$\mathbf{2}$

3	Title: The genotype of the transporter associated with antigen processing gene affects susceptibility
4	to colorectal cancer in Japanese
5	
6	Takenori Yamauchi ¹ , Shouhei Takeuchi ¹ , Naoki Maehara ² , Yoshiki Kuroda ¹
7	
8	¹ Department of Public Health, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692,
9	Japan
10	² Department of Surgical Oncology and Regulation of Organ Function, Faculty of Medicine,
11	University of Miyazaki, Miyazaki 889-1692, Japan
12	
13	*Address correspondence to Yoshiki Kuroda M.D., Ph.D.
14	Professor, Department of Public Health Faculty of Medicine, University of Miyazaki, Miyazaki
15	889-1692, Japan
16	E-mail: <u>ykuroda@med.miyazaki-u.ac.jp</u> , Phone +81-985-85-0874; Fax +81-985-85-6258
17	
18	Keywords: immune escape, TAP1, genetic polymorphism, colorectal cancer, Japanese
19	
20	
21	
22	
23	
24	

25 Abstract

Objective Although colorectal cancer is one of the most frequent malignancies in Japan, the associated genetic factors remain to be elucidated. Functional loss of the transporter associated with antigen processing (TAP) 1 gene induces carcinogenesis. We investigated whether single nucleotide polymorphisms (SNPs) in the *TAP1* gene (rs735883) are associated with susceptibility to colorectal cancer in a Japanese population.

Methods The study participants were 143 cases and 243 clinical controls. After extracting DNA from their peripheral blood cells, genotyping was conducted by the polymerase chain reaction-restriction fragment length polymorphism method.

Results Participants with a mutated allele had an increased risk for colorectal cancer. The adjusted odds ratios for the C/T, T/T, and the mutation type (C/T + T/T) compared to that of wild type (C/C) were 2.27 (95% confidence interval [CI], 1.43–3.67), 1.95 (95% CI, 0.88–4.30), and 2.22 (95% CI, 1.42–3.55), respectively. Furthermore, a significant trend in the rate of cases was observed with an increasing number of mutated alleles (*P* for trend = 0.0068).

39 *Conclusions* The genotype of the *TAP1* gene is associated with susceptibility to colorectal cancer.

- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48

49 Introduction

According to a report by the International Agency for Research on Cancer (IARC), colorectal cancer (CRC) is one of the most lethal malignant neoplasms worldwide despite the decreasing mortality and incidence of CRC in developed countries. The age-standardized incidence and mortality due to CRC per 100,000 are 17.2 and 8.2, respectively [1]. In Japan, the age-standardized incidence of CRC, which accounts for 16.5% of all malignant neoplasms, is the third highest among all kinds of cancer. The age-standardized mortality of CRC is 14.8 in men and 8.4 in women [2].

57CRC carcinogenesis is a complex and multifactorial process. As is often true with malignancies, the development of CRC is the result of interactions between environmental and 58genetic factors. Many epidemiological studies have confirmed the effects of environmental factors. A 59diet containing red or processed meats can markedly increase the risk of CRC [3]. Heavy alcohol 60 61 intake and smoking are also associated with CRC prognosis [4]. As a consequence, the IARC 62 reported that diet, exercise, and obesity are associated with CRC carcinogenesis. In contrast, genetic factors are also associated with susceptibility to CRC. Gender differences have been reported in both 63 age-standardized incidence and mortality of CRC [1]. A personal or familial history of specific 64 65 diseases (e.g., a personal history of chronic inflammatory bowel disease and a familial or personal history of adenomatous polyps) has also been considered a risk factor for CRC [4–9]. Although the 66 67 biological mechanisms underlying the carcinogenesis of CRC are not fully understood, one of the 68 proposed mechanisms is immune escape, which allows tumor cells to escape from immune 69 surveillance.

The transporter associated with antigen processing (TAP) protein, a heterodimer of TAP1 and TAP2 belonging to the major histocompatibility complex (MHC) class I, is responsible for immune escape [10,11]. TAP translocates antigen peptides from the cytosol to the endoplasmic

reticulum (ER) lumen and helps MHC class I molecules bind to antigen peptides [12,13]. Several 7374TAP1 gene polymorphisms have been identified, and antigen processing ability has been evaluated in many studies. Some of the polymorphisms were found to decrease the efficacy of antigen processing 7576 [14]. Recent studies have suggested that TAP1 gene polymorphisms may increase the risk for vitiligo [15], nasopharyngeal carcinoma [16], and CRC via downregulation of MHC class I molecules [17]. 77However, few epidemiological studies have focused on the TAP1 gene polymorphisms (rs735883). In 78this case-control study, we investigated the association of the TAP1 genotype with susceptibility to 79 80 CRC in relation to gender and smoking status.

81

82 Materials and Methods

A total of 143 Japanese CRC cases and 243 Japanese non-cancer clinical controls were 83 recruited. The cases were consecutive patients treated at the University of Miyazaki (UOM) Hospital 84 85 and the University of Occupational and Environmental Health (UOEH) Hospital in Japan from 86 September 1992 to December 2006. The controls were recruited from patients suffering from non-cancerous diseases in the hospitals near UOEH Hospital between September 1996 and 87 September 2001. All cases were histologically diagnosed with CRC including ascending, transverse, 88 89 and descending colon cancer as well as rectal cancer. The subjects' history of illness, residence, occupation, and smoking status were examined by a self-questionnaire. No patients who had been 90 91 exposed to carcinogens, heavy metals, or radiation in their occupational history were included. All 92subjects were classified into two groups according to smoking status: the "never" group, composed 93 of non-smokers; and the "smoker" group, composed of both current smokers and ex-smokers. All cases and controls were given an explanation of the nature of the study, and written informed consent 9495 was obtained from all participants. The Ethical Committee of UOM approved this study procedure 96 on December 7, 2005 (approval number: 239).

Polymerase chain reaction (PCR) amplification and genotyping 98

q	(

Genomic DNA was extracted from peripheral blood lymphocytes with a DNA Extractor WB 99100 Kit (Wako Pure Chemical Industries, Osaka, Japan) according to the manufacturer's protocol. The 101 single nucleotide polymorphisms (SNPs) (rs735883) are located on the intron 7 region of the TAP1 gene, and the analysis of this SNP was carried out using a PCR-fragment length polymorphism 102(PCR-RFLP) assay, as described previously [15]. Briefly, samples were subjected to 35 cycles of 103 30-s denaturing at 95° C, 30-s annealing at 55° C, and 30-s extension at 72° C, followed by a 1045-min final extension with PCR primers 5' -GTGCTCTCACGTTCCAAGGA-3' 105and 5'-AGGAGTAGAGATAGAAGAACC-3'. Subsequently, a 183-bp PCR product was digested with 106 107 the MspI restriction enzyme and the restriction fragments were separated by agarose gel 108 electrophoresis in TAE buffer. The wild-type C allele was digested into fragments of 161 and 22 bp, 109 and the mutated type T allele was not digested.

110

111 Statistical analysis

Results are presented as means \pm standard deviation (SD) for continuous variables. 112113Pearson's chi-square tests were used for a categorical comparison of the data and for evaluating the probability of Hardy–Weinberg equilibrium. The prevalence of each genotype was examined with the 114115Cochran-Armitage trend test. Welch's two-sample t-tests were used for numerical comparisons. 116 Multivariate analysis was conducted using a multiple logistic regression model after adjusting for age, 117gender, or smoking status. A P-value < 0.05 (two-tailed) was considered significant. Smoking status 118 is associated with increasing risk of CRC [18], and there are many more male smokers than female smokers among the Japanese population. As gender and smoking status could be confounding factors, 119stratified analyses by gender and smoking status were conducted to exclude the effect of each factor. 120

Power analysis was performed to determine the statistical power of chi-square tests. All statisticalanalyses were performed using R ver. 2.15.1.

123

124 **Results**

The general characteristics of the cases and the controls are shown in Table 1. The mean age 125(\pm SD) was 65.8 (\pm 16.6) years for the controls and 63.9 (\pm 10.9) years for the cases (P = 0.18). The 126127frequencies of gender and smoking status were not significantly different between the cases and the 128controls (P = 0.12, 0.18, respectively). No significant difference was observed between the cases and 129the controls in terms of age, gender, and smoking status. The frequencies of the TAP1 genotypes are 130 shown in Table 2. The allele frequencies in the cases were allele C: 0.58 and allele T: 0.42, and allele C: 0.67 and allele T: 0.33 in the controls. The odds ratio (OR) for allele T compared to allele C was 1311.47 (95% confidence interval [CI], 1.08–1.98, P = 0.013). The observed frequencies of the TAP1 132133allele in the controls were consistent with the allele frequencies in Japanese. Hardy-Weinberg 134equilibrium was confirmed for the TAP1 genotype in the controls (P = 0.31). The adjusted ORs for the C/T and T/T genotypes compared to the C/C genotype were estimated to be 2.27 (95% CI, 1.43-1353.67) and 1.95 (95% CI, 0.88–4.30), respectively. Furthermore, that for the mutation type (C/T + 136137T/T) was 2.22 (95% CI, 1.42–3.55). Although a significant difference was not observed in the T/T genotype, a significant trend on the rate of the cases was observed (P for trend = 0.0068). 138

The results of the stratified analysis by smoking status are shown in Table 3. In the "never" group, the adjusted ORs were estimated to be 1.94 (95% CI, 1.02–3.75) for the C/T genotype and 2.04 (95% CI, 0.62–6.58) for the T/T compared to the C/C genotype. Those in the "smoker" group were calculated to be 2.84 (95% CI, 1.43–5.92) for C/T and 1.98 (95% CI 0.64–5.83) for T/T. For the mutated type (C/T + T/T) the ORs were 1.95 (95% CI 1.05–3.72) in the "never" group and 2.69 (95% CI, 1.37–5.51) in the "smoker" group, respectively. The *P* for the trend was 0.079 in the "never" 145 group and 0.027 in the "smoker" group.

The results of the analysis stratified by gender are shown in Table 4. In the male group, the adjusted ORs were estimated to be 2.04 (95% CI, 1.11–3.84) for the C/T genotype and 2.38 (95% CI, 0.86–6.61) for the T/T genotype compared to the C/C genotype. The ORs for the C/T and T/T were 2.91 (95% CI, 1.40–6.32) and 1.45 (95% CI, 0.36–5.10), respectively, in the female group. For the mutated type, the ORs were 2.09 (95% CI, 1.15–3.87) in the male group and 2.63 (95% CI, 1.29– 5.62) in the female group. *P* for the trend was 0.065 in the male group and 0.052 in the female group.

152

153 **Discussion**

A significant association was observed between the *TAP1* genotype and CRC (C/C vs. C/T + T/T, adjusted OR, 2.22, P < 0.01). Although the C/T genotype was significantly associated with CRC (adjusted OR, 2.27, P < 0.01), a significant association was not observed for the T/T genotype (adjusted OR, 1.95, P = 0.093). Stratified analyses were conducted to exclude the effects of gender and smoking status, (Tables 3 and 4) and a significant association was observed between the *TAP1* genotype and CRC.

160 However, a significant association with CRC was observed only in the C/T genotype, not in 161the T/T genotype. It is likely that there were not enough participants to ensure the statistical power to 162detect an association between the T/T genotype and CRC. The statistical power of the chi-square test 163 between the C/C and T/T genotypes was calculated to be 0.31, although it was recommended to be 164larger than 0.8 [19,20]. In contrast, the statistical powers of the chi-square test among all genotypes 165(C/C, C/T, and T/T), and between the C/C and C/T genotypes, were estimated to be 0.92 and 0.92, 166respectively. It is possible that the T/T genotype shows a stronger immunity than the C/T genotype and thus immune escape occurs less often in that genotype. Recent studies on TAP1-deficient mice 167indicate the existence of a compensatory mechanism. CD8⁺ T cells have been reported to play an 168

169important role in tumor surveillance by the immune system [21,22]. Although the population of 170CD8⁺ T cells was diminished in the TAP1-deficient mice, compensatory increases in CD3⁺ and CD4⁺ 171T cell populations were observed [23]. Furthermore, the TAP1-independent pathway compensates for 172antigen processing and CD8⁺ T cells functioned normally even in the TAP1-deficient mice in vivo 173[24]. It is likely that some compensatory function would work only in the case of the T/T genotype as the functional deficit of the C/T genotype in the TAP1 gene might not be enough to drive a 174175compensating network. As a result, the immune escape of tumor cells could more likely be tolerated 176by the C/T genotype.

177The TAP protein plays an important role in antigen presentation mediated by MHC class I 178and this process is considered essential for immune surveillance against tumors and pathogens. The 179impairment of TAP function in tumor cells that induces loss of downregulation of class I molecules 180 on the cell surface is considered one of the main mechanisms of immune escape in a variety of 181 tumors [13,25–31]. Furthermore, TAP1 gene polymorphisms lead to the loss of MHC class I antigen 182processing ability [32]. The TAP gene is also considered a member of the ATP-binding cassette 183superfamily, which is associated with membrane transportation of solutes such as ions. Molecules belonging to the ATP-binding cassette family have nucleotide-binding domains and interact with 184185other molecules involved in genetic events, such as chromosome maintenance and DNA repair [33-35]. Our results indicate that the polymorphisms (rs735883) located on the intron 7 of the TAP1 gene 186187 were associated with CRC but the functional mechanism remains to be elucidated. One likely 188 mechanism is exon skipping. According to a previous study, the SNP located on the intron could 189 cause exon skipping and aberrant RNA splicing [36]. Furthermore, the E2F8 binding motif 190 (TTTGCCGC) is located on intron 7 in the TAP1 gene. E2F8 is a transcription factor that belongs to the E2F superfamily and regulates the expression of genes related to the cell cycle and apoptosis [37]. 191In the case of the T allele, the cytosine at the 3' end is substituted to thymine and the aberrant binding 192

site (TTTGCCGT) is generated. E2Fs generally bind to the binding site located on the promoter region or intron 1 [38] but it may be that the efficacy of splicing is affected by decreasing frequencies of E2F8 binding to the aberrant binding site. Further study is essential to clarify the functional mechanism that associates the polymorphisms (rs735883) with CRC.

197 The adjusted OR of the alcohol dehydrogenase enzyme (ADH2) gene was 1.92 (95% CI, 1.06–3.46) in a Japanese population [39]. Another study reported that the adjusted OR of the RAD18 198199 gene, which is associated with DNA repair, was 2.10 (95% CI, 1.00-4.40) [40]. An increased number 200of SNPs associated with CRC were identified recently in a genome-wide association study [41-43]. 201It is likely that a genetic difference may not be observed when exposure to a carcinogen is great [44,45]. In fact, the differences among genotypes are easily observed in non-smokers or light 202203smokers compared to smokers [46,47]. In the present study, a significant difference was observed in 204the C/T genotype and the mutation type (C/T + T/T) despite stratification by smoking status. Thus, 205the TAP1 genotype was strongly associated with susceptibility to CRC. As the adjusted ORs for the 206C/T genotype and the mutation type (C/T + T/T) were larger in the "smoker" group than in the "never" group, it is possible that the TAP1 gene polymorphism interacts with smoking status. The 207 208interaction between the TAP1 genotype and smoking status was introduced into a logistic regression 209model. However, the interaction was not significant. Similarly, the adjusted ORs for the C/T genotype and the mutation type (C/T + T/T) were larger in the female group than in the male group 210211although the TAP1 gene is located not on the sex chromosomes but on chromosome 6. Although the 212interaction between the TAP1 genotype and gender was also introduced into a logistic regression 213model, it was not statistically significant either.

One of the limitations of our study was smoking status. The percentage of "smokers" (46.9%) was less than that of controls (53.9%) although it was not a significant difference. The rate of cigarette smoking decreases every year in Japan. The rate among males of age 60–69 years was 21748.1% in 1992 and 34.8% in 2006. Higher rates may be found in certain regions. It is likely that there 218were fewer smokers in the present study because the recruitment period was longer for the cases than 219for the controls. It is also possible that the exact information about smoking status was not acquired 220for the cases. To adjust and exclude the effects of smoking, we conducted a logistic regression model 221analysis and a stratification analysis. The other limitation of our study was the diagnostic accuracy. 222The period for recruitment was 14 years, and the diagnostic accuracy is likely to have changed with 223marked improvements in medical examinations. Hence, the potential cases that were not diagnosed at 224that time might be included in the controls. However, CRC screening by the local authority began in 2251992, at which point recruitment of cases also started. Furthermore, the controls were not healthy 226controls but clinical controls in our study. This limitation had less of an impact on the results of our 227study.

A significant association was found between the *TAP1* gene polymorphisms (rs735883) and CRC. This suggests that those with the risk allele (T) have a higher susceptibility to CRC. In order to promote the high risk approach against the onset of CRC, additional studies of the association between rs735883 and other SNPs and between rs735883 and other carcinogens are required.

232

233 Acknowledgements

This study was supported by a grant from the University of Miyazaki. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. This work was supported by the Faculty of Medicine of both the University of Miyazaki and the University of Occupational and Environmental Health. We give special thanks to Dr. Kazuo Chijiiwa, the staff and patients of the two facilities.

239

240 **Conflict of interest**

241	We declare that none of the authors hold any financial or personal relationship with other
242	people or organizations that could have inappropriately influenced this study.
243	
244	Reference
245	1. Ferlay J, Shin H-R, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of
246	cancer in 2008: GLOBOCAN 2008. Int. J. Cancer. 2010;127:2893-917.
247	2. Matsuda A, Matsuda T, Shibata A, Katanoda K, Sobue T, Nishimoto H. Cancer incidence and

- incidence rates in Japan in 2007: a study of 21 population-based cancer registries for the
- 249 Monitoring of Cancer Incidence in Japan (MCIJ) project. Jpn. J. Clin. Oncol. 2013;43:328–36.
- 250 3. Chao A, Thun MJ, Connell CJ, McCullough ML, Jacobs EJ, Flanders WD, et al. Meat

consumption and risk of colorectal cancer. JAMA. 2005;293:172–82.

- 4. Phipps AI, Baron J, Newcomb P a. Prediagnostic smoking history, alcohol consumption, and
- colorectal cancer survival: the Seattle Colon Cancer Family Registry. Cancer. 2011;117:4948–57.
- 5. Duncan JL, Kyle J. Family incidence of carcinoma of the colon and rectum in north-east Scotland.
 Gut. 1982;23:169–71.
- 256 6. Ponz de Leon M, Sassatelli R, Sacchetti C, Zanghieri G, Scalmati A, Roncucci L. Familial
- aggregation of tumors in the three-year experience of a population-based colorectal cancer
- 258 registry. Cancer Res. 1989;49:4344–8.
- 259 7. Gerdes H, Gillin JS, Zimbalist E, Urmacher C, Lipkin M, Winawer SJ. Expansion of the
- 260 epithelial cell proliferative compartment and frequency of adenomatous polyps in the colon
- correlate with the strength of family history of colorectal cancer. Cancer Res. 1993;53:279–82.
- 262 8. Le Marchand L, Zhao LP, Quiaoit F, Wilkens LR, Kolonel LN. Family history and risk of
- colorectal cancer in the multiethnic population of Hawaii. Am. J. Epidemiol. 1996;144:1122–8.

- 9. Jass JR, Stewart SM. Evolution of hereditary non-polyposis colorectal cancer. Gut. 1992;33:783–
 6.
- 10. Ritz U, Seliger B. The transporter associated with antigen processing (TAP): structural integrity,
 expression, function, and its clinical relevance. Mol. Med. 2001;7:149–58.
- 268 11. Cresswell P, Bangia N, Dick T, Diedrich G. The nature of the MHC class I peptide loading
 269 complex. Immunol. Rev. 1999;172:21–8.
- 12. Antoniou AN, Powis SJ, Elliott T. Assembly and export of MHC class I peptide ligands. Curr.
 Opin. Immunol. 2003;15:75–81.
- 13. Seliger B, Maeurer MJ, Ferrone S. TAP off--tumors on. Immunol. Today. 1997;18:292–9.
- 14. McCluskey J, Rossjohn J, Purcell AW. TAP genes and immunity. Curr. Opin. Immunol.
 274 2004;16:651–9.
- 15. Casp CB, She J-X, McCormack WT. Genes of the LMP/TAP cluster are associated with the
 human autoimmune disease vitiligo. Genes Immun. 2003;4:492–9.
- 16. Hassen E, Farhat K, Gabbouj S, Jalbout M, Bouaouina N, Chouchane L. TAP1 gene
- polymorphisms and nasopharyngeal carcinoma risk in a Tunisian population. Cancer Genet.
- 279 Cytogenet. 2007;175:41–6.
- 280 17. Yang T, Lapinski PE, Zhao H, Zhou Q, Zhang H, Raghavan M, et al. A rare transporter
- associated with antigen processing polymorphism overpresented in HLAlow colon cancer reveals
- the functional significance of the signature domain in antigen processing. Clin. Cancer Res.
- 283 2005;11:3614–23.
- 18. Johnson CM, Wei C, Ensor JE, Smolenski DJ, Amos CI, Levin B, et al. Meta-analyses of
 colorectal cancer risk factors. Cancer Causes Control. 2013;24:1207–22.
- 19. Cohen J. Statistical Power Analysis. Curr. Dir. Psychol. Sci. 1992;1:98–101.
- 287 20. Cohen J. A power primer. Psychol. Bull. 1992;112:155–9.

288	21. Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, et al. Altered recognition of
289	antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat. Med. 2007;13:828–35.
290	22. Afshar-Sterle S, Zotos D, Bernard NJ, Scherger AK, Rödling L, Alsop AE, et al. Fas
291	ligand-mediated immune surveillance by T cells is essential for the control of spontaneous B cell
292	lymphomas. Nat. Med. 2014
293	23. Kolbus D, Ljungcrantz I, Söderberg I, Alm R, Björkbacka H, Nilsson J, et al. TAP1-deficiency
294	does not alter atherosclerosis development in Apoe-/- mice. PLoS One. 2012;7:e33932.
295	24. Medina F, Ramos M, Iborra S, de León P, Rodríguez-Castro M, Del Val M. Furin-processed
296	antigens targeted to the secretory route elicit functional TAP1-/-CD8+ T lymphocytes in vivo. J.
297	Immunol. 2009;183:4639–47.
298	25. Kasajima A, Sers C, Sasano H, Jöhrens K, Stenzinger A, Noske A, et al. Down-regulation of the
299	antigen processing machinery is linked to a loss of inflammatory response in colorectal cancer.
300	Hum. Pathol. 2010;41:1758–69.
301	26. Seliger B. Molecular mechanisms of MHC class I abnormalities and APM components in human
302	tumors. Cancer Immunol. Immunother. 2008;57:1719–26.
303	27. Lankat-Buttgereit B, Tampé R. The transporter associated with antigen processing: function and
304	implications in human diseases. Physiol. Rev. 2002;82:187–204.
305	28. Zheng P, Sarma S, Guo Y, Liu Y. Two mechanisms for tumor evasion of preexisting cytotoxic
306	T-cell responses: lessons from recurrent tumors. Cancer Res. 1999;59:3461–7.
307	29. Zheng P, Guo Y, Niu Q, Levy DE, Dyck J a, Lu S, et al. Proto-oncogene PML controls genes
308	devoted to MHC class I antigen presentation. Nature. 1998;396:373-6.
309	30. Seliger B, Ritz U, Abele R, Bock M, Tampé R, Sutter G, et al. Immune escape of melanoma: first
310	evidence of structural alterations in two distinct components of the MHC class I antigen
311	processing pathway. Cancer Res. 2001;61:8647–50.

312	31. Yang T, McNally B a, Ferrone S, Liu Y, Zheng P. A single-nucleotide deletion leads to rapid
313	degradation of TAP-1 mRNA in a melanoma cell line. J. Biol. Chem. 2003;278:15291-6.
314	32. Chen HL, Gabrilovich D, Tampé R, Girgis KR, Nadaf S, Carbone DP. A functionally defective
315	allele of TAP1 results in loss of MHC class I antigen presentation in a human lung cancer. Nat.
316	Genet. 1996;13:210–3.
317	33. Borst P, Elferink RO. Mammalian ABC transporters in health and disease. Annu. Rev. Biochem.
318	2002;71:537–92.
319	34. Holland IB, Blight M a. ABC-ATPases, adaptable energy generators fuelling transmembrane
320	movement of a variety of molecules in organisms from bacteria to humans. J. Mol. Biol.
321	1999;293:381–99.
322	35. Hopfner KP, Karcher A, Shin DS, Craig L, Arthur LM, Carney JP, et al. Structural biology of
323	Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the
324	ABC-ATPase superfamily. Cell. 2000;101:789-800.
325	36. Khan SG, Muniz-Medina V, Shahlavi T, Baker CC, Inui H, Ueda T, et al. The human XPC DNA
326	repair gene: arrangement, splice site information content and influence of a single nucleotide
327	polymorphism in a splice acceptor site on alternative splicing and function. Nucleic Acids Res.
328	2002;30:3624–31.
329	37. Xanthoulis A, Tiniakos DG. E2F transcription factors and digestive system malignancies: how
330	much do we know? World J. Gastroenterol. 2013;19:3189–98.
331	38. Wong J V, Dong P, Nevins JR, Mathey-Prevot B, You L. Network calisthenics: control of E2F
332	dynamics in cell cycle entry. Cell Cycle. 2011;10:3086–94.
333	39. Matsuo K, Wakai K, Hirose K, Ito H, Saito T, Suzuki T, et al. A gene-gene interaction between
334	ALDH2 Glu487Lys and ADH2 His47Arg polymorphisms regarding the risk of colorectal cancer
335	in Japan. Carcinogenesis. 2006;27:1018–23.

- 40. Kanzaki H, Ouchida M, Hanafusa H, Sakai A, Yamamoto H, Suzuki H, et al. Single nucleotide
- polymorphism in the RAD18 gene and risk of colorectal cancer in the Japanese population.
- 338 Oncol. Rep. 2007;18:1171–5.
- 41. Jaeger E, Webb E, Howarth K, Carvajal-Carmona L, Rowan A, Broderick P, et al. Common
- 340 genetic variants at the CRAC1 (HMPS) locus on chromosome 15q13.3 influence colorectal
- 341 cancer risk. Nat. Genet. 2008;40:26–8.
- 42. Houlston RS, Webb E, Broderick P, Pittman AM, Di Bernardo MC, Lubbe S, et al. Meta-analysis
- 343 of genome-wide association data identifies four new susceptibility loci for colorectal cancer. Nat.
- 344 Genet. 2008;40:1426–35.
- 345 43. Peters U, Jiao S, Schumacher FR, Hutter CM, Aragaki AK, Baron JA, et al. Identification of
- 346 Genetic Susceptibility Loci for Colorectal Tumors in a Genome-Wide Meta-analysis.
- 347 Gastroenterology. 2013;144:799–807.
- 44. Khoury MJ, Adams MJ, Flanders WD. An epidemiologic approach to ecogenetics. Am. J. Hum.
 Genet. 1988;42:89–95.
- 45. Amos CI, Caporaso NE, Weston A. Host factors in lung cancer risk: a review of interdisciplinary
 studies. Cancer Epidemiol. Biomarkers Prev. 1992;1:505–13.
- 46. Wang YC, Chen CY, Chen SK, Chang YY, Lin P. p53 codon 72 polymorphism in Taiwanese
- lung cancer patients: association with lung cancer susceptibility and prognosis. Clin. Cancer Res.
 1999;5:129–34.
- 47. Arizono K, Osada Y, Kuroda Y. DNA repair gene hOGG1 codon 326 and XRCC1 codon 399
- 356 polymorphisms and bladder cancer risk in a Japanese population. Jpn. J. Clin. Oncol.
- 357 2008;38:186–91.
- 358
- 359

360 **Tables**

		Controls	Cases
Age (years)		65.8 ± 16.6	63.9 ± 10.9
Gender (%)	Female	110 (45.3)	53 (37.1)
	Male	133 (54.7)	90 (62.9)
Smoking Status (%)	Never	112 (46.1)	76 (53.1)
	Smoker	131 (53.9)	67 (46.9)
Total		243	143

361 Table 1. General characteristics of the controls and the colorectal cancer patients.

362

- 363 Age is presented as mean \pm standard deviation.
- 364 Gender and smoking status are presented as number of subjects.
- 365 No significant difference was observed between cases and controls.

366

Genotype	Controls	Cases	Crude OR (95% CI)	Adjusted OR (95% CI)
C/C (%)	106 (43.6)	38 (26.6)	—	—
C/T (%)	115 (47.3)	91 (63.6)	2.21 (1.39–3.49)**	2.27 (1.43-3.67)**
T/T (%)	22 (9.05)	14 (9.79)	1.78 (0.83–3.78)	1.95 (0.88–4.30)
Total	243	143		
C/T + T/T (%)	137 (56.4)	105 (73.4)	2.14 (1.37–3.34)**	2.22 (1.42–3.55)**

368 Table 2. Associations between the *TAP1* genotype and colorectal cancer.

370 95% CI: 95% confidence interval; OR: odds ratio.

371 Crude OR and adjusted OR for age, gender and smoking status were estimated using chi-square statistic and multivariate logistic regression,

372 respectively.

373 *: P < 0.05; **: P < 0.01.

374

375

Smoking status	Genotype	Controls	Cases	Crude OR (95% CI)	Adjusted OR (95% CI)
Never	C/C (%)	51 (45.5)	24 (31.6)	—	_
	C/T (%)	53 (47.3)	45 (59.2)	1.80 (0.97–3.36)	1.94 (1.02–3.75)*
	T/T (%)	8 (7.14)	7 (9.21)	1.86 (0.62–5.55)	2.04 (0.62–6.58)
	Total	112	76		
	C/T + T/T (%)	61 (54.5)	52 (68.4)	1.81 (0.99–3.32)	1.95 (1.05–3.72)*
Smoking status	Genotype	Controls	Cases	Crude OR (95% CI)	Adjusted OR (95% CI)
Smoking status Smoker	Genotype C/C (%)	Controls 55 (42.0)	Cases 14 (20.9)	Crude OR (95% CI)	Adjusted OR (95% CI)
Smoking status Smoker	Genotype C/C (%) C/T (%)	Controls 55 (42.0) 62 (47.3)	Cases 14 (20.9) 46 (68.7)	Crude OR (95% CI) — 2.91 (1.46–5.82)**	Adjusted OR (95% CI) — 2.84 (1.43–5.92)**
Smoking status Smoker	Genotype C/C (%) C/T (%) T/T (%)	Controls 55 (42.0) 62 (47.3) 14 (10.7)	Cases 14 (20.9) 46 (68.7) 7 (10.4)	Crude OR (95% CI) — 2.91 (1.46–5.82)** 1.96 (0.68–5.64)	Adjusted OR (95% CI) — 2.84 (1.43–5.92)** 1.98 (0.64–5.83)
Smoking status Smoker	Genotype C/C (%) C/T (%) T/T (%) Total	Controls 55 (42.0) 62 (47.3) 14 (10.7) 131	Cases 14 (20.9) 46 (68.7) 7 (10.4) 67	Crude OR (95% CI) — 2.91 (1.46–5.82)** 1.96 (0.68–5.64)	Adjusted OR (95% CI) — 2.84 (1.43–5.92)** 1.98 (0.64–5.83)

Table 3. Associations between the <i>TAP1</i> genotype	and CRC when stratified by smoking status.
--	--

379 95% CI: 95% Confidence interval; OR: Odds ratio.

380 Crude OR and adjusted OR for age and gender were estimated using chi-square statistic and multivariate logistic regression, respectively.

*: P < 0.05; **: P < 0.01.

- - -

Gender	Genotype	Controls	Cases	Crude OR (95% CI)	Adjusted OR (95% CI)
Male	C/C (%)	55 (41.4)	25 (27.8)	_	—
	C/T (%)	67 (50.4)	55 (61.1)	1.81 (1.00–3.25)*	2.04 (1.11-3.84)*
	T/T (%)	11 (8.27)	10 (11.1)	2.00 (0.77–5.22)	2.38 (0.86-6.61)
	Total	133	90		
	C/T + T/T (%)	78 (58.6)	65 (72.2)	1.83 (1.03-3.25)*	2.09 (1.15-3.87)*
Gender	Genotype	Controls	Cases	Crude OR (95% CI)	Adjusted OR (95% CI)
Female	C/C (%)	51 (46.4)	13 (24.5)	_	—
	C/T (%)	48 (43.6)	36 (67.9)	2.94 (1.41-6.15)**	2.91 (1.40-6.32)**
	T/T (%)	11 (10.0)	4 (7.55)	1.42 (0.41–4.95)	1.45 (0.36–5.10)
	Total	110	53		

Table 4. Associations between the *TAP1* genotype and CRC when stratified by gender.

397 95% CI: 95% Confidence interval; OR: Odds ratio.

- 398 Crude OR and adjusted OR for age and smoking status were estimated using chi-square statistic and multivariate logistic regression,
- 399 respectively.
- 400 *: P < 0.05, **: P < 0.01.