

スイッチドキャパシタ逐次近似型 AD 変換器

メタデータ	言語: Japanese
	出版者: 宮崎大学工学部
	公開日: 2020-06-21
	キーワード (Ja):
	キーワード (En): Swiched-capacitor, A/D Converter,
	capacitance ratio, Operational Amplifer
	作成者: 森山, 和貴, 松本, 寛樹, Moriyama, Kazuki
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10458/5569

スイッチドキャパシタ逐次近似型 AD 変換器

森山 和貴^{a)} · 松本 寛樹^{b)}

SC Successive Approximation A/D Converter

Kazuki MORIYAMA, Hiroki MATSUMOTO

Abstract

This paper shows an improved A/D converter insensitive to capacitance mismatch. By using Operational amplifier, error caused by it is reduced and resolution is estimated to 14bits. Converter Operation is confirmed on SIMetrix.

Keywords: Swiched-capacitor, A/D Converter, capacitance ratio, Operational Amplifer

1 序論

1990年代から、ディジタル技術の高度化により、コン ピュータは急速な発展を遂げてきている。コンピュータは、 その本来の意味する「計算機」という枠組みにとどまらず、 あらかじめソフト的もしくはハード的に組み込まれたプ ログラムに基づき、入力されるデータの観測、蓄積、処理 やそれらの結果に応じた所望のデータの出力などを自由 自在にそして短時間で処理できる。

しかしながら、コンピュータで扱えるデータは『0』と 『1』の 2 つの値で表されるディジタル信号だけである。 自然界に存在している、温度、速度、圧力、流れなどの物 理量はほとんどアナログ量であり、また、発振機によって 作られた正弦波、三角波、方形波や人間の音声などもアナ ログ量である。

したがってこのアナログ量をディジタル信号、あるいは ディジタル信号をアナログ量に変換することで、コンピュ ータの幅広い応用が可能になる。一般に、この変換はそれ ぞれ A/D 変換(analog to digital conversion)、D/A 変換 (digital to analog conversion)と呼ばれる

本研究では、オペアンプと電圧比較器を用いて、キャパ シタの不整合による誤差を低減した AD 変換回路を制作 し、SIMetrix を用いて動作比較検討する。

2 A/D変換器

2.1 A/D 変換器過程

A/D 変換とは、アナログ量からディジタル信号に変換することである。この A/D 変換を通信関係では符号化や変

a)大学院電気電子工学専攻 b)工学部准教授 調と呼ばれる。これを実現する電子回路が A/D 変換器で ある。

A/D 変換の過程は前置フィルタを通ったあとアナログ 量を標本化、量子化、符号化の順に行うことによってディ ジタル信号に変換される。

2.1.1 標本化

標本化とは、連続的なアナログ量の振幅値をある離散的 な周期 T(周波数 fs=1/T)を基に区切り、アナログの振幅の 瞬間値インパルス信号を取り出していくことである。これ を標本化またはサンプリングと呼ぶ。fs は標本化周波数で ある。

標本化によるインパルス列(デルタ関数列)は PAM(パルス振幅変調)や標本化信号と呼ばれる。この PAM はアナログ量をパルス波で変調した信号となり、周波数スペクトルは nfs を基準に上側波帯と下側波帯に分けられる。

2.1.2 量子化

量子化(quantizing)とは、保存されているアナログ電圧 以がある基準とすると電圧 Vs の何倍になっているか判断 し、倍数値を整数値に丸めることである。その丸めによっ て生じた誤差は量子化誤差(quantize-tion error)と呼ばれ、 A/D 変換では避けられない誤差である。また、基準電圧に よって異なる整数値になる。整数値に丸める方法としては 切り捨て法、切り上げ法、四捨五入法の三通りが考えられ る。一般的には、二乗平均誤差が最も小さくなる四捨五入 法が用いられる。

2.1.3 符号化

符号化(coding)とは、量子化によって丸められた整数値 を2進コードに変換することである。A/D 変換器に入力 される電圧はユニポーラ形とバイポーラ型とがある。 ユニポーラ形とは、例えば 0~+5[V]のように正の極性だ けを持つものをいい、バイポーラ形とは、例えば-2.5~ +2.5[V]のように両極性を持つものをいう。

2.2 A/D 変換器の諸特性

2.2.1 入出力特性

A/D 変換器の入出力特性は横軸にアナログ入力電圧、縦 軸に出力のディジタルコードを取ったものである。量子化 誤差が最小になるように-1/2LSB のオフセットを与えた 特性を図に示した。この図6ではフルスケールレンジ

(FSR) が 8[V]であり、FSR の 8 等分の値 1[V]ごとの電 圧をオフセット(=-0.5[V])分ずらしてディジタルビットで 示したものである。0[V]、0.5[V]以降は 1[V]毎に、1 つの ディジタルビットずつ変化する。例えば、0.5[V] \leq Va<1.5[V]に示す範囲内のディジタルビットは"001"であ る。また、このときの分解能は

 $1LSB=8/2^{3}=1[V]$

であり、量子化誤差は 1/2LSB(=0.5[V])である

2.2.2 A/D 変換器の仕様

A/D 変換器の仕様について各項目ごとに説明する。

分解能 A/D 変換における分解能(resolution)はディジタ ル信号の 1 段階の変化に対する最小の識別可能な出力変 化をいう。たとえば、8[V]の FSR で3ビットの分解能は 8/2³=1[V]である。この分解能を 1LSB あるいは△と表記 する。あるいは 12.5%(1/2³)ととってもよい。10ビットな らば分解能は約 0.1%(1/2¹⁰)である。

精度 A/D 変換器の精度は量子化誤差や外部からの雑音 および素子のばらつきなどに大きく影響される。通常、量 子化誤差は±1/2LSB ではあるが、仕様として示される精 度はそれ以外の誤差の合計として表される。精度の代表値 は FSR の±0.02%である。A/D 変換器のビット長はこれ らを考慮して決められている。

変換時間 A/D 変換器における変換時間(conversion time)は、変換開始命令を与えてから実際にディジタル出 力を終えるまでの時間である。変換時間の代表値は高速な もので 3~5[ns]、低速なもので数[ms]である。

2.3 逐次近似型 ADC

図1に示すように、逐次比較型A-Dコンバータは、コ ンパレータ(比較器)、逐次比較レジスタ(SAR)、クロック 発生器の4ブロックから構成される。実際のICでは、変 換動作の間入力電圧を保持するサンプル&ホールド・アン プが×に示す箇所にはいる。

変換の手順は上皿天秤を使用した計測方法と同様で、分 解能が4ビットの場合,1g,2g4g,8gといった2進数の重み づけ(バイナリウエイト)を持ったおもりを用意し、天秤の 片方の皿に被測定物を乗せる。

仮にD3~D0の4ビットとすると、最も重いおもりの

8gは、最も重みづけの大きいビット(MSB)の D_3 に相当し、 最も軽い 1gは、最も重みづけの小さいビット(LSB)の D_0 となる。

被測定物の重さを 5g の変換手順を次に示す。

 最も重いおもりを、もう一方の天秤皿に乗せて比 較する。

この場合は、おもりの合計>被測定物なので、8g は取り去り、D₃ビットは'0'とする

- ② 8gの次に重い4gのおもりを天秤皿に乗せて比較する。今度は、おもり合計<被測定物なので、4gはのせたままにしてD₂ビットを'1'にする。
- ③ 4gの次に重い 2gのおもりを追加(合計 6g)して比較すると、おもり合計>被測定物なので、2gのおもりは取り去ってD₁ビットを '0' にする。
- ④ 最後に、一番軽いおもり 1gを天秤皿に乗せて比較 すると、天秤皿が平衡したので、D₀ビットを'1' にする。このときのおもりの合計が被測定物の重 さになるので、最終的な出力データは'0101'が 得られる。

図 1. 逐次近似型 ADC の構成.

スイッチドキャパシタ逐次近似型 A/D 変換器 1.1 提案回路 α

図2に提案回路αである演算増幅器を用いたSC逐次 近似型 A/D 変換器の回路図を示す。この回路図はVrに 入力された電圧を変換し、出力する回路図である。またD AC部分ではサンプルホールド回路一つと分圧回路一つ から構成される。スイッチ表は表1に示す。

キャパシタの容量値 $C_U=10pF_1C_L=10pF_1C_A=9.95pF_1C_B=10.05pF_1C_B$ と設定する。 $C_3 \ge C_4$ は容量不整合 1%となっている。

図 2. 提案回路 α.

表1.提案回路 αのスイッチ図.

	S1	82	83	84	85	86	87	88	- 89	S10	S11	S12
SA1	1	1	0	0	1	1	0	1	0	0	0	1
SA2	1	0	0	0	1	1	0	0	0	1	1	0
_φ1	0	6	0	0	1	0	0	bi	0	1	1	0
φ2	0	bio	bie	bi	0	0	bio	bie	bi	0	0	1
φ3	0	0	0	0	1	0	0	0	0	1	1	0
SB1	1	0	1	0	1	1	1	0	0	0	0	1
SB2	1	0	0	0	1	1	0	0	0	1	1	0
φ1	0	6	0	0	1	0	0	bá	0	1	1	0
φ2	0	bie	bio	bi	0	0	bie	bio	bi	0	0	1
φ3	0	0	0	0	1	0	0	0	0	1	1	0

3.1.2 提案回路 β

図 3 に提案回路 β である演算増幅器を用いた SC 逐次 近似型 A/D 変換器を示す。この回路図は Vr に入力され た電圧を変換し、出力する回路図である。またDAC部分 ではサンプルホールド回路 2 つと分圧回路一つから構成 される。スイッチ表は表 2 に示す。

提案回路 α とはサンプルホールド回路の使用が異なり こちらの回路では測定時の電圧測定が安定する。回路動作 は基本的には提案回路 α と相違はない。回路構成はキャパ シタの容量値 C₁=10pF,C₂=10pF、C₃=9.95pF、C₄= 10.05pF、と設定する。

図 3. 提案回路 β .

表2.提案回路Bのスイッチ表.

	S1	S2	S3	S4	S5	S6	\$7	S8	S9	S10	S11	S12	S13	S14	S15
R1	1	0	0	1	1	0	0	1	0	0	1	1	1	0	0
R2	0	0	1	0	0	0	1	0	1	1	1	0	1	0	0
R3	0	0	1	0	0	0	1	0	0	0	0	0	0	1	1
φ1	0	bi-1a	0	1	0	bi-1	0	1	0	0	0	0	0	1	1
φ2	0	0	1	0	0	0	1	0	0	e	0	е	1	0	0
φ3	0	0	1	0	0	0	1	0	0	0	0	0	0	1	1
S1	1	0	0	1	1	0	0	1	0	0	1	1	1	0	0
S2	0	0	1	0	0	0	1	0	0	1	0	1	1	0	0
S3	0	0	1	0	0	0	1	0	0	0	0	0	0	1	1
φ1	0	bi-1a	0	1	0	bi-1	0	1	0	0	0	0	0	1	1
φ2	0	0	1	0	0	0	1	0	е	0	е	0	1	0	0
φ3	0	0	1	0	0	0	1	0	0	0	0	0	0	1	1

3.2 回路動作

図3の回路の動作を次のように示す。

- *R*₁: 基準電圧 Vr が*C*₁に充電され、*C*₂ では接地とつながり放電される。
- R_2 : C と C_2 に充電された電荷が C_4 と C_3 に転送される。
- R3: 基準電圧 Vr がC1に充電、C2 は放電され、C3 とC4
 が並列接続となり両端電圧が等しくなる。
- Ø2: 奇数回目ではC1の電荷がC4に、C2の電荷がC3に転送される。
 偶数回目ではC1の電荷がC3に、C2の電荷がC4に転送される。
- Ø3: C3とC4が並列接続となり両端電圧が等しくなる。

Ø₁~Ø₃を16回繰り返す。

- *S*₁: 基準電圧 Vr が*C*₁に充電され、*C*₂ では接地とつなが り放電される。
- S_2 : $C_1 \ge C_2$ に充電された電荷が $C_3 \ge C_4$ に転送される。
- S₃: 基準電圧 Vr がC₁に充電、C₂は放電され、C₃とC₄が 並列接続となり両端電圧が等しくなる。

- Ø2: 奇数回目ではC1の電荷がC4に、C2の電荷がC3に転送される。
 偶数回目ではC1の電荷がC3に、C2の電荷がC4に転送される。
- Ø3: C3とC4が並列接続となり両端電圧が等しくなる。

Ø1~Ø3を16回繰り返す。

図 2 の回路動作においても同様の動作を繰り返す。 C_1, C_2 は C_U, C_L に C_3C_4 は $C_A C_B$ に置き換える。

4 シミュレーション結果

動作原理を確認するために、SIMetrix を用いて実験を 行った。基準電圧Vrは1[V]に設定している。CONV1は一 度目の変換、CONV2は二回目の変換、平均化はCONV1 と CONV2 を平均した値であり、誤差ビットは真値から 平均値を引いたものである。

提案回路 α の素子設定を表 3 の用に、提案回路ベータの 素子設定を表 4 の用に定める。

表 3. 提案回路 α の素子パラメータ.

**	
素子	<u>í</u>
C_U, C_L	10.00[pF]
C_A	10.05[pF]
C_B	9.95[pF]
V_r	1.0[V]
オペアンプの利得	100[dB]
スイッチ	オン抵抗 1.0[kΩ] オフ抵抗 100[TΩ]

衣4. 提案回路 b の素ナハフ	X	ーク	۷.
------------------	---	----	----

素子	値
<i>C</i> ₁ , <i>C</i> ₂	10.00[pF]
C ₃	9.95[pF]
C4	10.05[pF]
V_r	1.0[V]
ε	1[%]
スイッチ	オン抵抗 1.0[kΩ] オフ抵抗 100[TΩ]

Va=666.6565[mV]のとき

提案回路 α において

Va =666.6565[mv]に設定した時得られたビットを次に示 す。 CONV1:1010 1001 1101 0000 CONV2:1010 1011 1000 0100 平均化:1010 1010 1010 1010 誤差ビット:0000 0000 0000 0000

提案回路 B において

Va =666.6565[mv]に設定した時得られたビットを次に示 す。 CONV1:1010 1010 1111 0000 CONV2:1010 1010 0110 0000 平均化:1010 1010 1010 1000 誤差ビット:0000 0000 0000 0010

出力電圧 0~937.5[mV]まで 62.5[mV]刻みで測定した結 果を表 5,6 にまとめた 図 4、図 5 は表 5、表 6 のデータを踏まえて、縦軸を誤差 ビット、横軸を出力電圧でとったグラフである。 表 5. 提案回路 α の測定結果.

入力驾任[mV]	早均ビット	調差ビット	分解能的街
0	0 0000 0000 0000 0000 0	0 0000 0000 0000 0000 0	17
62.5	0000 1111 1111 1111 1	0000 0000 0000 0000 1	16
125	0001 1111 1111 1111 0	0000 0000 0000 0001 0	15
187.5	0010 1111 1111 1111 0	0000 0000 0000 0001 0	15
250	0011 1111 1111 1111 1	0000 0000 0000 0000 1	16
312.5	0100 1111 1111 1111 1	0000 0000 0000 0000 1	16
333	0101 0101 0011 1111 0	0000 0000 0000 0000 1	16
333.333	0101 0101 0101 0100 0	0000 0000 0000 0001 0	15
375	0110 0000 0000 0001 0	0000 0000 0000 0001 0	15
417.5	0111 0000 0000 0001 0	0000 0000 0000 0001 0	15
500	1000 0000 0000 0001 0	0000 0000 0000 0001 0	15
562.5	1000 1111 1111 1111 1	0000 0000 0000 0000 1	16
625	1010 0000 0000 0010 0	0000 0000 0000 0010 0	14
665	1010 1010 0111 1110 1	0 0000 0000 0000 0000 0	17
666.656	1010 1010 1010 1011 0	0000 0000 0000 0000 1	16
687.5	1010 1111 1111 1100 1	0000 0000 0000 0011 1	14
750	1011 1111 1111 1110 0	0000 0000 0000 0010 0	14
812.5	1100 1111 1111 1110 0	0000 0000 0000 0010 0	14
875	1110 0000 0000 0000 0	0 0000 0000 0000 0000 0	17
937.5	1110 1111 1111 1111 1	0000 0000 0000 0000 1	16

図4.提案回路 a の測定結果.

表 6. 提案回路 8 の測定結果.

入力電圧[mV]	平均ビット	調差ビット	分解能[bit]
0	0000 0000 0000 0000	0000 0000 0000 0000	16
62.5	0001 0000 0000 0000	0000 0000 0000 0000	16
125	0010 0000 0000 0000	0000 0000 0000 0000	16
187.5	0011 0000 0000 0000	0000 0000 0000 0000	16
250	0100 0000 0000 0000	0000 0000 0000 0000	16
312.5	0101 0000 0000 0001	0000 0000 0000 0001	15
333	0101 0101 0101 1000	0000 0000 0000 0011	14
331.333	0101 0101 0101 1000	0000 0000 0000 0011	14
375	0110 0000 0000 0001	0000 0000 0000 0001	15
437.5	0111 0000 0000 0000	0000 0000 0000 0000	16
500	1000 0000 0000 0001	0000 0000 0000 0000	16
562.5	1001 0000 0000 0000	0000 0000 0000 0000	16
625	1001 1111 1111 1111	0000 0000 0000 0001	15
656	1010 1010 1010 1000	0000 0000 0000 0010	14
665.666	1010 1010 1010 1000	0000 0000 0000 0010	14
687.5	1010 1111 1111 1111	0000 0000 0000 0001	15
750	1100 0000 0000 0000	0000 0000 0000 0000	16
812.5	1101 0000 0000 0000	0000 0000 0000 0000	16
875	1110 0000 0000 0000	0000 0000 0000 0000	16
937.5	1111 0000 0000 0000	0000 0000 0000 0000	16

5 考察

SC逐次近似型AD変換器 α では容量比不整合による影響で CONV1 と CONV2 のそれぞれの変換を単体で捉えると Va=500 [mV]の場合では、分解能は 8[bit]であった。それぞれの変換による値を平均化することにより、分解能は 15[bit]が得られる。

また、容量比不整合 1[%]の時、表 5 より Va=625[mV]、 687.5[mV]、750[mV]、812.5[mV]で、誤差が最大になった。 そして、分解能が 14[bit]となることが確認された。

SC逐次近似型AD変換器 β では容量比不整合による 影響で CONV1 と CONV2 のそれぞれの変換を単体で捉える と Va=500[mV]の場合では、分解能は 8[bit]であった。そ れぞれの変換による値を平均化することにより、分解能は 16[bit]が得られる。

また、容量比不整合 1[%]の時、表 5 より Va=333[mV]、 666 [mV]で、誤差が最大になった。そして、分解能が 14[bit]となることが確認された。

2つの回路を比較すると回路 α では 250, 500, 750[mV]付 近で誤差が見られ、回路 β では 333, 666[mV]付近で誤差が 発生し、それぞれ違う傾向で誤差が発生しているのがわか る。

今後の課題として、それぞれの回路での誤差原因の追究 と変換を 2回行ったことにより変換時間も 2倍になった ので、変換の精度を維持させたまま変換時間を短縮させて いくことが必要であると考えられる。

参考文献

1) Satomi Ogawa, Student Member, IEEE, and Kenzo Watanabe, "A Switched-Capacitor Successive-Approximation A/D Converter", IEEE Transactions on Instrumentation and Measurement, pp. 847-853, Vol. 42, No. 4, Aug. 1993.

 2)渡辺健蔵・松本寛樹・藤原一伸著,スイッチドキャパシ タ循環型データ変換器,静岡大学電子工学科研究報告, pp. 105~114,7月 1985.

3) Poki Chen, Member, IEEE, and Ting-Chun Liu,

"Switching Schemes for Reducing Capacitor Mismatch Sensitivity of QuaSi-Passive Cyclic DAC",IEEE Transaction on Circutts and Systems—II :EXPRESS BRIEFS,

pp. 26-30, Vol. 56, No. 1, Jan. 2009

4) Watanabe Kenzo, Temes Gabor, Tagami Tomohisa, "A New Algorithm for Cyclic and Pipeline Data Conversion", IEEE Transaction on Circutts and Systems, pp. 249-252,vol. 37, No. 2, Feb. 1990.