraction analysis. After the X-ray irradiation to the samples, it was found that part of Sm³⁺ ions changed to Sm²⁺ ions observed by photoluminescence (PL) spectra. The PL intensity of the valence changed Sm²⁺ ions increased with increasing X-ray irradiation time in short time range, and saturated for a long time irradiation. The saturated PL intensities were increased in the longer X-ray penetration depth in each sample. The results of the time dependence on PL intensities were agreed with our simulations which were assumed that the valence changes from Sm³⁺ ions to Sm²⁺ ions were the same probability in each Sm³⁺ ion. We found that Sm³⁺ ions doped in Ba₃BP₃O₁₂ and Sr₆BP₅O₂₀ had a better sensitivity on a valence change to Sm²⁺ ions by X-ray irradiation.

Keywords: Borophosphates, phosphor, X-ray irradiation, Sm, Photoluminescence, valence change

1. はじめに

イメージングとは試料内の情報を光や電子等との相互 作用から検出し、フィルムや画像データなどで記録、可視 化する手法の総称である。この中でも不可視の X 線を用 いたものを X 線イメージングと呼ぶ。現在用いられてい る X 線を用いた間接撮影では対象を透過した X 線は記録 材料に潜像として記録される。次にレーザースキャンなど によって潜像が輝尽発光することにより、可視波長域に感 度をもつフィルムや電子プレートに記録される。X 線イメ ージングは非破壊検査や医療用などの分野で利用されて おり、いわゆるレントゲン撮影では試料を透過した X 線 を X 線検出器で可視化することで内部の構造を知ること ができる ^D。尚、上記において X 線検出器として蛍光板を 用いる場合、X 線記録の分解能を上げるためには薄い膜状 であることが必要とされる。そのため、高分解能を得るた めには高感度化が不可欠である。

より強い潜像を記録する方法として、X線照射により希 土類イオンの価数の変化による発光強度を利用し、X線照 射後にフォトルミネッセンス(PL)法により読みだすこと でX線照射を記録することを考えた。発光イオンとして Si光検出器の感度が高い赤色発光を示すサマリウム(Sm) を選択した。Sm イオンは Sm²⁺イオンと Sm³⁺イオンの 2 つ の状態が存在する²⁻⁵⁾。Sm²⁺イオンは光励起による発光が 強いことが報告されているが、通常、空気中で焼成した場 合 Sm³⁺イオンが支配的であり、Sm²⁺イオンは還元雰囲気 中でないと作製が困難である。蛍光体の母材として X 線 の吸収が大きい重元素であるバリウム (Ba) やストロン チウム (Sr) を含むホウリン酸塩蛍光体を選択した。ホウ リン酸塩はホウ素、リン、酸素の化合物群で構成されてお り、ホウ素一酸素四面体とリン一酸素四面体が共通の頂点 である酸素原子でつながる繰り返し構造をとる。この結晶 構造の隙間にアルカリ土類イオンが挿入されることで、ア ルカリ土類ホウリン酸塩である MBPO5 の形をとる。。 の結晶中でアルカリ土類イオンは酸素原子にケージのよ うに取り囲まれる。これは酸化されやすい2 価の希土類イ オンを防護する効果があると報告されている^{7,8}。

これまでの研究で BaSO4:Sm に対して X 線を照射した 際に価数変化を確認した⁹が、BaSO4は母材の耐久性にや や問題があり、また、記録材料としてより強い発光強度が 求められる。最近、BaBPO5 や SrBPOs を母材とし X 線照 射により Sm³⁺イオンが Sm²⁺イオンに価数変化する研究が 報告された^{10,11)}。しかし、母材の組成を変えることによっ て価数変化の反応性がどのように変化するかは明らかで はない。そこで、本研究ではこれらのホウリン酸塩蛍光体 において X 線照射と Sm の価数変化の関連を、イメージ ング材料としての応用に基づいて調べた。

a) 電気電子工学専攻大学院生

b) 電子物理工学科教授

c) 産学・地域連携センター機器分析部門准教授

2. 実験

2.1 試料作製

ホウリン酸塩の組成は SrBPO5, BaBPO5, Ba3BP3O12, Sr6BP5O20の4種を選択した。これらのホウリン酸塩は固 相反応法によって作製し、原料は炭酸ストロンチウム (SrCO3),炭酸バリウム (BaCO3),リン酸水素二アンモニ ウム ((NH4)2HPO4),ホウ酸 (H3BO3)を、ドーパントには酸 化サマリウム (Sm2O3)粉末を用いた。試料は母材とSm2O3 の合計が4gになるように計算を行い、秤量後、乳鉢で十 分に粉砕して混合し、洗浄したアンプルにそれらを入れた 後に電気炉で昇温を行い焼成させた。仮焼きは温度 500 ℃で5時間保った後、徐冷を行った。仮焼きした試料 は再度乳鉢で混合粉砕した。本焼きは950 ℃まで上げ、6 時間保持し、その後徐冷を行った。作製した試料は、試料 の厚さが約2mm程度になるように紙やすりで粗い研摩を 行った。

X線はXRD装置を用いて照射した。試料にX線(CuKa 線,1.54Å)が垂直に入射するように角度を調整し、照射時 間はストップウォッチを用いて測定した。このとき、X線 管電流は40mA、放出された電子を加速する加速電圧は45 KVとした。X線照射時間は0から3600秒とし、これは 記録材料として用いた場合のX線強度に相当する。

2.2 実験方法

作製した試料は X 線回折(XRD)を X'Pert XRD (PANalytical)を用いて測定した。PL 測定は半導体レーザー (波長 405 nm)を励起源とし、室温で発光スペクトルおよび 強度の測定を行った。PL強度はSm²⁺の発光波長である680 ~700 nm 間でスペクトルを積算することにより求めた。

3. 実験結果及び考察

3.1 X線照射前のPL スペクトル

XRD 測定結果より、作製された試料はそれぞれ単相の ホウリン酸塩であると同定した。図 1 に SrBPO5: Sm と BaBPO5: Sm の X 線照射前の PL スペクトルを示す。図 1 より、どちらのスペクトル上にも 560, 600, 650, 710 nm 付 近に強いピークが確認でき、それぞれ Sm³⁺イオンの ${}^{4}G_{5/2}$ → ${}^{6}H_{j}(j = 5/2, 7/2, 9/2, 11/2)$ の電子遷移と同定した。このと き、Sr 系、Ba 系ホウリン酸塩でそれぞれスペクトル形状 に差異がみられた。これはそれぞれ挿入されるサイトの大 きさによるものであると考えられる。Sm³⁺, Sr, Ba のイオ ン半径はそれぞれ 1.13, 1.31, 1.47 Å であり ¹²⁾、Ba の方が 大きい。このため、Sm³⁺は Sr サイトに「きつく」挿入さ れ、Ba サイトに「緩く」挿入される。きつく挿入された Sm イオンはとりうる位置の自由度が低いことから、各希 土類イオンが周りから受ける影響が類似するためピーク

が鋭くなる。Ba では位置の自由度が高いためガラス中の 発光のようにブロードなピークが表れたと思われる。また、 全てのホウリン酸塩で Sm³⁺イオンのみが発光した。

3.2 X線照射後のPL スペクトル

先ほどと同じ試料に X 線を 1800 秒照射した際の PL ス ペクトルを図 2 示す。PL スペクトルは Sm³⁺の 4 つのピー ク(挿入図に示す)に加え、680,690,710,720 nm 付近に強い ピークを確認できた。これらは Sm²⁺イオンの ⁵D₀ → ⁷F_i(j = 0,1,2,3)の電子遷移と同定した。作製した全てのホウリ ン酸塩蛍光体で Sm²⁺イオンの発光が確認できた。この原 因は、X 線照射により Sm³⁺イオンの一部が Sm²⁺イオンに 価数変化したことが考えられる。なお、X 線照射による還 元効果は本測定装置では照射時間 2 秒においてもノイズ と十分区別して確認できた。

3.3 PL 強度の X 線照射時間依存性

X線照射によりSm³⁺イオンの一部がSm²⁺イオンに価数 変化することから、X線照射時間とSm²⁺イオンのPL強度 の関係を調べた。図3にBaBPO5にX線を0から3600秒 間照射した際のPL強度の変化を示す。試料のPL強度は、 PLスペクトルの面積からベースライン以下の面積を引い たものを強度とした。そのため、母材による発光から生じ るベースラインの増加を考慮せず比較することができる。 このとき、Sm³⁺イオンは最も強度の大きい⁴G_{5/2}→⁶H_{7/2}遷 移を、Sm²⁺イオンは非縮退である ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ 遷移のピーク を主な強度として算出した。

 Sm^{2+} イオンは照射時間 0 から 1200 秒付近まで線形に増加しており、それ以降はエラーバーの範囲で一定の値を示す。一方、 Sm^{3+} イオンは X線照射時間に関係なく一定であった。他の試料においても同様の照射時間依存性を示した。この変化は、X線の侵入長と PL の励起光の侵入長が関係していると考えられる。BaBPO5 への X線の侵入長は質量吸収係数より 149 μ m 程度と算出され、PL の励起光は母材の吸収端 225 nm より長波長であるため、X線が侵入できずに価数変化していない領域の Sm^{3+} イオンも発光していると考えられる。そのため、 Sm^{3+} イオンの PL 強度はほぼ一定の値をとったのだと思われる。一方、長時間の照射で X線侵入長内の Sm^{3+} イオンが大部分 Sm^{2+} イオンに変化したことから、 Sm^{2+} イオンの PL 強度は飽和したと思われる。

3.4 Sm イオンの価数変化シミュレーション

図4に各ホウリン酸塩蛍光体のX線照射時間に対する Sm²⁺イオンのPL強度変化を示す。このとき、各試料にお いてX線の照射によって価数変化したSm²⁺イオンのPL 強度が飽和したように見えることから、Smイオンの価数 変化量には上限があると考えた。そこで、X線侵入長内で はSm³⁺イオンは単位時間当たり同じ価数変化確率と仮定 し、以下のようにX線照射時間に対するSm²⁺イオンのPL

強度の変化を計算した。試料中に Sm²⁺イオンに価数変化 が可能な Sm³⁺イオンが N 個存在しているとする。それぞ れの Sm³⁺イオンに 0~1 までの範囲の乱数を割り当て、そ の乱数で価数変化の確率を変動させた。例として 1 番の Sm³⁺イオンの値が 0.123、2 番の Sm³⁺イオンの値が 0.754 であり、価数変化の条件のしきい値を 0.2 とした場合、1 番は Sm²⁺イオンに変化、2 番は Sm³⁺イオンを維持する。 尚、しきい値が 0.2 である場合、変化確率は単位時間当た り 20 %に相当する。ただし、1 度 Sm²⁺イオンに変化した 場合、その後変化しないものとした。この N 個の Sm³⁺イ オンに対して操作を 3600 回試行した。このとき、試行回 数は X 線照射時間に相当する。このモンテカルロ的シミ ュレーションを行うことにより、各ホウリン酸塩蛍光体の 試料間の価数変化確率の比較を行うことが可能となる。

図5に変化確率を0.01~1%まで変化させたSmイオン の価数変化シミュレーション例を示す。図5より、変化確 率が高くなるほど飽和値に到達する回数が少なくなって おり、変化確率が低いほど飽和値に到達するための回数は 多くなることが分かる。これらのシミュレーション結果よ り、初期傾きから価数変化の反応性を見ることができ、こ れはX線記録材料としての感度を表す。

各ホウリン酸塩蛍光体の Sm²⁺イオンの X 線照射時間依 存性に対して上記のシミュレーションによるフィッティ ングを行った。また、これを図4の図中に示した。各ホウ リン酸塩蛍光体の近似曲線を重ねたものを図6に示す。こ のとき、変化確率はそれぞれ、0.13% (SrBPO₅), 0.14% (BaBPO₅), 0.21% (Ba₃BP₃O₁₂), 0.21% (Sr₆BP₅O₂₀)となった。 図6より、短時間領域では線形的な増加が起こり、長時間 領域では飽和していることが確認できる。Ba₃BP₃O₁₂、 Sr₆BP₅O₂₀の2つの試料が最も飽和値に到達するための試

図 4. X 線照射時間に対する Sm²⁺イオンの PL 強度変化.

行回数が少なく、SrBPO5, BaBPO5の2つの試料では今回 の試行回数では飽和値に到達しなかった。

また、図6の短時間照射領域で比較すると、Ba₃BP₃O₁₂, Sr₆BP₅O₂₀の両試料は他の2つの試料に比べ明らかに傾き が大きく、変化確率の値も大きい。これより、Ba₃BP₃O₁₂, Sr₆BP₅O₂₀の両試料は今回作製した試料の中では感度の点 で優位性が高かった。

3.5 PL 強度の X 線侵入長依存性

X 線侵入長の異なるそれぞれの試料を比較することで、 各ホウリン酸塩の X 線侵入長と価数変化によって生成し た Sm^{2+} イオンの PL 強度がどのように変化するかを調べ た。図 7 に X 線侵入長に対する Sm^{2+} イオンの PL 強度 (${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ 遷移)の依存性を示す。各ホウリン酸塩に 1800 秒 X 線を照射した際の Sm^{2+} イオンの PL 強度を比較した。こ のとき、 Sm^{2+} イオンはほぼ飽和値に到達していると考えら れる。図より、Ba より Sr 系のホウリン酸塩のほうが Sm^{2+} イオンの PL 強度が強いことが分かる。このため、PL 強度

図 7.X 線侵入長に対する Sm²⁺イオンの PL 強度変化.

表1. 各ホウリン酸塩の露光寛容度.

組成	露光寛容度
SrBPO ₅	3.4×10 ²
BaBPO ₅	2.7×10 ²
Ba ₃ BP ₃ O ₁₂	3.0×10
$\operatorname{Sr}_{6} \operatorname{BP}_{5} \operatorname{O}_{20}$	1.6×10 ²

とX線侵入長には強い相関があることが分かった。

また、このとき X 線記録材料としての露光寛容度を比較した。露光寛容度は画像として再現できる露光の範囲であり、この範囲が広いほど X 線記録のダイナミックレンジが広いことに相当する。露光寛容度は飽和時の PL 強度と、Sm²⁺イオンの発光が確認できる最短照射時間時の PL 強度との比で見積もった。この値を表1に示す。作製した試料のうち SrBPO₅において最大の値をとった。また、3.4節で感度が大きい値をとった Ba₃BP₃O₁₂, Sr₆BP₅O₂₀の2つの試料のうち、後者でより大きい露光寛容度を示した。これらのことより、露光寛容度は X 線侵入長が長いほど大きいことが考えられる。

4. 結論

Smを添加したホウリン酸塩化合物4種SrBPOs, BaBPOs, Ba₃BP₃O₁₂ および Sr₆BP₅O₂₀ のバルク試料を固相反応法に より作製した。作製した試料は全て単相のホウリン酸塩結 晶であった。X線を試料に照射することによって、Sm³⁺イ オンの一部が Sm²⁺イオンに価数変化することを PL スペ クトルから確認できた。価数変化した Sm²⁺イオンの PL 強 度と X 線の照射時間の関係性は、短時間照射において線 形性を示し、長時間照射において飽和した。このとき、価 数変化は照射時間 2 秒から測定できた。X 線侵入長内では Sm²⁺イオンへの価数変化は単位時間当たり同じ確率であ ると仮定し、X 線照射時間に対する PL 強度の変化をシミ ュレーションすることにより、実験で得られた PL 強度の 変化をうまく表すことができた。これより、各母材の感度 の比を定量化でき、今回作製したホウリン酸塩の中では Ba₃BP₃O₁₂ と Sr₆BP₅O₂₀ の組成において最も感度が高かっ た。X 線記録の露光寛容度は SrBPO₅ が 3.4×10^2 と最も大 きく、次いで BaBPO₅、Sr₆BP₅O₂₀、Ba₃BP₃O₁₂ の順となっ た。また、露光寛容度は X 線侵入長が長いほど大きくな ることが分かった。

以上のように X 線記録材料としての感度や露光寛容度 が、母材の X 線侵入長や Sm イオンの価数変化の速度な どの物性値と関係があることが明らかになった。最も感度 が大きいホウリン酸塩蛍光体で応用に期待ができるが、今 後、高感度化を中心にさらに検討が必要である。

参考文献

- L. Lanca and A. Silvia: Radiography, Vol.15, pp.58-62, 2009.
- A. Sidike, R. A. Z. M. Saliqur, J. He, G. Lan-Xin, K. Atobe and N. Yamashita: J. Lumin., Vol.131, pp.1840-1847, 2011.
- C. Qin, Y. Huang, W. Zhao, L. Shi and H. J. Seo: M. Chem. Phys., Vol.121, pp.286-290, 2010.
- Q. Zeng, N. Kilah and M. Riley: J. Lumin., Vol.101, pp.167, 2003.
- R. Stefani A. D. Maia, E. E. S. Teotonio, M. A. F. Monteiro, M. C. F. C. Felinto and H. F. Brito: J. Solid State Chem., Vol.179, pp.1086–1092, 2006.
- A. Baykal, G. Gozel, M. Kizilyalli, M. Toprak, R. Kniep: Turk J. Chem., Vol.24, pp.381-388, 2000.
- Y. Huang, K. Jang, W. Zhao, E. Cho, Ho Sueb Lee, X. Wang, D. Qin, Y. Zhang, C. Jing, H. J. Seo: J. Solid State Chem., Vol.180, pp.3325-3332, 2007.
- Q. Zeng, Z. Pei, S. Wang, Q. Su, S. Lu: Mater. Res. Bull., Vol.34, pp.1837, 1999.
- T. Kumeda, K. Maeda, Y. Shirano, K. Fujiwara, K. Sakai, T. Ikari: J. Phys., Vol.619, pp.012038, 2015.
- Y. Huang, W. Zhao, L. Shi, H. J. Seo: J. Alloys Compd., Vol.477, pp.936–940, 2009.
- M. Mohapatra, M. Kumar, V. Natarajan, S. V. Godbole: Rad. Phys. Chem., Vol.103, pp.31-36, 2014.
- 12) B. D. Shannon: Acta Crysta. Vol. A, 32, pp.751-767, 1976.