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Abstract

Efficient bio-ethanol production from napiegrass (Pennisetum purpureum Schumach) was investigated. A low-moisture
anhydrous ammonia (LMAA)-pretreated napiegrass was subjected to simultaneous saccharification and co-fermentation
(SSCF), which was performed at 36°C using Escherichia coli KO11, Saccharomyces cerevisiae, cellulase, and xylanase. It was
found that use of xylanase as well as the LMAA-pretreatment was effective for the SSCF. After the SSCF for 96 h, the
ethanol yield reached 74% of the theoretical yield based on the glucan (397 mg g-1) and xylan (214 mg g-1) occurring
in dry powdered LMAA-pretreated napiergrass.
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Introduction
Bioethanol from lignocellulosic biomass has been recog-
nized as one of promising sustainable energy source alter-
native to petroleum-based fuels, since the lignocelluloses
are not directly in competition with food sources (Galbe
and Zacchi 2007; Taherzadeh and Karimi 2007). We are
interested in ethanol production from herbaceous ligno-
cellulosic napiergrass (Pennisetum purpureum Schumach)
because of its low lignin content and high harvest amount
per year and per area (Yasuda et al. 2012, 2013). In ligno-
cellulosic ethanol production, pentose fermentation is an
unavoidable process because of its high xylan content. In
pentose fermentation process, however, ethanol concen-
tration is usually too low (<10 g L-1) to distillate with low
energy cost. Therefore, pentose fermentation has been
performed as co-fermentation of hexose and pentose
using a variety of recombinant strains such as Escherichia
coli KO11 (Ohta et al. 1990, 1991; Underwood et al. 2002;
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Brandon et al. 2011), Saccharomyces cerevisiae 424A
(LNH-ST) (Jin et al. 2012a, b), S. cerevisiae TMB3400
(Ohgren et al. 2006; Matsushika et al. 2009), and Zymomo-
nas mobilis AX101 (Su et al. 2012). Simultaneous saccha-
rification and co-fermentation (SSCF) is generally superior
to the separate saccharification and co-fermentation since
SSCF can achieve saccharification, hexose fermentation,
and pentose fermentation in one-pot reaction. Here, we
applied SSCF to ethanol production from napiergrass,
which was treated by low-moisture anhydrous ammonia
(LMAA) pretreatment.
Materials and methods
Napiergrass as lignocellulosic materials
As raw material, a dwarf type of napiergrass was culti-
vated in the Kibana Agricultural Science Station, at the
University of Miyazaki. Leaf blades of the napiergrass
were separated from the stem and then cut by a cutter
and dried at 70°C for 72 h. The dried matter was ground
until 70% of the particles were in a range of 32–150 μm
in length.
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Chemical components of napiergrass
The powdered napiergrass (30 g) was treated with a 1%
aqueous solution of NaOH (400 mL) at 95°C for 1 h. The
holocellulose was isolated as a pale yellow precipitate by
centrifugation and filtration of the treated mixture. The
supernatant solution was neutralized to pH 5.0 by a dilute
HCl solution. The resulting dark brown precipitate identi-
fied as lignin was collected via centrifugation at 10,000 rpm
for 10 min. Sugars in holocellolose were determined ac-
cording to the methods published by the National Renew-
able Energy Laboratory as follows (Sluiter et al. 2010).
Sulfuric acid (72 wt%, 3.0 mL) was added slowly to holoce-
lulose (300 mg) and kept at 30°C for 1 h. The resulting so-
lution was diluted by water (84 mL) until the concentration
of sulfuric acid was 4 wt%. Acid hydrolysis was performed
by autoclaving at 121°C for 1 h in an autoclave. After the
neutralization by CaCO3, the solution was subjected to the
centrifugation to give the supernatant solution (ca. 87 mL),
which was concentrated to 30 mL by evaporation. The
solution was analyzed by HPLC. The peaks of glucose and
xylose appeared whereas the peaks of galactose and ara-
binose were very weak because of their low contents. The
amounts of glucan and xylan were determined from the
amounts of glucose and xylose determined by HPLC. It
was confirmed that the sum amounts of glucan and xylan
were equaled to the amounts of hollocellolose. The ash
component in lignocellulose was obtained by the burning
of the lignocellulose (2.0 g) in an electric furnace
(KBF784N1, Koyo, Nara, Japan) for 2 h at 850°C.

Low-moisture anhydrous ammonia (LMAA) pretreatment
Water (100 g) was added dropwise to dry powdered
napiergrass (100 g, volume 320 mL) in the flask (1 L). The
resulting moist powdered napiergrass in the flask was eva-
cuated with a pump under 20 mm Hg and then gaseous
NH3 was introduced into the flask. This operation was per-
formed three times until the atmosphere inside the flask
was entirely replaced with NH3. The amount of NH3 pre-
sented in the flask was 1.1 g. The LMAA pretreatment was
performed by modifying the Kim method where LMAA
pretreatment was performed at 80°C for 86 h (Yoo et al.
2011). In our LMAA-pretreatment, the moist powdered
napiergrass was kept under NH3 gas atmosphere at room
temperature for four weeks (28 days). After the treatment,
the NH3 was removed with an evaporator. The treated
napiergrass was washed with water (2 L) three times to
separate the brownish aqueous solution of the lignin. After
pH was checked to be neutral, the pretreated napiergrass
was dried at 60°C to weigh out the precise amount of
napiergrass in the following biological treatment.

Hydrolytic enzyme for saccharification
A cellulase from Acremonium cellulolyticus (Acremozyme
KM, Kyowa Kasei, Osaka, Japan) was selected by
comparing its activity with other cellulases such as
Meycellase (Meiji Seika), a cellulase from Trichoderma
viride (Wako Chemicals, Osaka, Japan) and a cellulase
from Aspergillus niger (Fluka Japan, Tokyo) (Yasuda et al.
2011). The cellulase activity of Acremozyme KM was
determined to be 1,320 units mg–1 by the method of
breaking down filter paper (Kitamikado and Toyama
1962). A xylanases from Trichoderma longibrachiatum
(reesei) (Sumizyme X, Shin Nihon Chemicals, Anjyo,
Japan, 5,000 u g-1) was selected from commercially avail-
able hemicellulase.
Saccharification was performed for the powdered

napiergrass (10.0 g) using both cellulase and xylanase,
whose total amount was 1.0 g, at 45°C in an acetate
buffer (60 mL, pH 5.0).

Preparation of the inoculum culture of Escherichia coli
KO11 and Saccharomyces cerevisiae
E. coli KO11 was grown in the LB medium (200 mL) con-
sisting of tryptone (2.0 g L–1, Difco), yeast extract (1.0 g
L–1), and NaCl (2.0 g L–1) under shaking at 150 rpm at
37°C for 24 h. The KO11 cell suspension contained a dry
weight of 0.52 mg mL–1 of E. coli KO11. Saccharomyces
cerevisiae NBRC 2044 was grown at 30°C for 24 h in a
basal medium (initial pH 5.5) consisting of glucose (20.0 g
L–1), polypeptone (1.0 g L–1), yeast extract (1.0 g L–1),
KH2PO4 (1.0 g L–1), and MgSO4 (3.0 g L–1). After incuba-
ting for 24 h, the cell suspension of S. cerevisiae, whose
grown culture of S. cerevisiae showed a cell density of
7.7 × 107 cells mL–1, was obtained (Yasuda et al. 2012).

Simultaneous saccharification and co-fermentation (SSCF)
Typical procedure of SSCF is as follows. The LMAA-
pretreated napiergrass (3.0 g) was suspended in the acetate
buffer (14.0 mL, pH 5.0) and then autoclaved at 121°C
for 20 min. After cooling to room temperature under UV-
irradiation, the cell suspension (0.36 mL) of S. cerevisiae, a
portion (21 mL) of the inoculum culture E. coli KO11,
and the cellulase (150 mg) and xylanase (150 mg) in an
acetate buffer solution (5.0 mL, pH 5.0) were added to the
suspension of the napiergrass. After pH was adjusted to
6.0, air was purged with N2. In the SSCF without S. cerevi-
siae, replacement by N2 gas was not performed. The SSCF
was initiated by stirring the solution vigorously with a
magnetic stirrer at 36°C which was an optimal fermenta-
tion temperature of E. coli KO11. The evolved CO2 was
collected over water by a measuring cylinder, and the reac-
tion was monitored by the volume of CO2. The SSCF
reaction was continued for 96 h until CO2 evolution
ceased.

Analytical methods
Saccharides were analyzed on a high-performance liquid
chromatography system (LC-20AD, Shimadzu, Kyoto,



Table 1 Saccharification of LMAA-pretreated napiergrassa)

Run PTb) FX
c) Product/g (yield/%)d)

Glucose Xylose Total

1 NO 0.0 2.20 (63) 0.68 (36) 2.88 (54)

2 LMAA (1) 0.0 2.89 (66) 0.91 (38) 3.80 (63)

3 LMAA (2) 0.0 3.07 (70) 1.16 (49) 4.23 (63)

4 LMAA (4) 0.0 3.36 (76) 1.20 (51) 4.57 (67)

5 LMAA (4) 0.3 3.23 (73) 1.13 (48) 4.36 (64)

6 LMAA (4) 0.4 3.56 (81) 1.49 (63) 5.05 (74)

7 LMAA (4) 0.5 4.14 (94) 1.60 (68) 5.74 (85)

8 LMAA (4) 0.6 4.25 (96) 1.48 (62) 5.73 (86)

9 LMAA (4) 0.7 3.92 (90) 1.51 (64) 5.43 (81)

10 LMAA (4) 0.8 3.72 (84) 1.47 (62) 5.20 (78)

11 LMAA (4) 0.9 3.63 (82) 1.30 (55) 4.93 (73)

12 LMAA (4) 1.0 3.05 (69) 0.95 (40) 4.00 (59)
a)Saccharification was performed for napiergrass (10.0 g) using the hydrolytic
enzyme (1.0 g) in an acetate buffer (60 mL) at 45°C for 168 h.
b)Pretreatment (PT). NO: non-treatment. LMAA: a low-moisture anhydrous
ammonia pretreatment. The value in parenthesis was the period in week for
LMAA- pretreatment.
c)FX value was the fraction of xylanase in the mixture (1.0 g) of cellulase
and xylanase.
d)The amounts of saccharides obtained from the saccharification of 10 g of the
pretreated napiergrass.

Yasuda et al. SpringerPlus 2014, 3:333 Page 3 of 8
http://www.springerplus.com/content/3/1/333
Japan) equipped with RI detector (RID-10A) using an
anion exchange column (NH2P-50 4E; Shodex Asahipak,
250 mm in length and 4.6 mm in ID, Yokohama, Japan).
Acetonitrile-water (8:2 v/v) was flowed at 1.0 mL min-1 as
mobile phase. Ethanol was analyzed by gas-liquid chro-
matography using 2-propanol as an internal standard on
a Shimadzu gas chromatograph GC-8A equipped with
a glass column of 5% Thermon 1000 on Sunpak-A
(Shimadzu).

Results and discussion
Ethanol production from lignocelluloses
In general, the cellulosic bio-ethanol production involves
three steps such as saccharification of cellulosic com-
ponents (SA), hexose fermentation (HF), and pentose
fermentation (PF). These processes are combined each
other to simplify the procedure and enhance the ethanol
yield. Typical combinations are as follows: SSF is simul-
taneous process of SA and HF but does not take place
PF. CF is co-fermentation of hexose and pentose. SSCF
is simultaneous process of SA, HF, and PF. For efficient
cellulosic bio-ethanol production, moreover, pretreat-
ment to remove the lignin and/or promote an enzymatic
digestibility of the cellulosic components are usually
required.

Napiergrass as raw material
Napiergrass belongs to herbaceous tropical species, native
to the east Africa and has high dry matter productivity
with moderate forage quality in southern Kyushu (Ishii
et al. 2005a, 2013). Napiergrass has wide variation of phe-
notypes, reflected by plant breeding due to the crossing of
dwarf genotype and relative species such as pearl millet
(Pennisetum americanum) (Ishii et al. 2005a; Hanna and
Sollenburger 2007). A dwarf variety of late-heading type of
napiergrass (dwarf napiergrass) originated from Florida,
USA, via Thailand (Mukhtar et al. 2003) was assessed to
be suitable for both grazing (Ishii et al. 2005b) and cut-
and-carry systems among several sites of southern Kyushu,
Japan (Utamy et al. 2011). Dwarf napiergrass meets the
requirement of lignocellulose for the biofuel production
because it has low lignin-content and a relatively high
herbage mass per year and per area (Rengsirikul et al.
2011; Rengsirikul et al. 2013; Khairani et al. 2013). There-
fore, we have continued to use this dwarf type of napier-
grass for the bio-ethanol (Yasuda et al. 2011) and bio-
hydrogen production (Shiragami et al. 2012).
As has been reported previously (Yasuda et al. 2013),

the LMAA-pretreatment was useful for the simultaneous
saccharification and fermentation (SSF) of napiergrass.
In the present case, therefore, the powdered napiergrass
was subjected to the LMAA-pretreatment. The LMAA-
pretreated napiergrass contained 39.7 wt% of glucan,
21.4 wt% of xylan, 7.1 wt% of lignin, and 7.1 wt% of ash,
while the components of the non-treated napiergrass
were determined to be 31.3 (glucan), 16.9 (xylan), 12.6
(lignin), and 13.9 wt% (ash).

Optimization of enzymatic saccharification
The effect of LMAA-pretreatment was checked by the
enzymatic saccharification. Saccharification of non-treated
and LMAA-pretreated napiergrass (10.0 g) was performed
using cellulase (Acremozyme KM, 1.00 g) at 45°C in an
acetate buffer (60 mL). Results are shown in Table 1. Sac-
charification of no-treated napiergrass produced the total
saccharides in 54% yield (Table 1 run 1). In the case of
napiergrass which was subjected LMAA pretreatments for
four weeks, the yield of saccharides was 67% which was
the higher than the cases of LMAA for one and two weeks
(runs 2–4). Figure 1 shows the time-conversion of glucose
and xylose obtained from the saccharification of the
LMAA-pretreated napiergrass. Although the glucose in-
creased rapidly to reach the maximum amounts until
48 h, xylose increased gradually even at saccharification
for 360 h. Thus the saccharification of xylan was very
slow.
In order to shorten the saccharification time, xylanase

(Sumizyme X) was used in addition to cellulase. Xylanase
was used in FX × 1.0 g where FX was a fraction of xylanase
in the mixed enzymes. Figure 2 shows the effect of FX on
the saccharide yields in the saccharification of LMAA-
pretreated napiergrass for 168 h. The optimal FX value
was determined to be 0.50 since the yield of xylose was



Figure 1 Time-conversion plots of the amounts of glucose and xylose in saccharification of LMAA-pretreated napiergrass (10.0 g) using
cellulase and/or xylanase. Glucose (◆) and xylose (▲) from the saccharification using cellulase (0.50 g) and xylanase (0.50 g). Glucose (◇) and
xylose (△) from the saccharification using only cellulase (1.0 g).
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maximum. Under optimized conditions where the sac-
charification was performed for the LMAA-pretreated
napiergrass (10.0 g) by a mixture of enzymes, cellulase
(0.50 g) and xylanase (0.50 g), the yields of glucose and
xylose reached 94% and 68%, respectively (run 7). More-
over, the addition of xylanase shortened the saccharifica-
tion time of xylan to 168 h, as shown in Figure 1.

SSCF of the LMAA-pretreated napiergrass
The results of SSCF were listed in Table 2. The ethanol
yield was 43% in the SSCF of non-treated napiergrass
using S. cerevisiae, E. coli KO11, cellulase and xylanase,
(Table 2, run 1). The LMAA-pretreatment enhanced the
ethanol yield (runs 2–3). The amount of napiergrass was
optimized to be 3.0 g from the comparison of ethanol
yields in the cases of 2.5 to 4.0 g (runs 5–7). Maximum
ethanol yield was 74% in SSCF of LMAA-pretreated
napiergrass using S. cerevisiae, E. coli KO11, cellulase, and
xylanase for 96 h (run 2). The ethanol yield was not chan-
ged even though SSCF time was elongated until 168 h
when the xylose yield reached the maximum yield in
saccharification process. In the case of SSCF without
S. cerevisiae (run 3), the ethanol yield was 70%. If the glu-
can (1.191 g) occurring in the LMAA-pretreated napier-
grass (3 g) is completely turned to ethanol, 676 mg of
ethanol will be produced. Ethanol amounts of SSCF in
runs 2 and 3 exceeded this value (676 mg), showing that
the pentose fermentation apparently occurred. Moreover,
the ethanol amount (777 mg, run 2) was comparable to
the ethanol amount (880 mg) which was ethanol amount
when glucose and xylose produced by enzymatic sacchari-
fication (Table 1 run 7) would be completely fermented.
Therefore, it was suggested that yields of hexose and pen-
tose fermentations were moderately high.

The additive effect of Saccharomyces cerevisiae
S. cerevisiae is the most commonly used microorganism
for industrial ethanol production. However, it cannot
utilize xylose for growth and ethanol production. There-
fore, it is requisite to use a recombinant species which
can ferment pentose. In our SSCF process, S. cerevisiae
was used in addition to a recombinant E. coli KO11 for
fermentation, since it was found that the SSCF using
four components (S. cerevisiae, E. coli KO11, cellulase,
and xylanase) proceeded slightly faster than the SSCF
without S. cerevisiae.
Figure 3 shows time conversions of ethanol, glucose,

and xylose in SSCF. The ethanol yield increased gra-
dually until the yield reached 50% which was comparable
to the SSF yield (55%) using S. cerevisiae, cellulase and
xylanase (Table 2, run 4). At that time, the glucose was
completely fermented due to the fast glucose formation



Figure 2 The effects of the fraction of xylanase (FX) on the yields of glucose (◆) and xylose (▲). The saccharification of LMAA-pretreated
napiergrass (10.0 g) was performed for 168 h using a mixed enzyme of cellulase and xylanase.

Table 2 SSCF of LMAA-treated napiergrassa)

No Napiergrass Enzyme/
mgd)

KO11/
mLe)

Yeast/
mLf)

Products/mg (Yield/%)b) Ethanol/
gL-1 h)

PTc) Weight/g Xylose Glucose Ethanol

1i) NO 3.0 300 21 0.36 209 ± 14 (35) 19 ± 2 (2) 353 ± 31 (43) 8.8

2 LMAA 3.0 300 21 0.36 73 ± 25 (10) 47 ± 10 (4) 777 ± 15 (74) 19.4

3 LMAA 3.0 300 21 0 148 ± 11 (20) 43 ± 2 (3) 731 ± 12 (70) 18.3

4j) LMAA 3.0 300 0 0.36 473 ± 43 (65) 29 ± 10 (2) 576 ± 39 (55) 14.4

5 LMAA 2.5 250 21 0.36 304 ± 15 (50) 37 ± 6 (3) 547 ± 41 (63) 13.7

6 LMAA 3.5 350 21 0.36 385 ± 45 (53) 37 ± 2 (3) 719 ± 13 (59) 18.1

7 LMAA 4.0 400 21 0.36 438 ± 37 (60) 39 ± 8 (3) 829 ± 28 (60) 21.4
a)SSCF was performed for napiergrass (3.0–4.0 g) using cellulase (150–200 mg) and xylanase (150–200 mg) in buffer (19 mL), E. coli KO11 (21 ml), and S. cerevisiae
(0.36 mL) at 36°C for 96 h. The data were expressed as averages of the experiments at three times.
b)The maximum amounts of xylose, glucose, and ethanol were 729 mg, 1323 mg, and 1049 mg obtained from 3.0 g of LMAA-pretreated napiergrass, respectively.
c)Pretreatment (PT). NO: non-treatment. LMAA: a low-moisture anhydrous ammonia pretreatment for four weeks.
d)Weight of total hydrolytic enzyme (cellulase and xylanase) in mg. The fraction (FX) of xylanase in the mixture of cellulase and xylanase was 0.50.
e)Volume of the cell suspension of E. coli KO11 in ml.
f)Volume of the cell suspension of S. cerevisiae in mL.
h)Concentration of ethanol in g L-1.
i)The maximum amounts of xylose, glucose, and ethanol obtained from non-treated napiergrass (3.0 g) were 576 mg, 1043 mg, and 827 mg, respectively.
j)The simultaneous saccharification and fermentation (SSF) using cellulase (150 mg) and xylanase (150 mg), and S. cerevisiae (0.36 mL) at 36°C for 96 h.
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Figure 3 Time-conversion of yields of ethanol (●), glucose (◆), and xylose (△) in the SSCF using S. cerevisiae, E. coli KO11, cellulase,
and xylanase (Table 2 run 2).

Figure 4 Mass balance of SSCF process of the LMAA-pretreated napiergrass.
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in the saccharification while the xylose was accumulated
due to slow fermentation of xylose. After SSCF for 18 h,
the xylose fermentation started, resulting in that ethanol
yield increased again.

Conclusions
We have previously examined ethanol formation through
a combination of SSF using enzyme and S. cerevisiae with
a pentose fermentation using E. coli KO11. The ethanol
yields from LMAA-pretreated and non-treated napirgrass
were 69% (Yasuda et al. 2013) and 44% (Yasuda et al.
2012), respectively. The present SSCF process improved
the ethanol yield to 74%. Mass balance of the present
SSCF is summarized in Figure 4. Consequently 25.9 g of
ethanol was produced from 100 g of LMAA-pretreated
napiergrass which was obtained from 127 g of the non-
treated powdered napiergrass. Since the SSCF can be per-
formed in one-pot reaction, it can prevent contamination
risks of other micro-organism and can construct simple
processing procedure. Thus, efficient bio-ethanol pro-
duction from napiergrass was successfully achieved by
the combination of the LMAA-pretreatment with the
SSCF process using four components (cellulase, xylanase,
Saccharomyces cerevisiae, and E. coli KO11).
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