
A Web-Based Software Testing Tool with
Visualization for Java Programs

言語: eng

出版者: 宮崎大学工学部

公開日: 2020-06-21

キーワード (Ja):

キーワード (En):

作成者: 片山, 徹郎, Saputra, Mochamad Chandra,

Suyono, Hadi, Basuki, Achmad

メールアドレス:

所属:

メタデータ

http://hdl.handle.net/10458/5587URL

A Web-Based Software Testing Tool with Visualization
for Java Programs

Mochamad Chandra SAPUTRAa),Tetsuro KATAYAMAb), Hadi SUYONOc), Achmad BASUKId)

Abstract

Visualization is one of the important techniques for software testing. The purpose of software testing is not only to

find errors, but also to understand the behavior of a code through visualization. This research implements a web-based
software testing tool for java programs using statement and branch coverage, and visualizes the result of testing. The
research displays a measurement result of statement and branch coverage as a percentage of a successful tested code.

The tool can inform the user using visualization to understand the behavior of the tested code and its testing status.
The correlation between visual information and software testing, visual information of the tested code describes the behavior
of the code as a sequence of the executed lines. Our implementation of web-based software testing tool for java programs
significantly reduces the time consume for testing a software code, 743 ms using our testing tool and over 4 minutes using
manual testing. Hence, the efficiency of the unit testing for java programs is improved.

Keywords: Visualization on software testing, Web application, Random testing, Java programs

1. INTRODUCTION

Finding errors in early stages of the software
development is an important task to save costs. A
software testing tool is used to find errors included in
the program during its execution. A good software
testing tool should give high probability in finding
those errors1). The testing process should only require
a minimum efforts in finding errors and knowing the
behavior of a code with minimum times.

Testing can be the process of validating and
verifying whether the software product meets the
business and technical requirements that guided its
original design and development. Validation is a set
of tasks that ensures the software has been built is
traceable to the technical requirements, while
verification refers to a set of tasks that ensures the
software is correctly implementing specific
functions2).

Web applications are among the fastest growing
classes of software systems today. These applications
are being used to support a wide range of important
activities for example: business transactions,

scientific activities, and medical activities3). The
main advantages of adopting the web applications are
(1) no installation costs, (2) automatic upgrade with
new features for all users, (3) universal access from
any machine connected to the Internet, and (4)
independence from the operating system of clients4).

Visualization is very important in software
testing. There are three different levels of software
defects visualization technology: level of system
code, level of architecture, and level of system
behavior5). Since software testing is a long and
complex process with probably huge result data
collection, visual information will provide testers
with a quick and general perspective, which leads to
a better understanding of a system software
behavior6). Implementing software testing as a web
application for visualizing the result of testing is one
of the solution to easily understand the behavior of a
software code.

Many tools for software testing have been
proposed, such as JunitPerf7), TestNG8), and so on.
JUnitPerf is a collection of JUnit test decorators used
to measure the performance and scalability of
functionality that is contained within existing JUnit
tests. TestNG is a testing framework inspired by
JUnit and Nunit, but introduces new functionalities
and is easy to use. The behavior of a software code
should sufficiently understood by knowing the
workflow of the code, which parts are executed first,
how many iteration and so on. However, it is not easy

a) Master Student Double Degree Program, Faculty of Engineering,
Department of Computer Science and Systems Engineering
University of Miyazaki, Faculty of Engineering, Department of
Electrical Engineering, Brawijaya University.

b) Associate Professor, Institute of Education and Research for
Engineering, University of Miyazaki.

c) Associate Professor, Faculty of Engineering, Department of
Electrical Engineering, Brawijaya University.

d) Associate Professor, Information Technology and Computer
Science Program, Brawijaya University.

209A Web-Based Software Testing Tool with Visualization for Java Programs

to understand the behavior of a code by using those
commonly used software testing tools.

To display the testing process and to
understand the behavior of a code, we have
implemented a web-based software testing tool with
visualization for java programs. The tool used
random testing with statement coverage and branch
coverage for java programs. The experiment showed
the calculation results from statement coverage and
branch coverage as a percentage of a successful
tested code and visualized the behavior of a software
code. The testing tool informs the users with
visualization to know the behavior of tested code and
testing status. The previous tool is already existed9)
and this research extends the tool to improve its
usefulness.

The outline of this paper is as follows. Section
2 describes the problems in unit testing tools that are
currently proposed. Section 3 describes the
specifications and implementation policies of the
testing tool. Section 4 discusses the testing tool.
Section 5 discusses the related work. Finally, Section
6 summaries this research and discusses the future
issues.

2. PROBLEMS IN TRADITIONAL UNIT

TESTING TOOLS

The testing objective is always to test the code,

whereby there is a high probability of discovering all
errors that exist in the software. This testing objective
for the software functions also works according to the
software requirements specification (SRS) for
functionality, features, facilities, performance. It
should be noted, however, that testing will detect
errors in the written code10). Some of the testing
objectives and their criteria include:
• Testing is a process of executing a program with

the intent of finding an error.
• A good test case is one that has a high probability

of finding an as-yet-undiscovered error.
• A successful test is one that does uncover an as-

yet-undiscovered error.
After the programmer finishes coding or

modifying the program, they need to test the code to
evaluate its quality, and identify defects and
problems to improve it. The goal is also to reduce the
time required for the testing process and fully
understand the behavior of the code.

The previous research used a statement and
branch coverage method for measurement the

successful tested code. Application results show a
percentage successful tested code. The value of the
percentage seen in by the number of line code
executions. The test data are generated by a random
test data generator and then automatically tested.

There are many lines in those tested codes. The
testing process is executed on each line of tested code
and calculation of the lines that executed several
times are done also using statement and branch
coverage. However, the previous research result only
shows the number of these lines and how they were
executed several times without any code visual
information9). Visual information shows the known
behavior of the tested code as sequence of the line
executed by the code. The previous application is not
portable, which means the application can not be
accessed from just any where.

3. SPECIFICATIONS AND

IMPLEMENTATION POLICIES FOR THE
APPLICATION

Traditionally, software testing techniques can

be broadly classified into black box testing and white
box testing. In the black box method, the outside
world comes into contact with the test through a
functionality of the software. An example of black
box testing is testing the application interface,
internal module interface, or the input/output
description of a batch process. Black box tests check
whether interface definitions are adhered to in all
situations10). Product acceptance tests completed by
the customer are also considered black box tests.

White box tests are developer tests. They ensure
that each implemented function is executed at least
once and checked for correct behavior11).
Examination of white box testing results can be done
with the system specifications in mind.

The white box testing method includes
statement coverage and branch coverage. Statement
coverage is code that is executed in such a manner
that every statement of the application is executed at
least once12). The research uses statement coverage
called C0, which helps in ensuring that all the
statements are executed without any side effects.
This method is also called line coverage or segment
coverage.

In statement coverage testing, we make sure that
all our code blocks are executed. We also identify
which blocks failed to execute when using the testing
tool.

210 宮 崎 大 学 工 学 部 紀 要　第 44 号

to understand the behavior of a code by using those
commonly used software testing tools.

To display the testing process and to
understand the behavior of a code, we have
implemented a web-based software testing tool with
visualization for java programs. The tool used
random testing with statement coverage and branch
coverage for java programs. The experiment showed
the calculation results from statement coverage and
branch coverage as a percentage of a successful
tested code and visualized the behavior of a software
code. The testing tool informs the users with
visualization to know the behavior of tested code and
testing status. The previous tool is already existed9)
and this research extends the tool to improve its
usefulness.

The outline of this paper is as follows. Section
2 describes the problems in unit testing tools that are
currently proposed. Section 3 describes the
specifications and implementation policies of the
testing tool. Section 4 discusses the testing tool.
Section 5 discusses the related work. Finally, Section
6 summaries this research and discusses the future
issues.

2. PROBLEMS IN TRADITIONAL UNIT

TESTING TOOLS

The testing objective is always to test the code,

whereby there is a high probability of discovering all
errors that exist in the software. This testing objective
for the software functions also works according to the
software requirements specification (SRS) for
functionality, features, facilities, performance. It
should be noted, however, that testing will detect
errors in the written code10). Some of the testing
objectives and their criteria include:
• Testing is a process of executing a program with

the intent of finding an error.
• A good test case is one that has a high probability

of finding an as-yet-undiscovered error.
• A successful test is one that does uncover an as-

yet-undiscovered error.
After the programmer finishes coding or

modifying the program, they need to test the code to
evaluate its quality, and identify defects and
problems to improve it. The goal is also to reduce the
time required for the testing process and fully
understand the behavior of the code.

The previous research used a statement and
branch coverage method for measurement the

successful tested code. Application results show a
percentage successful tested code. The value of the
percentage seen in by the number of line code
executions. The test data are generated by a random
test data generator and then automatically tested.

There are many lines in those tested codes. The
testing process is executed on each line of tested code
and calculation of the lines that executed several
times are done also using statement and branch
coverage. However, the previous research result only
shows the number of these lines and how they were
executed several times without any code visual
information9). Visual information shows the known
behavior of the tested code as sequence of the line
executed by the code. The previous application is not
portable, which means the application can not be
accessed from just any where.

3. SPECIFICATIONS AND

IMPLEMENTATION POLICIES FOR THE
APPLICATION

Traditionally, software testing techniques can

be broadly classified into black box testing and white
box testing. In the black box method, the outside
world comes into contact with the test through a
functionality of the software. An example of black
box testing is testing the application interface,
internal module interface, or the input/output
description of a batch process. Black box tests check
whether interface definitions are adhered to in all
situations10). Product acceptance tests completed by
the customer are also considered black box tests.

White box tests are developer tests. They ensure
that each implemented function is executed at least
once and checked for correct behavior11).
Examination of white box testing results can be done
with the system specifications in mind.

The white box testing method includes
statement coverage and branch coverage. Statement
coverage is code that is executed in such a manner
that every statement of the application is executed at
least once12). The research uses statement coverage
called C0, which helps in ensuring that all the
statements are executed without any side effects.
This method is also called line coverage or segment
coverage.

In statement coverage testing, we make sure that
all our code blocks are executed. We also identify
which blocks failed to execute when using the testing
tool.

For calculating statement coverage, we use the
following formula13):
• Statement Coverage = (Total Statements execute)

/ (Total Number of Executable Statements in
Program)*100(%).

Test coverage criteria requires enough test cases
that each condition in a decision takes on all possible
outcomes at least once, and each point of entry to a
program or subroutine is invoke at least once. That is,
every branch (decision) can be taken each way, true
and false.

This research uses branch coverage, which is
called C1. It helps in validating all the branches in the
code and making sure that no branch leads to
abnormal behavior of the application14).

For calculating branch coverage, we use the
following formula15):

Fig. 1. GUI of the implemented web-based software testing tool.

Fig. 2. A static result of the testing tool.

Fig. 3. A dynamic result for visual
information of a tested code.

211A Web-Based Software Testing Tool with Visualization for Java Programs

• Branch coverage = (Tested decision outcomes /
total decision outcomes)*100(%).

C0 and/or C1 are used as an exit criterion for the
software testing.

Random data testing executed the application
with input data generated at random. Typically,
testers pay no attention to expected data types. They
feed a random sequence of numbers, letters, and
characters into numeric data fields11).

Automated software testing is an activity that
seems to have obvious benefits. Tests may be
executed swiftly, are more consistent, and may be
repeated at various times without increasing cost16).

Automated software testing simulates the
system behavior by testing tools. The test actions
performed on the application are specified in code
(scripts and test classes). In a context where required
tests are not possible or viable for execution manually,
automated software testing becomes very important.

Visual information is much easier to explain
using demonstrations than it is using words. However,
to be understood clearly, the data that displays should
be familiar to the audience and interesting17).

A web application is a system that typically is
composed of a database (or the back-end) and web
pages (the front-end), which users interact with over
a network using a browser18). The testing tool will
analyze and read the original code based on the
information of the specified file and then insert it into
a temporary database for javascript output.

3.1 Specification

In this section, we describe the spesification and
implementation of the web-based software testing
tool. Figure 1 shows an overview of the implemented
testing tool. The following text describes each part.
1. Browse
Used to select an original file in our directory, the
file must be “*.java”.
2. Upload
Used to store the file into server directory.
3. Method Edit Text

Type a method name for who want to execute in
testing. For example, when we want to execute the
main method in the code, we will type “main”.
4. Execute Button
Upon pressing this button, the testing tool will
execute java service testing (see below for further
details) in the server to test the code.
Automatic tests occur for the C0 and C1 instrumented
code (see below for further details) and then inserts
the tested code into a temporary database for
javascript output visual information.
5. Reset
Pressing this button will stop the process and clear
all the fields.
6. Result Display
The testing tool will display the tested code and
execution time for the testing. The executed
statements are highlighted in bright green as shown
in Figure 2. The testing tool also displays visual
information of the tested code highlighted in bright
yellow and the estimation time for the visualization
as shown in Figure 3. Figure 4 shows the full
configuration of the testing tool.

The testing tool has three parts: uploader code,
java service testing, and insertion of temporary
database.

The java service testing has four sub-parts:
analyzer, C0 and C1 instrument code generator,
testing part, and random data generator.
To implement this model, several steps are followed.
1. Uploader code is an input of testing tool. The

input is tested code from a user. The code will be
used for the java service testing. Uploader code
uploads the tested code from the user to a server.
Tested code is the java program.

2. Java service testing
a) Analyzer loads the original tested code and then

the original tested code used by the C0 and C1
instrument code generator, testing part, and
random data test generator. The testing tool will
execute the java service testing to analyze and
read the original code based on the information
of the specified file, then testing the code and

Fig. 4. Design of the testing tool.

212 宮 崎 大 学 工 学 部 紀 要　第 44 号

• Branch coverage = (Tested decision outcomes /
total decision outcomes)*100(%).

C0 and/or C1 are used as an exit criterion for the
software testing.

Random data testing executed the application
with input data generated at random. Typically,
testers pay no attention to expected data types. They
feed a random sequence of numbers, letters, and
characters into numeric data fields11).

Automated software testing is an activity that
seems to have obvious benefits. Tests may be
executed swiftly, are more consistent, and may be
repeated at various times without increasing cost16).

Automated software testing simulates the
system behavior by testing tools. The test actions
performed on the application are specified in code
(scripts and test classes). In a context where required
tests are not possible or viable for execution manually,
automated software testing becomes very important.

Visual information is much easier to explain
using demonstrations than it is using words. However,
to be understood clearly, the data that displays should
be familiar to the audience and interesting17).

A web application is a system that typically is
composed of a database (or the back-end) and web
pages (the front-end), which users interact with over
a network using a browser18). The testing tool will
analyze and read the original code based on the
information of the specified file and then insert it into
a temporary database for javascript output.

3.1 Specification

In this section, we describe the spesification and
implementation of the web-based software testing
tool. Figure 1 shows an overview of the implemented
testing tool. The following text describes each part.
1. Browse
Used to select an original file in our directory, the
file must be “*.java”.
2. Upload
Used to store the file into server directory.
3. Method Edit Text

Type a method name for who want to execute in
testing. For example, when we want to execute the
main method in the code, we will type “main”.
4. Execute Button
Upon pressing this button, the testing tool will
execute java service testing (see below for further
details) in the server to test the code.
Automatic tests occur for the C0 and C1 instrumented
code (see below for further details) and then inserts
the tested code into a temporary database for
javascript output visual information.
5. Reset
Pressing this button will stop the process and clear
all the fields.
6. Result Display
The testing tool will display the tested code and
execution time for the testing. The executed
statements are highlighted in bright green as shown
in Figure 2. The testing tool also displays visual
information of the tested code highlighted in bright
yellow and the estimation time for the visualization
as shown in Figure 3. Figure 4 shows the full
configuration of the testing tool.

The testing tool has three parts: uploader code,
java service testing, and insertion of temporary
database.

The java service testing has four sub-parts:
analyzer, C0 and C1 instrument code generator,
testing part, and random data generator.
To implement this model, several steps are followed.
1. Uploader code is an input of testing tool. The

input is tested code from a user. The code will be
used for the java service testing. Uploader code
uploads the tested code from the user to a server.
Tested code is the java program.

2. Java service testing
a) Analyzer loads the original tested code and then

the original tested code used by the C0 and C1
instrument code generator, testing part, and
random data test generator. The testing tool will
execute the java service testing to analyze and
read the original code based on the information
of the specified file, then testing the code and

Fig. 4. Design of the testing tool.

inserting it into a temporary database for
javascript output.

b) The C0 and C1 instrument code generator, C0
and C1 used generated random data for
measurement. Applying the testing procedure,
the software will perform the measurement for
C0 and C1. Measurement of statement and
branch coverage uses instrumented code from
the original code of a test target program and
automatically tests based on C0 and C1 by
inputting random data into the C0 and C1
instrumented code. C0 is used as the exit
criterion for the software testing.
The C0 and C1 instrumented code generator
generates the C0 and C1 instrumented code by
pattern matching from the original code. Here,
each standard input instruction is rewritten into
instruction that calls the random data generator.

c) Testing part views the covering status of
statements and branches by inputting random
data during the background process.
The process of the java service testing uses

regular expression for obtaining information from
code test. The regular expression gets the information
of the C0 and C1 instrumented code.

The testing aspect and the random data
generator start after generating the C0 and C1
instrumented code. The testing part executes the C0
and C1 instrumented code. The random data
generator inputs random data into the C0 and C1
instrumented code on behalf of the users inputting
data per standard input instructions.

After each execution of the C0 and C1
instrumented code by the testing part, the testing tool
obtains the covering status of statements and
measures C0 and C1. The testing tool visualizes the
covering status of the statements by highlighting the
original code that is displayed and animated as the
sequence process executes the tested code. The
process for the testing part is executed repeatedly
until the user presses the reset button or C1 satisfies
100%.

d) Random data generator generates random test
data and automatically tests a program with the
generated test data. Users of the testing tool do
not need to describe the test data.
A result of java service testing is the percentage

of a successful tested code and visual information to
know the behavior of the tested code.

3.2 Implementation policies

This section describes each part of the testing
tool in detail.

1) Uploader java file:
The user will upload the java file from the local
drive and store file in the server.

2) Execution method:
The execution method will run a method
contained in an original java file from the user. As
shown in Figure 1, if we want to execute the main
method for testing, we will type “main” as the
method to test, and then testing starts. The code
for the execution java service testing is displaced
in Figure 5. The testing tool will execute java
service testing to test the code from the user.

3) Testing part:
The testing tool with java service testing uses the

original code based on the file information that users
give as an input. The java service testing loads every
1 line from the original code and stores it in an array
of type string.

The testing tool loads the original code from the
database, while code to load the original code from
database is shown in Figure 6, and then visualizes the
behavior of the code.
• Java service testing finds the class name of the

original code by pattern matching. The class name
is used when the C0 and C1 instrumented code
generator generates the instrumented code. Each
standard input instruction then is rewritten into the
instruction that calls the random data generator.

• The testing method process will insert the data
execution line by line into the database.Data
stored in the database will be line number, number
of executions of each line, and tested code.

• The C0 and C1 instrumented code generator
generates instrument code. Instrument code is
inserted or rewritten at the original code, as shown
in Figure 9. The C0 and C1 instrumented code
generator applies pattern matching to every 1 line
of the original code to insert or rewrite the
statement. Then pattern matching finds the
keywords that will be used to generate the C0 and
C1 instrumented code. C0 and C1 instrumented
code is using for calculating the number of
executions of C0 and C1.

When the java service testing executes a
statement, the service assigns 1 to an element of the
array that corresponds to the executed statement.
When all elements of the array C0 are assigned 1, the
java service testing judges C0 satisfies 100% and also
for C1. A test target program is “original code” which
users give as an input, not “C0 and C1 instrumented
code”.

The testing part highlights every 1 line of the
original code displayed on the source code display

213A Web-Based Software Testing Tool with Visualization for Java Programs

 Fig. 5. Part of a code execution method for java service testing

Fig. 6. Part of a code of the testing tool to load the original tested code from the database

label based on the covering status of the statement
and branch coverage. The executed statements are
highlighted in bright green and animated in yellow
with Ajax.

Table 1 shows the process used to rewrite or
insert the pattern by the C0 instrumented code
generator. The C0 and C1 instrumented code
generator obtains the covering status of statements by
inserting an instruction statement that assigns a value
to an array of type int for every statement. The initial
value of each of its elements is 0.

Furthermore, the testing part measures C0 and
C1 based on the covering status of statement and
branch coverage. This part repeatedly executes the
process until C1 is satisfied 100%.

The java service testing inserts the data
execution by each line into the database. The data are
line number, number of executions of each line, time
execution, and tested code. Visualization data is using
Ajax. Data loaded from the database will fetch as an
array and then be visualized. The code for
visualization is shown in Figure 7.
4) Random data generator:
The random data generator generates random test
data on behalf of the System.in.read method that calls
user input. Here, the type of random data used in the
testing tool is integer only.
5) Additional direction:
The file extension must be “*.java”, because Java is
inherently object-oriented, which means that

if(!file_exists('MainClass.class'))
{
 exec('javac MainClass.java 2>&1');

echo "Eksekusi MainClass.java";
}

/*Doing compilation MainApp.java if file not yet compiled*/

if(!file_exists('MainApp.class'))
{
 exec('javac MainApp.java 2>&1');
 echo "Eksekusi MainApp.java";
}

if(!file_exists('Database.class'))
{
 exec('javac Database.java 2>&1');
 echo "Eksekusi MainApp.java";
}

$link = mysql_connect('db_server', 'username', 'password');

if (!$link) {die('Could not connect: ' . mysql_error());}
 $db_selected = mysql_select_db('db_jvis', $link);
if (!$db_selected) {die ('Can\'t use db_jvis : ' . mysql_error());}
 $result= mysql_query('select * from content;');
 $result_display = mysql_query('select distinct(line_number), code_text from
content order by line_number;');
 $data=array();
 $i=1;
while($row = mysql_fetch_array($result))
{
 $data[$i]['id_content']=$row['id_content'];
 $data[$i]['line_number']=$row['line_number'];
 $data[$i]['proses_count']=$row['proses_count'];
 $i++;
}

214 宮 崎 大 学 工 学 部 紀 要　第 44 号

 Fig. 5. Part of a code execution method for java service testing

Fig. 6. Part of a code of the testing tool to load the original tested code from the database

label based on the covering status of the statement
and branch coverage. The executed statements are
highlighted in bright green and animated in yellow
with Ajax.

Table 1 shows the process used to rewrite or
insert the pattern by the C0 instrumented code
generator. The C0 and C1 instrumented code
generator obtains the covering status of statements by
inserting an instruction statement that assigns a value
to an array of type int for every statement. The initial
value of each of its elements is 0.

Furthermore, the testing part measures C0 and
C1 based on the covering status of statement and
branch coverage. This part repeatedly executes the
process until C1 is satisfied 100%.

The java service testing inserts the data
execution by each line into the database. The data are
line number, number of executions of each line, time
execution, and tested code. Visualization data is using
Ajax. Data loaded from the database will fetch as an
array and then be visualized. The code for
visualization is shown in Figure 7.
4) Random data generator:
The random data generator generates random test
data on behalf of the System.in.read method that calls
user input. Here, the type of random data used in the
testing tool is integer only.
5) Additional direction:
The file extension must be “*.java”, because Java is
inherently object-oriented, which means that

if(!file_exists('MainClass.class'))
{
 exec('javac MainClass.java 2>&1');

echo "Eksekusi MainClass.java";
}

/*Doing compilation MainApp.java if file not yet compiled*/

if(!file_exists('MainApp.class'))
{
 exec('javac MainApp.java 2>&1');
 echo "Eksekusi MainApp.java";
}

if(!file_exists('Database.class'))
{
 exec('javac Database.java 2>&1');
 echo "Eksekusi MainApp.java";
}

$link = mysql_connect('db_server', 'username', 'password');

if (!$link) {die('Could not connect: ' . mysql_error());}
 $db_selected = mysql_select_db('db_jvis', $link);
if (!$db_selected) {die ('Can\'t use db_jvis : ' . mysql_error());}
 $result= mysql_query('select * from content;');
 $result_display = mysql_query('select distinct(line_number), code_text from
content order by line_number;');
 $data=array();
 $i=1;
while($row = mysql_fetch_array($result))
{
 $data[$i]['id_content']=$row['id_content'];
 $data[$i]['line_number']=$row['line_number'];
 $data[$i]['proses_count']=$row['proses_count'];
 $i++;
}

function writeResult(hitung)
{
$('#code_'+array_record[hitung]['line_number']).css({'background-color':'yellow'});
$('#count_'+array_record[hitung]['line_number']).val(array_record[hitung]['proses_count'
]);
console.log(hitung);

if(array_record.length<=hitung){
return;
}
hitung++;
setTimeout(function() {
setTimeout(function() {
$('#code_'+array_record[hitung]['line_number']).css({'background-color':'white'});
}, 500);
writeResult(hitung);
}, 750);
 }
var array_record=[];
var counter=0;
$.ajax({
type: "POST",url: "ajax.php",
success: function(msg){
res= json_decode(msg);
array_record = res;
writeResult(counter);

 }//endsuccess
 }); //endajax

Table 1. The processes by C0 and C1 instrumented code generator.

Fig. 7. A part of the code for visualization using ajax.

which means that Java programs are consist in
programming elements called objects. Simply put,
an object is a programming entity that represents
either some real-world objects or an abstract
concept.

• File names must be same as the Public Class
Name, and in this case we use java service testing
and java has restriction about this point. This
restriction implies that there must be at most one
such name type per compilation unit. This
restriction makes it easy for a compiler for the java
programming language or an implementation
ofthe java virtual machine to find a named class
within a package.

4. DISCUSSION

This research seeks to improve the efficiency in

the testing of software development, and implement
the web-based software testing tool of an automatic
unit testing tool using random testing for java
programs. This testing tool can automatically test a
program based on statement coverage (C0) and
branch coverage (C1), without preparing test data by
user.

As example of the tested code is Class
CheckNumber. The testing tool verifies that the
tested code works correctly. Figure 8 shows the tested
code, and Figure 9 shows the generated C0 and C1
instrumented code by inputting the check number
program into the testing tool.

215A Web-Based Software Testing Tool with Visualization for Java Programs

Fig. 8. Example of the tested code which is Class CheckNumber

Fig. 9. C0 and C1 instrumented code generated by the testing tool

The following describes the process for

generating the C0 and C1 instrumented code in
Figure 9 based on the test code in Figure 8. The
numbers at the left of Figure 8 and Figure 9 are the
line numbers. This line number is compatible with the
original code and the C0 and C1 instrumented code.
• Insert a package before the first line of Figure 6,

to generate the C0 and C1 instrumented code
(Line 1 in Figure 9).

• Rewrite an original class name as a class name
“MyCheckNumber” specified in advance by the
testing part (Line 2 in Figure 9).

• Insert an assignment statement after all statements
to gain the covering status of the statements. (Line

2, 3 , 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19 in figure 9).

• Insert an assignment statement to store outputs
after standard input instruction
“System.out.println” (Line 9 in Figure 9).

Figures 2 and 3 show a demonstration of the
testing tool after testing with a statement and branch
coverage. The testing tool will display the result
status of the statement and branch coverage. This
result is not only displayed as a static result, but also
visualizes the result to show the behavior of the tested
code.

As shown in Figures 2 and 3, because all
statements have been highlighted in bright green and
animated by yellow, you can see that all the
statements have been executed.

216 宮 崎 大 学 工 学 部 紀 要　第 44 号

Fig. 8. Example of the tested code which is Class CheckNumber

Fig. 9. C0 and C1 instrumented code generated by the testing tool

The following describes the process for

generating the C0 and C1 instrumented code in
Figure 9 based on the test code in Figure 8. The
numbers at the left of Figure 8 and Figure 9 are the
line numbers. This line number is compatible with the
original code and the C0 and C1 instrumented code.
• Insert a package before the first line of Figure 6,

to generate the C0 and C1 instrumented code
(Line 1 in Figure 9).

• Rewrite an original class name as a class name
“MyCheckNumber” specified in advance by the
testing part (Line 2 in Figure 9).

• Insert an assignment statement after all statements
to gain the covering status of the statements. (Line

2, 3 , 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19 in figure 9).

• Insert an assignment statement to store outputs
after standard input instruction
“System.out.println” (Line 9 in Figure 9).

Figures 2 and 3 show a demonstration of the
testing tool after testing with a statement and branch
coverage. The testing tool will display the result
status of the statement and branch coverage. This
result is not only displayed as a static result, but also
visualizes the result to show the behavior of the tested
code.

As shown in Figures 2 and 3, because all
statements have been highlighted in bright green and
animated by yellow, you can see that all the
statements have been executed.

Users can get the status of testing by embedding
the statements that can view the covering status of
statement. Users can find dead codes if they exist or
satisfy C0 and C1. C1 is used as an exit criterion for
the testing tool. If C1 of the original code is satisfied
100%, then the test automatically stops.

Coverage based testing can be applied to any
stage of testing including unit, integration or system
testing. In this testing tool, results of coverage
measurment can be used in several ways to improve
the verification process.

The code coverage analysis process is generally
divided into three tasks: code instrumentation, data
gathering, and coverage analysis19).

Code instrumentation in this research consists of
inserting some additional codes to measure coverage
results. Instrumentation can be done at the source
level in a separate pre-processing phase with pattern
matching or at runtime by measure of coverage result.
Data gathering consists of storing coverage data
collected during test runtime. Coverage data analysis
is using statement and branch coverage for providing
recommendation into a user about problems in his
code.

Random testing was proposed as an extension of
object oriented testing for agent testing. In this
method, one agent is considered data time and the list
of all possible messages that the agent can receive is
formulated2). Random data tests provide the
application under testing with input data generated at
random. Typically, testers pay no attention to
expected data types. They feed a random sequence of
numbers, letters and characters into the numeric data
fields10).

The testing tool with java service testing will
generate random testing data used by testing process
and is called the user's input. Random data testing is
also used for the measurement percentage of success
from statement and branch coverage. The type of
random data used in the testing tool is integer only.

The research has two result displays. The first is
a static display, and the second is dynamic. The
testing tool displays the static result of testing as the
number for each line execution, measurement
percentage of success from statement and branch
coverage, and time execution for testing as shown in
Figure 2. The result shows the number for how many
times the line was executed by the java service testing.
This result can be used to check the logical flow of
the program from the number of executions of each
line. In other words, the result can be used for the
verification process.

This research uses the initial value of each
statement element as 0. The java service testing
executes a statement, and the service assigns 1 to an
element of the array corresponding to the executed
statement. Percentage of coverage is measured from
based on condition.

The second result display is dynamic. The result
display visualizes the behavior of the tested code as
shown in Figure 3. Certain coverage analysis tools
also depict coverage visually, often by highlighting
portions of code that are unexecuted by a test suite20).
In this research, the visual information resets every
time a tester selects a new code and then tests the code.
The testing tool performs new visualizations to know
the behavior of the code, and that it does not
accumulate with each successive test run before the
testing.

The testing tool can show the correlation
between visual information and software testing. This
correlation means results collection and a better
prespective of software testing. The testing tool
shows the correlation as visual information, and it
allows a better understanding of the behavior of the
tested code.

Visual information describes the behavior of the
tested code as a sequence of the line executed by the
testing tools. This current research displays not only
the result as a number of the percentage of success
process, but the testing tool also displays visual
information about it. Visual information helps one
understand the behavior of the tested code. The
testing tool displays visual information in highlighted
bright yellow and also the estimation time for the
visualization. Visual information describes the
behavior of the tested code as a sequence of the line
being executed.

One of the goals of this research is having
visualizations that are designed to motivate
developers to write and understand more effective
code by visualizing test adequacy. Code coverage
visualizations are supposed to improve developer
efficiency and knowledge and promote more
productive testing strategies. Testing visualizations
guide developers to a particular standard of
effectiveness, so if developers want to test software
adequately, we must ensure that the coverage criteria
we choose to visualize leads developers toward a
better standard of test effectiveness.

The main role of visual information is that it can
understood as helping the user to perceive patterns
that can be used for building an appropriate model.
This goal means, in particular, that a tool should

217A Web-Based Software Testing Tool with Visualization for Java Programs

Table 2. Time comparison between testing tool testing and
manual testing(by human).

Testing Tool No. Manual Testing

752 ms

1 3’ 54 ″
2 2’ 54 ″
3 5’ 40 ″

Mean 4’ 15 ″

facilitate the perception of (sub) sets of data items as
units21).

The testing tool uses java file CheckNumber that
inputs 19 lines and then to measure statement
coverage, branch coverage, number of run, the input
of each program to the end of testing by C0 and C1 to
reach 100%. We measured the testing at the web
server with CentOS release 5.9 (Final), Apache/2.2.3,
Intel(R) Xeon(R) CPU 3050 @2.13GHz, PHP
Version 5.3.3.

In addition, we performed experiments with
CheckNumber until the testing tool stopped testing
when C1 satisfied 100%, with a length of time until
examinees manually selected a data test to satisfy C0
and C1 100%.

The times execution for testing the class
CheckNumber is 752 ms and if we test manually (by
humans), theaverage time is 4 minutes 15 second as
shown in Table 2. The testing tool can reduce time to
describe a tested code and execute unit testing in a
shorter time.

The condition that possibly may result and
might be not satisfied with 100% is the statement and
branch coverage that find dead codes if they exist.
The testing tool must provide a way to flag those dead
codes.

By applying various programs to the testing tool,
we have found several problems with the testing tool.
These issues are as follows:
• The type of data test generation is an integer.

Because the java service testing is not supported
by types except type int, thedefects that the testing
tool can detect are limited.

• In generating the C0 instrumented code, the java
service testing inserts a statement every 1 line to
get the covering status of the statement. In a
program that does not include a suitable newline,
the testing tool cannot properly get C0 to highlight
a covering statement.

• Users of the testing tool can save time when
generating test data, but the users need to check
the results and input thedata after testing.

• The target of automatic generating and inputting
random data is only the System.in.read method. In
generating the C0 and C1 instrumentation code,
the java service testing rewrites only
System.in.read method into an instruction that
calls the random data generator. Therefore,
inputting of value without using the
System.in.read method is outside the scope of
automatic inputting and generation of test data in
the current testing tool.

5. RELATED WORKS

Several source code based testability metrics
have been proposed for object-oriented applications.
R. Binder classifies source code-based metrics
according to two criteria: Complexity of testing
indicates how difficult it is to produce a test; and the
scope of testing evaluates how many test cases have
to be produced22). Software testing methods are the
techniques, procedures, patterns or templates used to
conduct software testing tasks both effectively and
efficiently23).

This research seeks to improve the efficiency in
testing of software development, and implement the
testing tool of an automatic unit testing tool via
random testing for java programs. The testing tool
can then automatically test a program based on
statement and branch coverage.

Automation has become essential given t system
high complexity, need of performance and stress
testing, optimum testing times and cost, reduction of
software quality and, after the recognition of the
importance of software tests, increased pressure on
software development teams16). The testing tool uses
java service testing to automatically test a program by
inputting random data into the C0 and C1
instrumented code.

Program visualization can be described as
depicting the source code or the state of a program or
its execution with a visual means24).

The research has two result displays. The first is
a static display, and the second is a dynamic one. The
testing tool displays the static result of testing as the
number of each line execution and a measurement
percentage of success from statement and branch
coverage.

The second result display is dynamic. The result
is displayed for visualizing the behavior of the tested
code. The testing tool displays the visualization with
visual information as a highlighted bright yellow and
also the estimation time for the visualization.
Visualized information describes the behavior of the

218 宮 崎 大 学 工 学 部 紀 要　第 44 号

Table 2. Time comparison between testing tool testing and
manual testing(by human).

Testing Tool No. Manual Testing

752 ms

1 3’ 54 ″
2 2’ 54 ″
3 5’ 40 ″

Mean 4’ 15 ″

facilitate the perception of (sub) sets of data items as
units21).

The testing tool uses java file CheckNumber that
inputs 19 lines and then to measure statement
coverage, branch coverage, number of run, the input
of each program to the end of testing by C0 and C1 to
reach 100%. We measured the testing at the web
server with CentOS release 5.9 (Final), Apache/2.2.3,
Intel(R) Xeon(R) CPU 3050 @2.13GHz, PHP
Version 5.3.3.

In addition, we performed experiments with
CheckNumber until the testing tool stopped testing
when C1 satisfied 100%, with a length of time until
examinees manually selected a data test to satisfy C0
and C1 100%.

The times execution for testing the class
CheckNumber is 752 ms and if we test manually (by
humans), theaverage time is 4 minutes 15 second as
shown in Table 2. The testing tool can reduce time to
describe a tested code and execute unit testing in a
shorter time.

The condition that possibly may result and
might be not satisfied with 100% is the statement and
branch coverage that find dead codes if they exist.
The testing tool must provide a way to flag those dead
codes.

By applying various programs to the testing tool,
we have found several problems with the testing tool.
These issues are as follows:
• The type of data test generation is an integer.

Because the java service testing is not supported
by types except type int, thedefects that the testing
tool can detect are limited.

• In generating the C0 instrumented code, the java
service testing inserts a statement every 1 line to
get the covering status of the statement. In a
program that does not include a suitable newline,
the testing tool cannot properly get C0 to highlight
a covering statement.

• Users of the testing tool can save time when
generating test data, but the users need to check
the results and input thedata after testing.

• The target of automatic generating and inputting
random data is only the System.in.read method. In
generating the C0 and C1 instrumentation code,
the java service testing rewrites only
System.in.read method into an instruction that
calls the random data generator. Therefore,
inputting of value without using the
System.in.read method is outside the scope of
automatic inputting and generation of test data in
the current testing tool.

5. RELATED WORKS

Several source code based testability metrics
have been proposed for object-oriented applications.
R. Binder classifies source code-based metrics
according to two criteria: Complexity of testing
indicates how difficult it is to produce a test; and the
scope of testing evaluates how many test cases have
to be produced22). Software testing methods are the
techniques, procedures, patterns or templates used to
conduct software testing tasks both effectively and
efficiently23).

This research seeks to improve the efficiency in
testing of software development, and implement the
testing tool of an automatic unit testing tool via
random testing for java programs. The testing tool
can then automatically test a program based on
statement and branch coverage.

Automation has become essential given t system
high complexity, need of performance and stress
testing, optimum testing times and cost, reduction of
software quality and, after the recognition of the
importance of software tests, increased pressure on
software development teams16). The testing tool uses
java service testing to automatically test a program by
inputting random data into the C0 and C1
instrumented code.

Program visualization can be described as
depicting the source code or the state of a program or
its execution with a visual means24).

The research has two result displays. The first is
a static display, and the second is a dynamic one. The
testing tool displays the static result of testing as the
number of each line execution and a measurement
percentage of success from statement and branch
coverage.

The second result display is dynamic. The result
is displayed for visualizing the behavior of the tested
code. The testing tool displays the visualization with
visual information as a highlighted bright yellow and
also the estimation time for the visualization.
Visualized information describes the behavior of the

tested code as a sequence of the line being executed
by the code.

Visualization concerns the graphical
representation of information to assist human
comprehension of and reasoning about that
information25). The testing tool result makes possible
distribution of the software testing scalability
problem, making certain key choices instead a
technical distribution of responsibilities.

6. CONCLUSION

We aim to improve the efficiency of testing in
software development, and have implemented a web-
based software testing tool with java service testing
of an automatic unit testing tool for java programs
with random testing.

The implemented testing tool generates the C0
and C1 instrumented code from the original code. The
testing tool uses java service testing to automatically
test a program by inputting random data into the C0
and C1 instrumented code.

In this testing tool, users can automatically test
a program without preparing test data because the
testing tool generates random test data for testing.
Users can get the status of testing by inserting the
statements that show the covering status of the
statement data testing stored in database. After testing,
the obtained result is outputted as a static html page
and dynamic display for visual information with Ajax.

The testing tool can show the correlation
between visual information and software testing. This
correlation means a result collection and prespective
of software testing. The testing tool shows the
correlation as visual information to understand the
behavior of the tested code.

Visual information means the behavior of the
tested code is a sequence of the line executed by the
testing tools. This research displays not only the
result as a percentage number for the success process,
but testing tool display also shows a visual
information of it.

The testing tool can reduce the time needed to
describe a tested code and execute unit testing in a
shorter time. The time execution needed to test
CheckNumber was 752 ms.

Future issues are as follows:
• Expanding the type of a data test. In order to detect

more defects, we need to improve the testing tool,
so that the testing tool can input data test other
than type int.

• Checking the expectation value and execution
result automatically

• Discussing a new input form, so that you can
input the expectation value.

• Introducing the parser. It is possible to adapt the
testing tool to a program that does not include a
suitable newline by introduction of the parser.

REFERENCES

1). Roger S.Pressman, “Software Engineering – A

Practitioner’s Approach”, Tata Mc Graw Hill, 7th
edition, 2010.

2). Sivakumar.N.,Vivekanandan.K. “Comparing the
Testing Approaches of Traditional, Object-Oriented
and Agent- Oriented Software System”, International
Journal of Computer Science & Engineering
Technology (IJCSET), Vol.3, No.10, 498 – 504, 2012.

3). Qian.Zhongsheng., Miao.Huaikou., Zeng.Hongwei. “A
Practical Web Testing Model for Web Application
Testing”, 3rd International IEEE Conference on Signal-
Image Technologies and Internet-Based System, 434 –
441, 2008.

4). Dogana.Serdar., Betin-Cana.Aysu., Garousia.Vahid.
“Web application testing: A systematic literature
review”, The Journal of Systems and Software
(ELSEVIER), 174–201, 2014.

5). Ball. T., Eick. S.G. “Software Visualization in the
Large”, IEEE Computer Society, 33 – 43, 1996.

6). Wang.Huansong., Zhang.Xiang., Zhou.Mingqi .
“MaVis: Feature-based Defects Visualization in
Software Testing”, Engineering and Technology (S-
CET), 2012 Spring Congress on, 1 – 4, 2012.

7). Cédric Beust, “TestNG”,
http://testng.org/doc/index.html

8). Mike Clark, “JUnit Primer”,
http://www.clarkware.com/software/JUnitPerf.html

9). Matsuoka, Shingo., Kita, Yoshihiro., Katayama,
Tetsuro. “Prototype of an Automatic Unit Testing Tool
with Random Testing for Java Programs”, 22nd
International Symposium on Software Reliability
Engineering (ISSRE), 2011.

10). Agarwal,B. B., Tayal, S. P., Gupta, M. “Software
Engineering & Testing An Introduction”, Jones and
Bartlett Publishers, 161-179, 2010.

11). Manfred Rätzmann Clinton De Young, Software
Testing and Internationalization, Galileo Press GmbH,
49 – 51, 2002.

12). Testing Brain, “Statement Coverage in Software
Testing”,
http://www.testingbrain.com/whitebox/statement-
coverage.html.

13). Software Testing Genius, “Know the Basic White Box
Testing Techniques based upon Code Coverage”,
http://www.softwaretestinggenius.com/know-the-basic-
white-box-testing-techniques-based-upon-code-
coverage.

219A Web-Based Software Testing Tool with Visualization for Java Programs

14). ISTBQ. “How to Calculate Statement, Branch/Decision
and Path Coverage for ISTQB Exam Purpose”.
http://www.ajoysingha.info

15). Software Testing Guide, “Explain Branch
Coverage/Decission
Coverage”,http://softwaretestingguide.blogspot.jp/2009
/12/explain-branch-coverage-decision.html

16). Dasso.Aristides., Funes.Ana., “Verification, Validation
and Testing in Software Engineering”, Idea Group
Publishing, 71 – 95, 2007.

17). Fekete.Jean-Daniel., van Wijk.Jarke J., Stasko .John T.,
North.Chris. “Information Visualization Human-
Centered Issues and Perspectives”, Springer, 1 – 18.
2008.

18). Yuan-Fang Li., Paramjit K. Das., David L. Dowe.
“Two Decades Of Web Application Testing A Survey
Of Recent Advances”, Information Systems
(ELSEVIER), 20–54, 2014.

19). Shahid.Muhammad., Ibrahim.Suhaimi., “An Evaluation
of Test Coverage Tools in Software Testing”,
International Conference on Telecommunication
Technology and Applications, Vol.5, 2011.

20). Lawrance, Joseph., Clarke, Steven., Burnett, Margaret.,
Rothermel, Gregg. “How Well Do Professional
Developers Test with Code Coverage Visualizations?
An Empirical Study”, IEEE Computer Society, 53-60,
2005.

21). Purchase. Helen C., Andrienko. Natalia, Jankun-
Kelly.T.J., Ward.Matthew. “Theoretical Foundations of
Information Visualization”, Information Visualization,
46 – 64, Springer Berlin Heidelberg, 2008.

22). R. V. Binder. “Design for Testability in Object-
oriented Systems”. Communications of the ACM,
Vol.37, No.9, 87–101, 1994.

23). Lee, J., Kang,S., Lee,D. “Survey on Software Testing
Practices”, IET Software Publishes Papers on All
Aspects of the Software Lifecycle, 275-282, 2012.

24). Myller, Niko. “Collaborative Software Visualization
for Learning: Theory and Applications”, Dissertation
Document, University Of Joensuu, 2009.

25). Petre, Marian.,Quincey, Ed de. “A gentle Overview of
Software Visualisation”, Computer Society of India
Communications, 1- 10, 2006.

220 宮 崎 大 学 工 学 部 紀 要　第 44 号

