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SUMMARY

The fundamental repeating unit of chromatin, nucleosome, consists of a histone octamer (comprising
two molecules of each of core histones H2A, H2B, H3 and H4), ~146 base pairs of DNA wrapped around
it, a variable length (0-80 base pairs) of linker DNA and linker histone H1 (or HS) (in higher eukaryotes).
Alterations in chromatin structure are preferentially involved in almost all of DNA-utilizing processes,
including gene expression. Of various epigenetic mechanisms of chromatin, acetylation and
deacetylation of core histones are the most common/important modifications. The acetylation levels of
core histones are cooperatively/precisely controlled by histone acetyltransferase(s) and deacetylase(s),

each member of which plays particular roles in expressions of cell functions.

In eukaryotes genomic information is preserved in a complex structure, chromatin, which participates
in packaging genomic DNA into nucleus efficiently and providing the place for various DNA-utilizing
reactions, such as replication, recombination, repair, gene expression and so on. The organization and
packaging of chromatin are achieved through the addition of numerous kinds of proteins, including
histones, to the DNA molecule. A typical model for the hierarchy of chromatin structure is as follows
[1-8]. The basic structural unit of chromatin, nucleosome, consists of a histone octamer, comprising two
molecules of each of core histones H2A, H2B, H3 and H4, and approximately 146 base pairs of DNA
wrapped around it. With a variable length (0-80 base pairs) of linker DNA and linker histone H1 (or
HS5) (in case of higher eukaryotes), nucleosome constitutes the fundamental repeating unit of chromatin.
Upon the assistance of a number of non-histone proteins, including high-mobility group (HMG) proteins,
the nucleosome arrays are assembled into a higher order chromatin structure. Genomic DNA folds
around nucleosomes to form 10 nm fibers, which fold helically into 30 nm chromatin fibers. These 30
nm fibers further form loops observed in the prophase chromosome axis that coils to form the fully
condensed metaphase chromosome.

Because histones (H2A, H2B, H3, H4, H1, and/or H5) are essential for the maintenance of chromatin
structure, numerous numbers of each histone subtype must be rapidly/surely accumulated in nucleus and
quickly/correctly incorporated into nucleosome prior to cell division. To supply a large amount of every
histone subtype, following three distinct manners exist in eukaryotes. 1) The histone genes should be
present in multiple copies in most of higher eukaryotes, ranging from several dozen to hundreds, although
yeast has two genes for each of core histones [4, 9]. 2) The levels of the histone mRNAs should be
mainly controlled at post-transcriptional step [10]. 3) There is an attractive compensatory regulation
mechanism, by which the mRNA levels of histone subtypes are precisely kept in a stoichiometric balance
[11-15].

On the other hand, alterations in chromatin structure are preferentially involved in the



above-mentioned DNA-utilizing processes. Concerning gene expression, besides the DNA methylation
[16], there are at least three remarkable manners through chromatin structure changes as follows: 1)
regulation by variants of each histone subtype, 2) chromatin remodeling and 3) post-translational
modification.

First, several different variants with amino acid substitution(s) have been reported for most histone
subtypes [9, 17, 18]. The nature of histone variants as to the regulation of gene expression has reported
in Saccharomyces cerevisiae, Drosophila melanogaster, Xenopus, Tetrahymena thermophila and so on
[19-24]. In addition, six H1, three H2A, four H2B and two H3 variants exist in chickens, in which the
nucleotide sequences of almost all histone genes were determined [9], and these variants were reported to
regulate gene expression [14, 15, 25-27]. These findings revealed that besides the vital role in the
chromatin organization, histone variants participate in regulation of gene expression.

Secondly, chromatin structure should function as a transcriptional repressor in vivo because it usually
inhibits the binding of transcription factor proteins to their binding sites. At the first step of gene
activation, alterations in chromatin (nucleosome) structure, chromatin remodeling, surrounding promoter
and/or enhancer regions of DNA, should allow the binding of transcription factors. A particular
enzymatic activity has been reported to be necessary in this chromatin remodeling process. Many
different chromatin-remodeling complexes, such as NURF, CHRAC, ACF, SWI/SFF, ISW1, ISW2, RSF,
WCRF and others, have been identified independently by distinct assays in various organisms, i.e.,
Drosophila melanogaster, yeast and mammals and so on [28-30]. All of these complexes are
functionally/biochemically different each other but ubiquitously possess ATPase activity, which disrupts
the interaction between DNA and histones [31]. Detailed reviews on the chromatin remodeling have
been done elsewhere [32-34].

Thirdly, histone modification is one of the most common and important epigenetic mechanisms
[35-40]. Post-translational modifications of histones, such as acetylation, phosphorylation, methylation,
ubiquitination and sumoylation, mainly occur at their N- and C-terminal tails. Reviews concerning the
latter four have been done elsewhere in detail [41-46]. Because a large number of topics concerning the
former one have also been reviewed [35-40, 47-74], based on those review articles, here, we briefly
discuss the functional impact of alterations in chromatin structure based on the acetylation of core
histones. The molecules of core histones have been divided into three functional domains: histone-fold
regions, diverse extensions and histone tails that extend outside the nucleosome core particle.
Surprisingly, approximately 50 years ago the chemical modifications of core histones with the acetyl
group were first proposed to be of fundamental importance as to activation of gene expression in
eukaryotes [75]. In fact, it has been established not only that acetylated core histones are preferentially
associated with transcriptional active chromatin, but also that the acetylation occurs at conserved Lys

residues in the N-terminal tails of core histones. In addition, the positions of particular Lys residues



modified with the acetyl group have remained nearly invariant throughout eukaryotic evolution.
Remarkably, the huge knowledge about the importance of the acetylation of core histones in regulation of
gene expression through chromatin conformation changes has been rapidly accumulated not only in the
basic science as mentioned above [35-40, 47-74] but also in the clinical medicine [76-79] year by year.
The acetylation of the particular Lys residues should induce an open chromatin conformation that allows
the transcription machinery access to promoters. The acetylation level is precisely/cooperatively
controlled with chromatin-modifying enzymes, histone acetyltransferase(s) (HATs) and deacetylase(s)
(HDACs). HATs transfer the acetyl group to the Lys residues at the N-terminal tails of core histones to
promote euchromatin formation. In contrast, HDACs remove the acetyl group from acetylated Lys
residues of core histones for gene silencing. Thus, the histone acetylation controlled by HATs and
HDACs plays critical roles in the modulation of chromatin topology and the regulation of gene
expression in eukaryotes. As mentioned above, a number of HAT and HDAC family members have
been identified in several organisms and their specific functions have been reviewed in detail. For
instance, we have clarified individual roles of particular members of HATs and HDACs in the chicken
DT40 cells by gene targeting techniques as follows. GCNS is involved in gene expressions of various
important factors and enzymes and also the IgM H-chain [80-87], and HAT1 contributes to recovery of
DNA damages and integrity of histone H3-H4 containing complex [88, 89]. In addition, HDAC2
indirectly/mainly regulates gene expressions of IgM H- and L-chains through transcription regulations of
Pax5, EBF1, OBF1, Aiolos, E2A and other genes [90-92], and HDACS3 is essential for viability and

important for apoptosis progression [93, 94].
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