| 2  |                                                                                                                       |
|----|-----------------------------------------------------------------------------------------------------------------------|
| 3  | Title:                                                                                                                |
| 4  | Increase of Clostridium perfringens in association with Eimeria in                                                    |
| 5  | haemorrhagic enteritis in Japanese beef cattle                                                                        |
| 6  |                                                                                                                       |
| 7  | Yumi KIRINO <sup>a</sup> , Miwako TANIDA <sup>b</sup> , Hiroshi HASUNUMA <sup>c</sup> , Toshihide KATO <sup>d</sup> , |
| 8  | Takao IRIE <sup>a</sup> , Yoichiro HORII <sup>a,b,e</sup> , Nariaki NONAKA <sup>a,b,e</sup>                           |
| 9  |                                                                                                                       |
| 10 | <sup>a</sup> Laboratory of Parasitic Diseases, Interdisciplinary Graduate School of Medicine                          |
| 11 | and Veterinary Medicine, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi,                                          |
| 12 | Miyazaki 889-2192, Japan                                                                                              |
| 13 | <sup>b</sup> Laboratory of Parasitic Diseases, Department of Veterinary Medicine, Faculty of                          |
| 14 | Agriculture, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-                                        |
| 15 | 2192, Japan                                                                                                           |

16 <sup>c</sup> Shepherd Central Livestock Clinic, Kagoshima, 20901 Akasegawa, Akune,

- 17 Kagoshima 889-1611, Japan
- 18 <sup>d</sup> Yamagata Prefectural Federation of Agricultural Mutual Relief Association,
- 19 Central Vet. Clinic Center, 286-1 Kitakawahara, Nanaura, Yamagata 990-2171,
- 20 Japan

1

Veterinary Record, Full paper

- 21 <sup>e</sup> Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen-
- 22 Kibanadai-Nishi, Miyazaki 889-2192, Japan
- 23
- 24 Corresponding author: Nariaki NONAKA
- 25 Affiliation and mailing address:
- 26 Laboratory of Veterinary Parasitic Diseases, Interdisciplinary Graduate School of
- 27 Medicine and Veterinary Medicine, University of Miyazaki, 1-1 Gakuen-
- 28 Kibanadai-Nishi, Miyazaki 889-2192, Japan
- 29 Telephone/Fax number: +81(0)985-58-7119
- 30 E-mail address: nnonaka@cc.miyazaki-u.ac.jp
- 31
- 32 Author to be contacted for reprints: Nariaki Nonaka
- 33
- 34 Word counts: 2997
- 35 The number of figures and tables: Seven figures and one table
- 36

# 37 Abstract

| 39 | A coprological survey with detailed clinical observation of naturally                                        |
|----|--------------------------------------------------------------------------------------------------------------|
| 40 | occurring haemorrhagic enteritis (HE) cases was conducted to understand the                                  |
| 41 | pathophysiology of HE by clarifying the infection status of Eimeria and                                      |
| 42 | enteropathogenic bacteria in cattle. Faecal samples from 55 cases of HE and 26                               |
| 43 | clinically normal animals were collected and a quantitative examination of Eimeria                           |
| 44 | and potential enteropathogenic bacteria was performed. The number of <i>Eimeria</i> spp.                     |
| 45 | oocysts per gram of faeces (OPG) exceeded 10,000 in 69.1 per cent of HE cases                                |
| 46 | with a maximum of 1,452,500 OPG and <i>E. zuernii</i> was found to be overwhelmingly                         |
| 47 | dominant. A significant increase in faecal coliform count was observed in HE cases                           |
| 48 | when compared to clinically normal animals. Among the animals shedding more                                  |
| 49 | than 10,000 OPG, 42.9 per cent showed a remarkable increase in Clostridium                                   |
| 50 | <i>perfringens</i> abundance (>10 <sup>4</sup> CFU/g) in the faeces. In the cases with C. <i>perfringens</i> |
| 51 | detected, its abundance was positively correlated with <i>Eimeria</i> OPG and high C.                        |
| 52 | perfringens abundance was always accompanied by high Eimeria OPG. E. zuernii                                 |
| 53 | is likely to play a crucial role in massive multiplication of C. perfringens in HE in                        |
| 54 | cattle.                                                                                                      |

#### 56 Introduction

57

58Bovine coccidiosis, often caused by Eimeria bovis and Eimeria zuernii 59infections, is regarded as one of the most important diarrhoeal diseases in cattle. 60 causing moderate diarrhoea to severe life-threatening haemorrhagic enteritis 61 (Friend and Stockdale 1980, Stockdale and others 1981). These protozoa are found 62 worldwide and the vast majority of cattle are exposed to them at some time in their 63 lives. Calves between three weeks to six months old are particularly susceptible to the infection resulting in clinical coccidiosis (Oda and Nishida 1990, Taylor and 64 65 Catchpole 1994, Daugschies and Najdrowski 2005, Matsubayashi and others 2009). 66 This has led to a number of reports and studies describing the clinical significance 67 and treatments for the disease in calves (Stockdale and others 1981, Bangoura and 68 others 2007, Jonsson and others 2011). Cases of severe coccidiosis with bloody 69 diarrhoea in mature animals have also often been observed in fattening farms, 70 especially in Japanese Black (full-blood Wagyu) as reported by various Prefectural 71Federation of Agricultural Relief Associations and Prefectural Livestock Hygiene 72Centres in Japan. Unfortunately, few documents concerning the aetiology have been published internationally (Sato and others 2010). For these cases, 7374conventional treatment methods blindly relying on the use of anticoccidial drugs 75often did not produce satisfactory results. Further investigation of the aetiological

characterization of the disease in fattening cattle, potentially also taking into
consideration the effect of co-infection with other pathogens, is required (Kano and
others 2011).

79 It has been demonstrated in pigs (Mengel and others 2012) and chickens 80 (Collier and others 2008) that coccidial infections can lead to severe enteritis 81 associated with Clostridium perfringens. However, such studies are virtually 82 lacking for bovine coccidiosis even though it is conceivable that Eimeria infection 83 in cattle may also play a crucial role in the colonization and/or proliferation of other 84 pathogens such as enteropathogenic bacteria. This study explores the infection 85 status of Eimeria and potential enteropathogenic bacteria in haemorrhagic enteritis 86 cases observed in Japanese beef cattle including calves and fattening cattle to 87 understand the pathophysiology of this disease.

#### 89 Materials and methods

90

#### 91 Sample collection

The samples were collected between April and July 2012 from commercial farms in Kyushu (southern island of Japan, nine farms) and Tohoku (northeast region of the main island of Japan, five farms), the university's educational farm (Livestock Science Station, University of Miyazaki) and a slaughterhouse in South Kyushu.

97 Faecal samples were collected from a haemorrhagic enteritis (HE) group 98 and a control group. During the study period, all cases suffering from significant 99 bloody diarrhoea in the targeted regions in Kyushu and Tohoku, regardless of their 100 sex or age, were included in the HE group for a total of 55 animals. The sample 101 size was determined by expected population variance and statistical power. Faecal 102 samples were collected on the first day of illness before any treatments or therapies. 103 Faecal samples for the control group were taken from 15 apparently healthy 104 animals in a slaughterhouse and 11 from the Livestock Science Station, University 105 of Miyazaki, Miyazaki, Japan. Breed, age, sex and clinical findings were recorded 106 for each animal.

107

## 108 Clinical observations

Faecal consistency and the extent of bleeding in the HE group were immediately assessed at sample collection and classified using a faecal score key from 1 to 3, as shown in Table 1.

As well as faecal scores, animals underwent qualitative evaluations of clinical scores by observing eight clinical signs of enteritis: fever, hypothermia, anorexia, dehydration, expression of celialgia, straining, excretion of pseudomembrane and/or tissue and abdominal water sounds. Clinical scores were determined as cumulative scores (clinical score 0 to 8) by counting the number of the above clinical signs observed in each animal.

118

## 119 **Parasitological examination**

120Faecal samples collected from both HE and control groups were tested 121 for oocysts and helminth eggs. The number of oocysts and helminth eggs per gram 122 of faeces (OPG and EPG, respectively) were determined by the modified 123McMaster's method (Thienpont and others 1986), with a sensitivity of 100 124 OPG/EPG, using a saturated salt solution with a specific gravity of 1.2. 125Identification of Eimeria species (E. alabamensis, E. auburnensis, E. bovis, E. 126 ellipsoidalis, E. zuernii and others) was based on the morphology described 127 (Levine and Ivens 1967, Levine 1985).

#### 129 Determination of faecal bacteria abundance

130 Faecal samples from all animals were examined microbiologically for 131*Clostridium perfringens*, *Salmonella* spp., and coliforms by cultivation in each specific culture media: 1) Clostridium perfringens, CW Agar with kanamycin 132133 (KCW) "Nissui" with egg yolk (10 per cent v/v) under anaerobic conditions; 2) 134 Salmonella spp., Selenite Cystine Broth "Nissui" with Sodium Selenite (0.4 per 135cent w/v) and EEM Broth "Nissui" (all above, Nissui Pharmaceutical Co., Ltd., 136 Tokyo, Japan) for preculture followed by selective culture on ES Salmonellae Agar 137 II "Eiken" (Eiken Kagaku, Tokyo, Japan) or CHROMagar TM Salmonella 138(CHROMagar Microbiology, Paris, France); 3) coliforms, Deoxycholate Hydrogen 139Sulfide Lactose (DHL) Agar "Nissui" (Nissui Pharmaceutical Co., Ltd., Tokyo, 140 Japan). The bacterial abundance was examined using the plate colony count method. 141

142 Serum vitamin A

143To observe the degree of vitamin A deficiency, serum samples from the144HE group were collected and stored at -20°C until analysed. The concentration of145vitamin A in serum was measured by HPLC (Suhara and Kanei 1992). Serum146vitamin A levels in the HE group were compared with reference data from mass147profile tests conducted for farm consultations in the study area.

# 149 Statistics

| 150 | Associations between variables were analysed using the Spearman's rank                     |
|-----|--------------------------------------------------------------------------------------------|
| 151 | correlation or Wilcoxon rank-sum test. The Steel-Dwass test was used for multiple          |
| 152 | comparisons. A nominal significance level of 5 per cent ( $\alpha$ =0.05) was used for all |
| 153 | statistical tests. All analyses were performed using Statistical program R                 |
| 154 | (http://www.r-project.org). The results are expressed as the mean value with               |
| 155 | standard error of the mean (SEM), unless otherwise indicated.                              |
| 156 |                                                                                            |
| 157 | Ethical Statement                                                                          |
| 158 | All faecal and blood sampling protocols were performed with                                |

appropriate veterinary care and involved oral informed consent from the owners ofthe animals in the study.

| esults |
|--------|
|        |

163

## 164 Haemorrhagic enteritis cases

165The HE group consisted of 47 Japanese Black (full-blood Wagyu) and166eight F1 crossbred (Japanese Black × Holstein) beef cattle. Animals were aged167between two and 48 months and were 27 fattening cows, 20 fattening steers, seven168calves (three female, four male) and a beef dam.169When the fattening cows and steers in the HE group were classified by170age group at three-month intervals to see the age distribution, they distributed

171 intensively at nine to 11 months old (19.1 per cent), 18 to 20 months old (21.3 per

172 cent), 21 to 23 months old (17.0 per cent), and 24 to 26 months old (23.4 per cent)

173 (Fig. 1).

Differences in the number of cases, faecal and clinical scores, oocyst andgerm counts, or serum vitamin A level were not observed between sexes.

176

#### 177 *Eimeria* OPG

The arithmetic mean OPG of *Eimeria* spp. in the HE and control groups was 193,390±41,509 and 58±43, respectively, showing a significant difference between them (P<0.001) (Fig. 2A). Cases shedding more than 10,000 oocysts in a gram of faeces reached 69.1 per cent in the HE group (38/55), with a maximum

| 182 | OPG of 1,452,500. OPGs of three samples (5.5 per cent) in the HE group and 22                     |
|-----|---------------------------------------------------------------------------------------------------|
| 183 | samples in the control group (87.6 per cent) were below the limit of detection. The               |
| 184 | HE group was classified into sub-groups according to their OPG classes, and the                   |
| 185 | mean proportion of specific OPG for each Eimeria species in the total OPG was                     |
| 186 | calculated (Fig. 3). E. zuernii was observed as an overwhelmingly dominant species                |
| 187 | in 83.6 per cent of the samples from the HE group. When the total OPG was 1000                    |
| 188 | to 9900, the mean percentage of <i>E. zuernii</i> was 80.8±8.8 per cent. However, when            |
| 189 | the total OPG was 10,000 to 99,900, 100,000 to 999,900, or above 1,000,000 the                    |
| 190 | mean percentages rose to 94.0±1.7 per cent, 95.9±1.1 per cent and 97.1±1.8 per                    |
| 191 | cent respectively. In samples with OPGs less than 1000, the dominant species was                  |
| 192 | <i>E. bovis</i> followed by <i>E. auburnensis</i> . The higher the OPG, the higher the proportion |
| 193 | of <i>E. zuernii</i> (rs=0.52, <i>P</i> <0.001).                                                  |

194

195 Bacterial counts

196The first 30 samples collected in the HE group were qualitatively197examined for all of the targeted bacteria to give an overview of the bacterial burden198in these clinical cases. Coliform bacteria were detected from all samples and C.199*perfringens* was detected in 24 samples. Quantification of coliforms was then done200on 25 samples in the HE group and 16 samples in the control group. Among them,20119 samples in the HE group and 16 samples in the control group were submitted

for quantification of *C. perfringens*. The mean faecal coliform count (CFU/g) was significantly higher in the HE group  $(5.6 \times 10^9 \pm 2.7 \times 10^9)$  than the control group  $(8.7 \times 10^5 \pm 4.6 \times 10^5)$  (*P*<0.001) (Fig. 2B).

The difference in the mean faecal *C. perfringens* counts (CFU/g) was not significant between the HE group  $(2.3 \times 10^7 \pm 1.5 \times 10^7)$  and the control group  $(3.9 \times 10^2 \pm 1.4 \times 10^2)$  (Fig. 2C). However, when analysis was performed on samples (n=21) showing detectable *C. perfringens*, a remarkable increase in *C. perfringens*  $(>10^4$  CFU/g) was observed only in the HE group and the increased bacterial count for *C. perfringens* was significantly correlated with increased *Eimeria* spp. OPG (rs=0.55, P<0.001) (Fig. 4).

212 *Salmonella* spp. were not detected in any sample in either group.

213

#### 214 Faecal and clinical scores

HE group faeces presented various levels of haemorrhagic appearance from a reddish brown paste to a red wine-like liquid (Fig. 5). Twenty-one samples (38.2 per cent) were classified as "faecal score 1", 18 (32.7 per cent) as "faecal score 2", and the remaining 16 (29.1 per cent) were marked "faecal score 3". Clinical signs observed at the onset of illness were mild in most cases in the HE group. The number of cases classified into "clinical score 0" "clinical score

221 1", "clinical score 2" and "clinical score 3" was 25 (45.5 per cent), 12 (21.8 per

| 222 | cent), nine (16.4 per cent) and four (7.3 per cent), respectively, and maximum     |
|-----|------------------------------------------------------------------------------------|
| 223 | clinical scores of 4 were recorded in five cases (9.1 per cent). The most frequent |
| 224 | clinical sign was anorexia (24/55) followed by fever (13/55), straining (8/55),    |
| 225 | hypothermia (5/55) and excretion of pseudomembrane and/or tissue (5/55),           |
| 226 | dehydration (3/55), expression of celialgia (2/55) and abdominal water sounds      |
| 227 | (2/55).                                                                            |

Faecal score values significantly increased relative to the *Eimeria* OPG (P=0.014, rs=0.3). Mean OPG was higher when faecal scores were either 2 or 3 compared to those for faecal score 1 (Fig. 6).

231

## 232 Serum vitamin A

Blood samples were collected from all animals in the HE group except for four heads of fattening cattle, seven calves and a beef dam. For the analysis of serum vitamin A levels, the values of two animals were excluded from the data because they had been given vitamin A supplement as part of a regular maintenance a few days before blood collection.

The remaining 41 animals showed serum vitamin A concentrations ranging from 4.3 to 80.0 IU/dL with a mean of  $33.3\pm2.9$  IU/dL. When compared with the age-associated curve in the change of serum vitamin A levels in normal fattening cattle, 14 animals (35.0 per cent) in the HE group showed lower values 242 (Fig. 7).

#### 244 **Discussion**

245

246 An increased rate of excretion of Eimeria oocysts was observed in 247clinical cases of HE in this study. The majority of total OPGs in HE cases were 248 represented by a single species, E. zuernii, which is the most pathogenic of the 13 249bovine Eimeria species observed in Japan. On the other hand, the Eimeria OPG in 250the control group was extremely low or below the detection limit and was assumed 251to be at least partly because of protective immunity to subsequent homologous 252infections (Sühwold and others 2010) in conventional conditions where animals are 253unavoidably exposed to Eimeria oocysts (Daugschies and Najdrowski 2005). The 254animals shedding millions of E. zuernii oocysts in the HE group may have failed 255to acquire immunity to protect themselves against a massive infection of the species 256(or the strain) over the rearing period. However, the factors that determine the 257predominance of a certain species in mixed infections are still unclear.

258 Conversely, there were three animals in the HE group that did not shed 259 detectable amounts of oocysts despite the obvious presence of bloody diarrhoea. 260 Their ages were two, 22 and 29 months and their coliform counts ranged from 10<sup>6</sup> 261 to 10<sup>7</sup>. Although it can be considered that the intestinal damage might have been 262 caused by other pathogens, for example, coronavirus or rotavirus (Dea and others 263 1995), rather than *Eimeria*, it is also likely that the diarrhoeic faeces and large

| 264 | amounts of blood, tissue or mucus shed in faeces interfered with the aetiological                         |
|-----|-----------------------------------------------------------------------------------------------------------|
| 265 | diagnosis by coproscopy in these cases. The sensitivity of coproscopical methods                          |
| 266 | is particularly reduced in severe E. bovis or E. zuernii infections because oocysts                       |
| 267 | are further diluted in diarrhoeic faeces or trapped within tissue and fibrin shed in                      |
| 268 | bloody diarrhoea (Daugschies and Najdrowski 2005). It is also possible that clinical                      |
| 269 | signs develop before oocyst shedding starts (Daugschies and Najdrowski 2005,                              |
| 270 | Mundt and others 2005).                                                                                   |
| 271 | The faecal coliform count in the HE group showed more than a 6000-                                        |
| 272 | fold increase compared to that of the control group (Fig. 2B). This indicates that a                      |
| 273 | dynamic change in the intestinal microbial ecosystem occurs in the early stage of                         |
| 274 | disease, which may allow uncontrolled proliferation of particular organisms.                              |
| 275 | Co-infection with coccidia and C. perfringens in necrotic enteritis has                                   |
| 276 | been well documented in poultry and piglets (McDougald 1998, Westphal and                                 |
| 277 | others 2007). Type A strains of C. perfringens cause diarrhoea, dysentery and                             |
| 278 | enterotoxaemia in ruminants, pigs, horses and poultry (Lebrun and others 2010).                           |
| 279 | Information on the mechanism of C. perfringens-induced necrotic enteritis                                 |
| 280 | associated with Eimeria infection in poultry has recently emerged (Collier and                            |
| 281 | others 2008, Wu and others 2014), but it is still far less clear in mammals. A great                      |
| 282 | abundance of <i>C. perfringens</i> was observed in the HE group with a mean of $2.3 \times 10^7$          |
| 283 | CPU/g. In cattle, counts higher than 10 <sup>6</sup> to 10 <sup>7</sup> CFU/ml of intestinal contents are |

| 284 | considered as a hallmark of C. perfringens overgrowth and confirmatory of field               |
|-----|-----------------------------------------------------------------------------------------------|
| 285 | cases (Lebrun and others 2010). Although C. perfringens counts did not show any               |
| 286 | correlation with clinical outcome in the HE group, it was positively correlated to            |
| 287 | Eimeria OPG in the cases with detectable C. perfringens. Among the faecal                     |
| 288 | samples in this study, high C. perfringens counts were always accompanied by high             |
| 289 | <i>Eimeria</i> spp. OPG with exclusive dominancy of <i>E. zuernii</i> . The samples with high |
| 290 | C. perfringens count (>10 <sup>4</sup> CFU/g) but low oocyst counts were only 3.3 per cent    |
| 291 | while those with high OPG (>10,000) but low C. perfringens count (<10 <sup>4</sup> CFU/g)     |
| 292 | reached 26.7 per cent of all samples examined (Fig. 4). This supports the                     |
| 293 | assumption that E. zuernii paves the way for extensive development of C.                      |
| 294 | <i>perfringens</i> infection rather than <i>vice versa</i> .                                  |

Haemorrhagic enteritis cases were observed with a higher frequency in animals at nine to 11 and 18 to 26 month of age (Fig. 1).

Japanese beef cattle producers normally sell their calves at nine to 10 months of age. Then after long distance transportation from calf-rearing farms to fattening farms, calves are immediately grouped with other calves from different farms and are suddenly exposed to a variety of infectious pathogens. The stress response to transportation and regrouping results in immune suppression and an increase in pathogen shedding (Swanson and Morrow-Tesch 2001, Veissier and Boissy 2001, Gupta and Earley 2005). These conditions could explain the higher frequency of haemorrhagic enteritis cases observed in animals at nine to 11 monthsof age in this study.

306 On the other hand, it is common practice during the fattening stage of 307 Japanese beef cattle to reduce serum vitamin A levels by giving vitamin A-deficient 308 feed to increase the marbling in meat (Oka and others 1998, Nade and others 2003). 309 The majority of the HE group showed vitamin A levels within the reference range 310 and the correlation between vitamin A level and clinical score was weak (rs=0.35, 311 P=0.022). However, as shown in Figs. 1 and 7, the HE cases were observed 312 intensively in age groups with low serum vitamin A levels in the middle to the 313 second half of fattening process. This can be explained by the influence of the 314 vitamin A dietary metabolite retinoic acid on intestinal homeostasis (Maloy and 315Powrie 2011). Thus serum vitamin A deficiency is also likely to be one of the risk 316 factors of haemorrhagic enteritis in beef cattle.

Based on data obtained in this study, *E. zuernii* is likely to play a crucial role in massive multiplication of *C. perfringens* under certain conditions, such as stress in response to transportation or vitamin A deficiency, which underpins the pathophysiology demonstrated in pigs (Mengel and others 2012) and chickens (Collier and others 2008). Both *E. zuernii* and clostridia are widely distributed in cattle farms, and thus, severe *E. zuernii* infection and subsequent overgrowth of *C. perfringens* in the intestine appear to be a likely event in conventional herds. Taken together, conventional HE treatment practices should be reconsidered paying special attention to the influence of *C. perfringens* and its enterotoxin on the pathophysiology. More importantly, *Eimeria* control programs may therefore prevent subsequent events caused by uncontrollable multiplication of enteropathogenic bacteria including *C. perfringens*.

329 To our knowledge, this is one of the first coprological surveys associated 330 with detailed clinical observations on naturally occurring coccidiosis with 331 haemorrhagic enteritis. This disease in fattening cattle herds has been reported 332 mainly within Japan, where a unique fattening process including nutritional 333 manipulation is popularly employed on Japanese Black cattle. Therefore, genetic 334 background and the environment that the cattle are raised in constitute important 335 factors in the occurrence of the disease. Although the breed, well known as 336 "Wagyu", has been long found exclusively in Japan, it is now spreading across the 337 world and is being farmed intensively in many countries including Australia and 338 United States (Elías Calles and others 2000, Polkinghorne and others 2011). The 339 disease, therefore, needs to be brought to the attention of farmers and veterinarians 340 not only in Japan, but also globally.

The study also indicates the importance of understanding the molecular basis of host mucogenic responses to *Eimeria* infection in mammals. Such knowledge will have profound implications for the interaction between parasites

- and bacteria in mammalian intestinal mucosa, which is predicted to be the principal
- 345 pathophysiology in a wide variety of intestinal parasitoses.

# 346 Acknowledgements

| 347 | The authors wish to thank all of the veterinary practitioners in Shepherd         |
|-----|-----------------------------------------------------------------------------------|
| 348 | Central Livestock Clinic and Yamagata Prefectural Federation of Agricultural      |
| 349 | Mutual Relief Association for their assistance with sample collection and also    |
| 350 | members of the Laboratory of Parasitic Diseases, University of Miyazaki for their |
| 351 | cooperation and instructions.                                                     |
| 352 | This study was funded with the support of a collaborative project                 |
| 353 | between the Research Centre for Zoonosis Control in Hokkaido University and the   |
| 354 | Project for Zoonoses Education and Research in University of Miyazaki.            |
| 355 |                                                                                   |

## **References**

| 357 | BANGOURA, B., DAUGSCHIES, A. and FUERLL, M. (2007) Influence of                 |
|-----|---------------------------------------------------------------------------------|
| 358 | experimental Eimeria zuernii infection on clinical blood chemistry in calves.   |
| 359 | Veterinary parasitology <b>150</b> , 46–53.                                     |
| 360 | COLLIER, C.T., HOFACRE, C.L., PAYNE, A.M., ANDERSON, D.B., KAISER, P.,          |
| 361 | MACKIE, R.I. and GASKINS, H.R. (2008) Coccidia-induced mucogenesis              |
| 362 | promotes the onset of necrotic enteritis by supporting Clostridium perfringens  |
| 363 | growth. Veterinary immunology and immunopathology <b>122</b> , 104–15.          |
| 364 | DAUGSCHIES, A. and NAJDROWSKI, M. (2005) Eimeriosis in cattle: current          |
| 365 | understanding. Journal of veterinary medicine. B, Infectious diseases and       |
| 366 | veterinary public health <b>52</b> , 417–27.                                    |
| 367 | DEA, S., MICHAUD, L. and MILANE, G. (1995) Comparison of bovine coronavirus     |
| 368 | isolates associated with neonatal calf diarrhoea and winter dysentery in adult  |
| 369 | dairy cattle in Québec. The Journal of general virology 76, 1263–70.            |
| 370 | ELÍAS CALLES, J.A., GASKINS, C.T., BUSBOOM, J.R., DUCKETT, S.K.,                |
| 371 | CRONRATH, J.D., REEVES, J.J. and WRIGHT, R.W. (2000) Differences                |
| 372 | among Wagyu sires for USDA carcass traits and palatability attributes of        |
| 373 | cooked ribeye steaks. Journal of Animal Science 78, 1710–1715.                  |
| 374 | FRIEND, S.C. and STOCKDALE, P.H. (1980) Experimental Eimeria bovis infection    |
| 375 | in calves: a histopathological study. Canadian journal of comparative medicine. |
| 376 | Revue canadienne de médecine comparée 44, 129–40.                               |
| 377 | GUPTA, S. and EARLEY, B. (2005) Effect of repeated regrouping and relocation on |
| 378 | the physiological, immunological, and hematological variables and performance   |
| 379 | of steers. Journal of animal science, 1948–1958.                                |

| 380 | JONSSON, N.N., PIPER, E.K., GRAY, C.P., DENIZ, A. and CONSTANTINOIU,              |
|-----|-----------------------------------------------------------------------------------|
| 381 | C.C. (2011) Efficacy of toltrazuril 5 % suspension against Eimeria bovis and      |
| 382 | Eimeria zuernii in calves and observations on the associated immunopathology.     |
| 383 | Parasitology research 109, S113–S128.                                             |
| 384 | KANO, S., YOSHIDA, Y., TAKAHASHI, T., MATSUDA, K., HIDEYA, O. and                 |
| 385 | ICHIJO, T. (2011) Relationship between proliferation of Clostridium               |
| 386 | perfringens in feces and recovery of fecal properties in Japanese Black calves    |
| 387 | with coccidiosis. Journal of livestock medicine 58, 679-684.                      |
| 388 | LEBRUN, M., MAINIL, J.G. and LINDEN, A. (2010) Cattle enterotoxaemia and          |
| 389 | Clostridium perfringens : description, diagnosis and prophylaxis.                 |
| 390 | doi:10.1136/vr.b4859.                                                             |
| 391 | LEVINE, N.D. (1985) Veterinary protozoology. Iowa State University Press.         |
| 392 | LEVINE, N.D. and IVENS, V. (1967) The sporulated oocysts of Eimeria illinoisensis |
| 393 | n. sp. and of other species of Eimeria of the ox. Journal of Protozoology 14,     |
| 394 | 351–360.                                                                          |
| 395 | MALOY, K.J. and POWRIE, F. (2011) Intestinal homeostasis and its breakdown in     |
| 396 | inflammatory bowel disease. Nature 474, 298-306.                                  |
| 397 | MATSUBAYASHI, M., KITA, T., NARUSHIMA, T., KIMATA, I., TANI, H.,                  |
| 398 | SASAI, K. and BABA, E. (2009) Coprological survey of parasitic infections in      |
| 399 | pigs and cattle in slaughterhouse in Osaka, Japan. The Journal of veterinary      |
| 400 | medical science 71, 1079–83.                                                      |
| 401 | MCDOUGALD, L.R. (1998) Intestinal protozoa important to poultry. Poultry Science  |
| 402 | 77, 1156–1158.                                                                    |

| 403 | MENGEL, H., KRUGER, M., KRUGER, M.U., WESTPHAL, B., SWIDSINSKI, A.,              |
|-----|----------------------------------------------------------------------------------|
| 404 | SCHWARZ, S., MUNDT, HC., DITTMAR, K. and DAUGSCHIES, A.                          |
| 405 | (2012) Necrotic enteritis due to simultaneous infection with Isospora suis and   |
| 406 | clostridia in newborn piglets and its prevention by early treatment with         |
| 407 | toltrazuril. Parasitology research 110, 1347–55.                                 |
| 408 | MUNDT, HC., BANGOURA, B., RINKE, M., ROSENBRUCH, M. and                          |
| 409 | DAUGSCHIES, A. (2005) Pathology and treatment of Eimeria zuernii                 |
| 410 | coccidiosis in calves: investigations in an infection model. Parasitology        |
| 411 | international 54, 223–30.                                                        |
| 412 | NADE, T., HIRABARA, S., OKUMURA, T. and FUJITA, K. (2003) Effects of             |
| 413 | Vitamin A on Carcass Composition Concerning Younger Steer Fattening of           |
| 414 | Wagyu Cattle. Asian-Australasian Journal of Animal Sciences 16, 353–358.         |
| 415 | ODA, K. and NISHIDA, Y. (1990) Prevalence and distribution of bovine coccidia in |
| 416 | Japan. Japanese journal of veterinary science (Nihon Juigaku Zasshi) 52, 71–7.   |
| 417 | OKA, A., MARUO, Y., MIKI, T., YAMASAKI, T. and SAITO, T. (1998) Influence        |
| 418 | of vitamin A on the quality of beef from the Tajima strain of Japanese Black     |
| 419 | cattle. Meat science 48, 159–67.                                                 |
| 420 | POLKINGHORNE, R.J., NISHIMURA, T., NEATH, K.E. and WATSON, R. (2011)             |
| 421 | Japanese consumer categorisation of beef into quality grades, based on Meat      |
| 422 | Standards Australia methodology. Animal Science Journal 82, 325-333.             |
| 423 | SATO, A., ONOJIMA, M. and ONO, H. (2010) An outbreak of coccidiosis in the       |
| 424 | period from the middle to the end of fattening stage in a Japanese cattle        |
| 425 | fattening farm. Journal of livestock medicine 57, 547-552.                       |

| 426 | STOCKDALE, P.H.G., BAINBOROUGH, A.R., BAILEY, C.B. and NIILO, L.                |
|-----|---------------------------------------------------------------------------------|
| 427 | (1981) Some pathophysiological changes associated with infection of Eimeria     |
| 428 | zuernii in calves. Canadian journal of comparative medicine 45, 34–7.           |
| 429 | SUHARA, S. and KANEI, M. (1992) Measurement of vitamin A. Journal of medical    |
| 430 | technology (Rinsho kensa) 36, 235–239.                                          |
| 431 | SÜHWOLD, A., HERMOSILLA, C., SEEGER, T., ZAHNER, H. and TAUBERT, A.             |
| 432 | (2010) T cell reactions of Eimeria bovis primary and challenge-infected calves. |
| 433 | Parasitology research 106, 595–605.                                             |
| 434 | SWANSON, J.C. and MORROW-TESCH, J. (2001) Cattle transport: Historical,         |
| 435 | research, and future perspectives. Journal of animal science.                   |
| 436 | http://www.journalofanimalscience.org/content/79/E-Suppl/E102.full.pdf.         |
| 437 | Accessed May 16, 2014.                                                          |
| 438 | TAYLOR, M.A. and CATCHPOLE, J. (1994) Coccidiosis of domestic ruminants.        |
| 439 | Applied parasitology <b>35</b> , 73–86.                                         |
| 440 | THIENPONT, D., ROCHETTE, F. and VANPARIJS, O.F.J. (1986) Diagnosing             |
| 441 | Helminthiasis by Coprological Examination. 2nd ed. Janssen Research             |
| 442 | Foundation, Beerse, Belgium.                                                    |
| 443 | VEISSIER, I. and BOISSY, A. (2001) Calves' responses to repeated social         |
| 444 | regrouping and relocation. Journal of animal science, 2580-2593.                |
| 445 | WESTPHAL, L.B., BERNEMANN, B. and KATHMANN, U.B. (2007) Isospora                |
| 446 | suis- and Clostridium perfringens as mixed infection in suckling piglets just   |
| 447 | after post partum? Tierärztl Umschau 62, 682–689.                               |
| 448 | WU, SB., STANLEY, D., RODGERS, N., SWICK, R.A. and MOORE, R.J. (2014)           |
| 449 | Two necrotic enteritis predisposing factors, dietary fishmeal and Eimeria       |

- 450 infection, induce large changes in the caecal microbiota of broiler chickens.
- *Veterinary microbiology* **169**, 188–97.

- 453 Table 1
- 454 Faecal score
- 455

| Fecal consistency                | Score |
|----------------------------------|-------|
| Normal to pasty with blood       | 1     |
| Semi-liquid to liquid with blood | 2     |
| Watery with blood and/or tissue  | 3     |

456

## 458 **Figure legends**

459

460 Fig. 1

- 461 Age distribution of haemorrhagic enteritis cases in different age groups. The age
- analysis was conducted only on animals in the fattening process (n=47).

463

464 Fig. 2

465 Comparison between Haemorrhagic Enteritis (HE) group and control group in the

466 faecal counts for *Eimeria* oocysts (A), coliforms (B) and *Clostridium perfringens* 

467 (C). (A) Means of *Eimeria* oocyst count per gram of faeces in HE group (n=55)

468 and control group (n=21). \*, P<0.001. (B) Enumeration of coliforms in the faeces

469 submitted for quantitative analysis. Results represent the means of CFU per gram

470 of faeces in the HE group (n=25) and control group (n=16). \*, P<0.001. (C)

471 Bacterial count of *C. perfringens* in the faeces submitted for quantitative analysis.

472 Results represent the means of CFU per gram of faeces in the HE group (n=25)

473 and control group (n=16). P=0.363.

474

475 Fig. 3

| 476 | Proportion of each Eimeria species in OPG ranks. All of the animals were                           |
|-----|----------------------------------------------------------------------------------------------------|
| 477 | classified according to their total OPG by ten-fold serial ranking and each bar                    |
| 478 | represents the result of each rank. The mean proportions of <i>Eimeria zuernii</i> , <i>E</i> .    |
| 479 | bovis and other species (marked as "Others") are distinguished by different                        |
| 480 | patterns in each bar. The classification of "Others" consists of <i>E. auburnensis</i> , <i>E.</i> |
| 481 | ellipsoidalis, and E. alabamensis in decreasing order of frequency.                                |
| 482 |                                                                                                    |
| 483 | Fig. 4                                                                                             |
| 484 | Scatterplot graph showing the correlation between <i>Eimeria</i> OPG and <i>C</i> .                |
| 485 | perfringens bacterial count for each individual. Each data point represents one                    |
| 486 | individual. Filled circles represent individuals of the HE group and open circles                  |
| 487 | represent those of the control group. The trend line was generated from a total of                 |
| 488 | 21 data points representing samples containing C. perfringens.                                     |
| 489 |                                                                                                    |
| 490 | Fig. 5                                                                                             |
| 491 | A case with a wine-like liquid stool, expressing celialgia and straining                           |
| 492 |                                                                                                    |
| 493 | Fig. 6                                                                                             |
| 494 | Mean total OPGs for each faecal score group. *, P=0.017.                                           |
| 495 |                                                                                                    |

- 496 Fig. 7
- 497 Scatterplot graph showing serum vitamin A concentrations of 40 head of fattening
- 498 cattle in the HE group at different months of age. Lines show data from mass
- 499 profile tests conducted for farm consultation in the study area. Broken line
- 500 indicates the mean value of serum vitamin A concentration for each age and the
- 501 solid line shows its standard deviations.











