| 1  | Effects of steroid administration and transcorneal electrical stimulation on the anatomical and          |
|----|----------------------------------------------------------------------------------------------------------|
| 2  | electrophysiological deterioration of nonarteritic ischemic optic neuropathy in a rodent model           |
| 3  |                                                                                                          |
| 4  | Takako Osako, Hideki Chuman, Tomoyuki Maekubo, Michitaka Ishiai, Naoko Kawano, Nobuhisa Nao-i            |
| 5  | Department of Ophthalmology, Faculty of Medicine, University of Miyazaki                                 |
| 6  | 5200 Kihara Kiyotake, Miyazaki city, Miyazaki prefecture, 889-1692, Japan                                |
| 7  | Running Head: Effects of steroid and TES                                                                 |
| 8  | Correspondence and reprint requests to: Hideki Chuman, Department of Ophthalmology, Faculty of Medicine, |
| 9  | University of Miyazaki, 5200 Kihara Kiyotake, Miyazaki city, Miyazaki prefecture, 889-1692, Japan        |
| 10 | e-mail: hchuman@post.med.miyazaki-u.ac.jp                                                                |
| 11 | Tel: +81-985-85-2806                                                                                     |
| 12 | Fax: +81-985-84-2065                                                                                     |
| 13 |                                                                                                          |
| 14 | Words count for abstract: 160                                                                            |
| 15 | Words count for manuscript: 3017                                                                         |
| 16 | 17 References and 5 figures are included                                                                 |
| 17 |                                                                                                          |
| 18 |                                                                                                          |
| 19 |                                                                                                          |

| abstract |
|----------|
|          |

| 21 | Purpose: To elucidate the effectiveness of steroid administration and transcorneal electrical stimulation (TES) on |
|----|--------------------------------------------------------------------------------------------------------------------|
| 22 | anatomical changes and visual functions in a rodent model of nonarteritic ischemic optic neuropathy (rNAION).      |
| 23 | Methods: Methylprednisolone (20 mg/kg) was injected through a central venous catheter twice a day for 3 days.      |
| 24 | TES was delivered with biphasic square pulses of 1 ms/phase, 100 $\mu$ A of current, and 20 Hz of frequency for 60 |
| 25 | minutes on the three hours, 1st, 4th, 7th, 14th, and 28th days after induction.                                    |
| 26 | Results: Intravenous infusion of methylprednisolone significantly decreased the degree of acute disc edema but     |
| 27 | did not preserve inner retinal thinning, decreasing scotopic threshold responses (STR) amplitude, and decreasing   |
| 28 | RGC numbers in an rNAION. TES preserved the decreasing STR amplitude and the decreasing RGC numbers in             |
| 29 | an rNAION.                                                                                                         |
| 30 | Conclusion: Steroids are effective for reducing disc edema in the acute stage in an rNAION. TES is effective for   |
| 31 | preserving decreasing RGC numbers and function in the chronic stage of an rNAION.                                  |
| 32 |                                                                                                                    |
| 33 |                                                                                                                    |
| 34 | Keywords: steroid, Transcorneal Electrical Stimulation, rodent model of nonarteritic ischemic optic neuropathy,    |
| 35 | scotopic threshold response of electroretinogram                                                                   |
| 36 |                                                                                                                    |
| 37 |                                                                                                                    |
| 38 |                                                                                                                    |

#### 39 Introduction

40 Nonarteritic ischemic optic neuropathy (NAION) is an optic nerve dysfunction caused by an ischemia of the 41 posterior ciliary artery (PCA) although the precise etiology is not known [1]. The incidence rate is approximately 422 to 10 individuals per 100,000 [2]. Unfortunately, an effective treatment has not yet been found. Various kinds 43of treatment to enhance the visual function of NAION patients have been tried, including corticosteroids [3], 44hyperbaric oxygen therapy [4], optic nerve sheath decompression [5], transcorneal electric stimulation [6], and 45intravitreal bevacizumab injections [7]. Although each treatment has been reported to be effective in a short case 46 series, they are not widely recognized as effective because a randomized, multicenter optic nerve sheath 47decompression treatment trial, which was thought to be effective in studies with small sample sizes [8], revealed 48 that intervention was not effective and rather harmful [5]. Therefore, an animal model of NAION to confirm the 49effectiveness of a treatment and perform clinical trials [9] has been developed. We have succeeded in 50establishing a rodent model of NAION (rNAION) [10] and have collected reproducible objective data showing 51the severity of NAION, including the time course of inner retinal thickness around the optic disc using OCT [11], 52the scotopic threshold response of ERG [10], and an RGC count using Fluorogold (Fluoro-Gold®, Fluorochrome, 53Denver, USA).

We have found that corticosteroids have nitric oxide (NO)-independent vasodilatory effects in rabbit PCA [12]. Therefore, in terms of the vasodilatory effect, corticosteroids could be effective for the treatment of NAION. In addition, NAION has two pathological steps: the acute disc edema stage and the atrophic stage. The goal of treatment must be neuroprotection due to the atrophic stage. Among the treatment options described above, only

| 58 | TES | provides | neuroprotection. |  |
|----|-----|----------|------------------|--|
|----|-----|----------|------------------|--|

| 59       | Morimoto et al reported that TES has the protective effect for the RGC number reduction by activating                                                                                                                    |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 60       | endogenous retinal IGF-1 system using optic nerve transaction model of rats [13]. In the rNAION model, we                                                                                                                |
| 61       | showed the RGC number reduction in a chronic phase after the ischemic induction to the optic nerve. As both                                                                                                              |
| 62       | model showed the secondary RGC loss after the optic nerve damage, TES could show the protective effect for                                                                                                               |
| 63       | the RGC number reduction in the rNAION model.                                                                                                                                                                            |
| 64       | To investigate the efficacy of, steroids and TES for anatomical changes and improving visual functions in the                                                                                                            |
| 65       | acute stage of an rNAION, each intervention was performed after 3 hours of rNAION induction. Subsequently,                                                                                                               |
| 66       | the time course of inner retinal thickness using OCT, the amplitude of STR, and the survival number of RGCs                                                                                                              |
| 67       | were compared to the baseline data of the controls.                                                                                                                                                                      |
| 68       | Materials and Methods                                                                                                                                                                                                    |
| 69       | rNAION induction                                                                                                                                                                                                         |
| 70       | The animal protocols were approved by the University of Miyazaki Institutional Animal Care Committee and                                                                                                                 |
| 71       | adhered to the guidelines recommended by the ARVO statement for the Use of Animals in Ophthalmic and                                                                                                                     |
| 72       | Vision Research.                                                                                                                                                                                                         |
| 73       | Male Sprague-Dawley rats (200-240 g; Kyudou, Kumamoto, Japan) were anesthetized with intramuscular                                                                                                                       |
|          |                                                                                                                                                                                                                          |
| 74       | ketamine and xylazine (80 mg/kg and 5 mg/kg, respectively). To induce rNAION, rose bengal (RB) (2.5 mM, 1                                                                                                                |
| 74<br>75 | ketamine and xylazine (80 mg/kg and 5 mg/kg, respectively). To induce rNAION, rose bengal (RB) (2.5 mM, 1 ml/kg) was injected into the tail vein. After administering RB, the optic nerve (ON) was photoactivated in the |

## 77 Treatment intervention protocol

For the steroid treatment, after 3 hours of rNAION induction, 20 mg/kg of methylprednisolone solution, which is similar to about 1000mg for human, with saline was injected through the central venous catheter twice a day for 3 days.

81 For the TES treatment, a monopolar contact lens electrode (Mayo, Aichi, Japan) was used as a positive 82 stimulating electrode. The negative electrode was placed in the oral cavity using a needle. The cornea was 83 anesthetized using 0.4% oxybuprocaine eye drops with the systemic anesthesia. A 15mg/ml of hydroxyethyl cellulose gel was used to protect the cornea. TES was delivered with biphasic square pulses from a biphasic 84 85 pulse generator (BPG-1, BAK Electronics, Inc.) and a stimulus isolator (BSI-2, BAK Electronics, Inc.). The 86 stimulus parameters were 1 ms/phase of pulse duration, 100 µA of current, 20 Hz of frequency, and 60 minutes 87 of stimulation. The stimulus parameter was based on the paper from Morimoto et.al, which demonstrated the 88 protective effect of TES for the RGC number reduction using optic nerve transaction model of rats [14]. 89 Stimulation of the TES started three hours after the rNAION induction and was performed on the 1<sup>st</sup>, 4<sup>th</sup>, 7<sup>th</sup>, 14<sup>th</sup>, 90 and 28th days after the induction.

# 91 OCT measurement

We measured the inner retinal thickness around the disc using spectral domain OCT (iVUE-100, Optovue Inc., CA, USA). We altered some of the measurement methods because of differences in the refractive power, axial length, and maximum dilated pupil size between rats and humans [15, 16]. The retinal image at its best focus in a rat requires a diopter compensation of approximately +20 D because of the typical strong negative spherical

| 96  | aberration. Therefore, we fixed an achromatic +20 D doublet lens with a locking device in front of the OCT                                                                                                                  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 97  | instrument. The high-power positive lens also helped reduce the required pupil diameter. After obtaining the                                                                                                                |
| 98  | maximum pupil dilation with eye drops of Tropicamide and phenylephrine hydrochloride (Midrin-P®), the rats                                                                                                                  |
| 99  | under anesthesia were fixed in front of the OCT. We judged the rats to be qualified for the evaluation and                                                                                                                  |
| 100 | counted one scan when the scan quality index (SQI) was over 45 in each scan. The examiner recorded 3 scans,                                                                                                                 |
| 101 | and the mean value was analyzed. The diameter of the optic disc of the rat is approximately 1 mm. The                                                                                                                       |
| 102 | measurement area was within the 3-mm diameter, the center of which was the center of the optic disc, but the                                                                                                                |
| 103 | area of the center circle with a 2-mm diameter was excluded. Thus, the thickness within the round, banded area                                                                                                              |
| 104 | of the inner retina 1 mm from the center of the optic disc was measured because in the area next to the optic disc                                                                                                          |
| 105 | edge, each retinal layer was obscured when the swelling developed. We evaluated the change in the thickness of                                                                                                              |
| 106 | the NFL as the change in the thickness of the inner retina, meaning the distance from the inner limiting                                                                                                                    |
| 107 | membrane (ILM) to the inner plexiform layer (IPL) (Fig.1). We conducted scans before the induction and on the                                                                                                               |
| 108 | 1 <sup>st</sup> , 3 <sup>rd</sup> , 5 <sup>th</sup> , 7 <sup>th</sup> , 14 <sup>th</sup> , 28 <sup>th</sup> , 56 <sup>th</sup> , and 90 <sup>th</sup> days after rNAION induction. We compared the change in appearance and |
| 109 | thickness before and after the steroid treatment.                                                                                                                                                                           |
| 110 | Electrophysiologic evaluation                                                                                                                                                                                               |
| 111 | STR Recording                                                                                                                                                                                                               |
| 112 | For the STR recording, after the overnight (12 hours) dark adaptation, the rats were anesthetized with                                                                                                                      |
| 113 | ketamine and xylazine (100 mg/kg and 10 mg/kg, respectively). The body temperature of the rats was kept at                                                                                                                  |
| 114 | 37°C with a heating pad, and the pupils were fully dilated in both eyes. The retinal signals for STR were                                                                                                                   |

| 115 | recorded from the cornea using the same contact lens electrodes. The needle electrode was held stable on the                                                                     |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 116 | skin, and the ground electrode was placed in the tail. During the STR recording, the rats were placed on the                                                                     |
| 117 | shield mat surrounded by a Ganzfeld bowl. The STR responses were obtained for flash intensities ranging from                                                                     |
| 118 | -6.15 to -3.30 log (cd s) $m^{-2}$ in 0.2 log unit increments by averaging 15-20 responses per intensity with an                                                                 |
| 119 | interstimulus interval of 3 seconds (Fig.2).                                                                                                                                     |
| 120 | The amplitudes of STR were compared in the control and the treated eye on the 1 <sup>st</sup> , 3 <sup>rd</sup> , 7 <sup>th</sup> , 14 <sup>th</sup> , and 28 <sup>th</sup> days |
| 121 | after the induction.                                                                                                                                                             |
| 122 | Analysis of retinal ganglion cells                                                                                                                                               |
| 123 | RGC staining                                                                                                                                                                     |
| 124 | The SD rats were anesthetized with ketamine and xylazine (80 mg/kg and 8 mg/kg, respectively). After                                                                             |
| 125 | exposing the skull, a 2-mm-diameter hole was drilled 3.5 mm bilaterally to the midline and 6 mm behind the                                                                       |
| 126 | Bregma suture. After the aspiration of the cortex, the superior colliculus was exposed. A sponge (Spongel®;                                                                      |
| 127 | Astellas Pharma, Inc., Tokyo, Japan) filled with Fluorogold (Fluoro-Gold®, Fluorochrome, Denver, USA) was                                                                        |
| 128 | placed on the superior colliculus, and the holes were plugged with ointment and closed using the overlaying                                                                      |
| 129 | skin.                                                                                                                                                                            |
| 130 | Survival RGC number measurement                                                                                                                                                  |
| 131 | One week after hydroxystilbamidine placement, the rats were anesthetized with 100 mg/kg of pentobarbital                                                                         |
| 132 | (Somnopentyl, Kyoritsu Seiyaku Co., LTD, Tokyo, Japan), a perfusion fixation with 100 ml of 4% of                                                                                |
| 133 | paraformaldehyde was performed, and the eyes were enucleated. One hour after the enucleation, a cross-shaped                                                                     |
|     |                                                                                                                                                                                  |

| 134 | floating preparation of the retina was made, fixed on the glass slide, and mounted using PERMAFLUOR                                                                             |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 135 | (Thermo Shandon LTD., Runcorn Cheshire, UK). The twelve 0.25 mm×0.25 mm areas (total of 3 areas in each                                                                         |
| 136 | of the 4 quadrants) were blindly selected, and the number of RGCs observed and photographed through the                                                                         |
| 137 | fluorescence microscope (Axioplan, Zeiss, Germany) with the ultraviolet filter was counted (Fig.3).                                                                             |
| 138 | The RGC count was performed using CellProfiler® (The Broad Institute of MIT and Harvard). We confirmed                                                                          |
| 139 | its accuracy by comparing it with the actual count performed by two of authors (T.I. and N.K.), and we                                                                          |
| 140 | rechecked every CellProfiler® count.                                                                                                                                            |
| 141 | The survival number of RGC was compared in the control and the treated eye on the 1 <sup>st</sup> , 3 <sup>rd</sup> , 7 <sup>th</sup> , 14 <sup>th</sup> , and 28 <sup>th</sup> |
| 142 | days after the induction.                                                                                                                                                       |
| 143 | Statistical Analysis                                                                                                                                                            |
| 144 | The data are summarized as the means $\pm$ SDs. To analyze the data statistically, we used a two-way ANOVA                                                                      |
| 145 | followed by post hoc Bonferroni comparisons. We considered differences significant at P <0.05.                                                                                  |
| 146 | Results                                                                                                                                                                         |
| 147 | Effect of steroids on anatomical changes and visual functions of rNAION                                                                                                         |
| 148 | The inner retinal thickness of the steroid group was significantly thinner than in the control group on the 1 <sup>st</sup> , 3 <sup>rd</sup> ,                                 |
| 149 | and 5 <sup>th</sup> days and significantly thicker than in the control eyes on the 14 <sup>th</sup> day (Fig. 4). There was no significant                                      |
| 150 | difference in STR amplitude between the steroid group and control group (Fig. 5). There was no significant                                                                      |
| 151 | difference in RGC survival between the steroid and control groups (Fig. 6).                                                                                                     |
| 152 | Effect of TES on the prevention of visual functions of rNAION                                                                                                                   |

| 153 | A decreased amplitude in the STR of the TES group was significantly better preserved than in the control group                                |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 154 | on the 28 <sup>th</sup> day but not on the 14 <sup>th</sup> day after induction (Fig. 7). RGC survival of the TES group was significantly     |
| 155 | larger than in the control group on the 14 <sup>th</sup> and 28 <sup>th</sup> days (Fig. 8). These results means that the preservation effect |
| 156 | of STR in function could be slightly delayed compared to that in cell survival.                                                               |
| 157 | Discussion                                                                                                                                    |
| 158 | This study showed that a methylprednisolone intravenous infusion significantly decreases the degree of the                                    |
| 159 | acute stage of disc edema but did not preserve the thinning of the inner retina in an rNAION (Fig. 4). In addition,                           |
| 160 | the methylprednisolone intravenous infusion did not provide protection from the reduced RGC function and                                      |
| 161 | number observed in the chronic stage of rNAION. Hayreh et al. treated 613 patients with NAION using                                           |
| 162 | corticosteroids or observation and compared the visual recovery [3]. The authors observed a significant and more                              |
| 163 | rapid reduction of disc edema as well as a higher probability of improvement in visual acuity and the visual field                            |
| 164 | in the steroid treatment group than in the observation group. Our experimental results support the Hayreh's                                   |
| 165 | findings that showed that steroid treatment significantly decreased the degree of disc edema in the acute stage.                              |
| 166 | However, our experimental results did not support Hayreh's results because steroid treatment did not provide                                  |
| 167 | protection from the reduced RGC function and number in the chronic stage of rNAION. Hayreh et al. speculated                                  |
| 168 | about the mechanism behind this effect and considered that corticosteroid therapy reduces optic disc edema by                                 |
| 169 | reducing capillary permeability [3]. However, we have found that there was no inflammation in the optic nerve                                 |
| 170 | of rNAION using an HE stain and immunohistochemistry [10]. We also found that steroids have nitric                                            |
| 171 | oxide-independent vasodilatory effects on the rabbit PCA [12]. From these results, we speculate that the                                      |

| 172 | vasodilatory effect of corticosteroids could be the cause of the rapid reduction of disc edema rather than the   |
|-----|------------------------------------------------------------------------------------------------------------------|
| 173 | reduced capillary permeability. The disc edema of NAION could be attributed to the slowed axonal flow at the     |
| 174 | lamina cribrosa of the optic nerve due to the insufficiency of the blood flow to the optic nerve [17]. The       |
| 175 | vasodilatory effect evoked by the corticosteroid could increase the blood flow to the optic nerve and lead to an |
| 176 | increase of the axonal flow, thereby reducing disc edema rapidly and successfully. However, steroids have no     |
| 177 | effect on the visual recovery, according to this study. There has been no report that steroids have a            |
| 178 | neuroprotective effect. For better visual recovery, some neuroprotective options are still needed following the  |
| 179 | steroid treatment.                                                                                               |
| 180 | This study showed that TES protects against the reducing RGC function and number in the chronic stage of         |
| 181 | rNAION.                                                                                                          |
| 182 | Fujikado et al. performed TES on three patients with NAION, and two of three patients had improved visual        |
| 183 | acuity by at least 0.3 log (minimum angle of resolution) [6]. They also reported that TES could rescue the       |
| 184 | axotomized RGC by increasing the level of IGF-1 production by Muller cells [13]. In this experiment, although    |
| 185 | an anatomical change could not be observed using OCT because of potential corneal damage, the                    |
| 186 | neuroprotective effect of TES was significant.                                                                   |
| 187 | In conclusion, a methylprednisolone intravenous infusion ameliorated the acute stage of disc edema but could     |
| 188 | not preserve the inner retinal thickness and RGC function in the chronic stage of rNAION. A TES protected        |
| 189 | against deteriorating RGC function and decreasing RGC counts of rNAION. As NAION as well as rNAION               |
| 190 | have two different phages of processes, we might consider the different strategy for the treatment for NAION.    |

### 191 **References**

- 192 1) Arnold AC. Ischemic optic neuropathy. In: Miller NR, Newman NJ, editors. 6<sup>th</sup> ed. Walsh & Hoyt's Clinical
- 193 Neuro-Ophthalmology. Philadelphia: Lippincott Williams & Wilkins; 2005. pp. 349-84.
- 194 2) Hattenhauer MG, Leavitt JA, Hodge DO, Grill R, Gray DT. Incidence of nonarteritic ischemic optic
- 195 neuropathy. Am J Ophthalmol. 1997; 123: 103-7.
- 196 3) Hayreh SS, Zimmerman MB. Nonarteritic anterior ischemic optic neuropathy: role of systemic
- 197 corticosteroid therapy. Graefes Arch Clin Exp Ophthalmol. 2008; 246: 1029-46.
- 198 4) Arnold AC, Hepler RS, Lieber M, Alexander JM. Hyperbaric oxygen therapy for nonarteritic ischemic optic
- neuropathy. Am J Ophthalmol. 1996; 122:535-41.
- 200 5) The Ischemic Optic Neuropathy Decompression Trial Research Group. Optic nerve decompression surgery
- for nonarteritic anterior ischemic optic neuropathy (NAION) is not effective and may be harmful. JAMA.
- 202 1995; 273:625-32.
- 203 6) Fujikado T, Morimoto T, Matsushita K, Shimojo H, Okawa Y, Tano Y. Effect of transcorneal electric
- 204 stimulation in patients with non-arteritic ischemic optic neuropathy or traumatic optic neuropathy. Jpn J
- 205 Ophthalmol. 2006; 50: 266-73.
- 206 7) Bennett JL, Thomas S, Olson JL, Mandava N. Treatment of nonarteritic anterior ischemic optic neuropathy
- with intravitreal bevacizumab. J Neuro-Ophthalmol. 2007; 27: 238-240.
- 208 8) Sergott RC, Cohen MS, Bosley TM, Savino PJ. Optic nerve decompression may improve the progressive
- form of nonarteritic ischemic optic neuropathy. Arch Ophthalmol. 1989; 177: 1743-54.

- 210 9) Kelman SE. Intravitral triamcinolone or bevacizumab for nonarteritic anterior ischemic optic neuropathy:
- 211 Do they merit further study? J Neuroophthalmol. 2007; 3:161-3.
- 212 10) Chuman H, Maekubo T, Oosako T, Kodama Y, Ishiai M, Nao-i N. Rodent model of non-arteritic ischemic
- 213 optic neuropathy and its electrophysiological evaluation. Jpn J Ophthalmol. in press.
- 214 11) Maekubo T, Chuman H, Kodama Y, Nao-i N. Evaluation of the retinal nerve fiber thickness around the
- 215 optic disc using optical coherence tomography of rodent model of nonarteritic ischemic optic neuropathy.
- 216 Jpn J Ophthalmol. in submission.
- 217 12) Chuman H, Kawano N, Kozawa M, Nao-i N. Different vasodilatory effects of anti-vascular endothelium
- 218 growth factor (VEGF) antibody, corticosteroid, and nitric oxide, as possible treatment agents for
- 219 non-arteritic ischemic optic neuropathy, in rabbit and human posterior ciliary artery. Jpn J Ophthalmol. in
- submission.
- 13) Morimoto T, Miyoshi T, Matsuda S, Tano Y, Fujikado T, Fukuda Y. Transcorneal electric stimulation rescues
- axotomized retinal ganglion cells by activating endogenous retinal IGF-1 system. Invest Ophthalmol Vis Sci.
- 223 2005; 46: 2147-55.
- 14) Morimoto T, Miyoshi T, Sawai H, Fujikado T. Optimal parameters of transcoeneal electric stimulation (TES)
- to be neuroprotective of axotomized RGCs in adult rats. Exp Eye Res. 2010; 90: 285-91.
- 226 15) Campbell MC, Hughes A. An analytic gradient index schematic lens and eye for the rat which predicts
- aberrations for finite pupils. Vision Res. 1981; 21:1129-48.
- 228 16) Guo L, Normando M, Nizari S, Lara D, Cordeiro M. Tracking longitudinal retinal changes in experimental

| 229 | ocular hypertension using the cSLO and Spectral domain OCT. Invest Ophthalmol Vis Sci. 2010;               |
|-----|------------------------------------------------------------------------------------------------------------|
| 230 | 51:6503-12.                                                                                                |
| 231 | 17) McLeod D, Marshall J, Kohner EM. Role of axoplasmic transport in the pathophysiology of ischaemic disc |
| 232 | swelling. Br J Ophthalmol. 1980; 64: 247-61.                                                               |
| 233 |                                                                                                            |
| 234 |                                                                                                            |
| 235 |                                                                                                            |
| 236 |                                                                                                            |
| 237 |                                                                                                            |
| 238 |                                                                                                            |
| 239 |                                                                                                            |
| 240 |                                                                                                            |
| 241 |                                                                                                            |
| 242 |                                                                                                            |
| 243 |                                                                                                            |
| 244 |                                                                                                            |
| 245 |                                                                                                            |
| 246 |                                                                                                            |
| 247 |                                                                                                            |

# 248 Figure Legends

| 249 | Figure 1: a. An example of the typical OCT image of the optic disc of normal rat. bar = $250 \mu m$ .                              |
|-----|------------------------------------------------------------------------------------------------------------------------------------|
| 250 | b. An example of the typical OCT image of the optic disc of rNAION. bar = $250 \mu m$                                              |
| 251 | Figure 2: a. An example of the typical STR recording of normal rat.                                                                |
| 252 | b. An example of the typical STR recording of rNAION                                                                               |
| 253 | Figure 3: An example of the microscopic fluorescence photograph. $x 40$ , bar =100 $\mu$ m.                                        |
| 254 | Figure 4: The inner retinal thickness of the steroid treatment and no treatment groups on the 1, 3, 5,7,14,28, 56,                 |
| 255 | and 90 days after rNAION induction. The dark gray bar is the steroid treatment group (n= 8 rats each day), and                     |
| 256 | the light gray bar is the control group (n= 10 rats each day). * * $p < 0.001$ . * $p < 0.005$                                     |
| 257 | Figure 5: The amplitude of the STR in the steroid treatment and no treatment groups on the 7,14, and 28 days                       |
| 258 | after rNAION induction. The dark gray bar is the steroid treatment group ( $n=12$ rats), and the light gray bar is                 |
| 259 | the control group ( $n=13$ rats).                                                                                                  |
| 260 | Figure 6: Survival RGC counts on the 28 <sup>th</sup> and 84 <sup>th</sup> days after induction in the steroid treatment group and |
| 261 | control group of rNAION. The dark gray bar is the steroid treatment group ( $n = 8$ rats), and the light gray bar is               |
| 262 | the control group ( $n=5$ rats).                                                                                                   |
| 263 | Figure 7: The amplitude of the STR in the TES treatment and no treatment groups on the 14, and 28 days after                       |
| 264 | rNAION induction. The dark gray bar is the control group (n= 8 rats), and the light gray bar is the TES treatment                  |
| 265 | group (n= 12 rats). * p < 0.005.                                                                                                   |

Figure 8: Survival RGC counts on the 14<sup>th</sup> and 28<sup>th</sup> days after induction in the TES treatment group and the

- control group of rNAION. The dark gray bar is the TES treatment group (n= 7 rats), and the light gray bar is the
- $268 \qquad \text{control group (n=7 rats)}. \quad ** p < 0.001.$









Inner retinal thickness (µm)



amplitude (µV)

Days after treatment



Days after treatment



Days after treatment



Days after treatment