1	Risk factors for stillbirth and dystocia in Japanese Black cattle
2	
3	Mizuho Uematsu ^a , Yosuke Sasaki ^b , Go Kitahara ^b , Hiroshi Sameshima ^{a,c} , Takeshi Osawa ^{a,b,*}
4	
5	^a Graduate School of Medicine and Veterinary Medicine, University of Miyazaki,
6	Miyazaki 889-1692, Japan
7	^b Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki
8	889-2192, Japan
9	^c Department of Obstetrics and Gynecology, Faculty of Medicine, University of Miyazaki,
10	Miyazaki 889-1692, Japan
11	
12	
13	*Corresponding author. Tel.: +81 985 58 7787
14	E-mail address: osawa@cc.miyazaki-u.ac.jp (T. Osawa)

16 Abstract

Stillbirth and dystocia are major factors that negatively affect productivity in beef 17industry since producers' revenue relies merely on calf production as opposed to dairy cattle. 18 The objective was to determine the effect of season, parity, and gestation length on the 19 20incidence of stillbirth and dystocia in Japanese Black cattle. Calving records were obtained from 905 farms between April 2006 and March 2010 in Miyazaki Prefecture, Japan. During 21the investigation period, the average age and parity of 41,116 calvings in 15,378 animals 22were 4.87 ± 2.95 (mean \pm SD), and the percentage of primiparous cows in of 41,116 calvings 23was 14.42%. The number of stillbirths was 1,013 and the stillbirth rate was $2.46 \pm 15.50\%$. 24For primiparous cows, rates of stillbirth and dystocia were higher (P < 0.05) compared with 25those of multiparous cows. Stillbirth rates were higher in cows \geq 301 days of pregnancy and 26those ≤ 280 days of pregnancy than any other groups between 281 and 300 days of pregnancy 2728(P < 0.05). The stillbirth rate in winter (December to February) was $3.18 \pm 17.54\%$, which was higher (P < 0.05) than calvings that occurred in spring (March to May), summer (June to 29August) and autumn (September to November). Similarly, the dystocia rates in winter and 30 spring were higher (P < 0.05) compared with those that occurred in the other seasons (P3132<0.05). Low temperatures in winter, first calving, premature birth and excessive fetal weight

- are risk factors for stillbirth and dystocia in Japanese Black cattle.
- 34 *Keywords:* Cattle; Dystocia; Risk factors; Season; Stillbirth
- 35
- 36

37 Introduction

Stillbirth and dystocia are major factors that negatively affect productivity in the beef 38industry. Stillbirth and dystocia are costly to producers due to calf losses and decreased 39 subsequent reproductive performance, and its impact on the producers' revenue is much 40 greater than that on dairy industry. The conception rate was lower, and the number of services 41 per conception was higher in cows afflicted with dystocia compared with normal calving 42cows in beef cattle (83.7 vs. 89.8% and 1.70 vs. 1.66, respectively; Laster et al., 1973). In 43recent years, stillbirth in cattle has been increasing in countries around the world such as Iran 44(Atashi, 2011), Denmark (Hansen, 2004) and the United States (Meyer et al., 2001). Ogata et 4546 al. (1995) reported that the stillbirth rate of Japanese Black cattle was 2.4% through 1987 to 1993. Likewise, dystocia rates in Holstein-Friesian cattle have been reported to be high in 47Ireland (6.8%, Mee et al., 2011), Canada (6.9%, Sewalem et al., 2008) and the United States 48(13.7%, Gevrekci et al., 2011). Dams that have experienced dystocia reportedly had poor 49

50	subsequent reproductive performance. The conception rate was lower, and the number of
51	services per conception was higher in cows afflicted with dystocia compared with normal
52	calving cows in Holstein-Friesians (60.5 vs. 73.0% and 3.4 vs. 2.7, respectively; Gaafar et al.,
53	2011). When the mean air temperature increased up to -0.6 from -6.7°C, the average birth
54	weight of newborn calves decreased to 32.7 kg from 37.3 kg and the rate of dystocia also
55	decreased to 35 % from 58% in beef cattle (Colburn et al., 1997). In a 6-year study, calves
56	born during the coldest winter (-5°C) were 5 kg heavier than those born during the warmest
57	winter (0.5°C), and the dystocia rate in the coldest winter was 29 percentage points higher
58	than that in the warmest winter in beef cattle (Deutscher et al., 1999). The beef calves born
59	from 2-year-old cows suffered more from dystocia and had a lower neonatal survival rate due
60	to a severe cold climate than calves born from older cows (Azzam et al., 1993).
61	Japanese Black is the main breed of beef cattle in Japan. Because of the quite intensive
62	house system adapted, where the animals were housed throughout their life and fed with
63	high-quality hay (rice, Italian and oat straw) and concentrate, rearing Japanese Black cattle
64	requires high production costs, and the price of a Japanese Black calf is about four times
65	higher than that of a Holstein-Friesian calf in Japan. Therefore, the economic loss incurred by
66	stillbirth in Japanese Black cattle has a devastating impact on beef producers. Ogata et al.

67	(1999) reported that the cases of stillbirth without a specific cause were characterized by a
68	shorter gestation period and a lower than normal birth weight than normal calving. So far,
69	however, the incidence rates, risk factors and causes of stillbirth and dystocia in Japanese
70	Black cattle have not been fully understood.
71	Our objective, therefore, was to clarify the risk factors for the incidence of stillbirth and
72	dystocia in Japanese Black cattle by retrospectively analyzing reliable calving records.
73	
74	Materials and methods
75	Study area
76	Data of all of the farms ($n = 905$), located in suburban area of Miyazaki City, including
77	the surrounding towns, i.e. Kunitomi town and Aya town, in Japan, were used. Data on daily
78	minimum and maximum temperatures in Miyazaki City were collected from the Japan
79	Meteorological Agency (<u>http://www.jma.go.jp/jma/menu/report.html</u>). The temperature
80	measurement point was located at 131° 24' E longitude and 31° 56' N latitude at an altitude
81	of 9 m. All of the 905 farms surveyed were located within a 20 km radius from the
82	temperature measurement point. The average altitude of the farms was 46.9 ± 50.6 m (mean \pm
83	SD).

 $\mathbf{5}$

84	The average annual temperature of the city was 17.8 °C, the average lowest temperature
85	was 13.7°C, the average highest temperature was 22.4°C. The average temperature in spring
86	(March to May) was 15.9°C that in summer (June to August), autumn (September to
87	November) and winter (December to February) were 25.9°C, 19.4°C and 8.5°C, respectively.
88	The average lowest temperatures in spring, summer, autumn and winter were 11.3°C, 22.8°C,
89	16.0°C and 4.5°C, respectively. The average highest temperatures in spring, summer, autumn
90	and winter were 20.7°C, 29.8°C, 24.5°C and 14.4°C, respectively.
91	
92	Animals
93	We investigated a total of 41,116 calvings, that took place between April 2006 and
94	March 2010, in 15,378 animals. The average number of female adult cattle per farm was
95	17.96 ± 29.05 animals ranging from 1 to 454. All the animals were housed all day long
96	throughout the year in uninsulated barns. The barns were 'open cubicle housings' without
97	wall, and therefore, there was no difference in air temperature between inside and outside of
98	the barns. Rice, Italian or oat straw were fed individually to cows twice daily. All of the
99	animals were bred by artificial insemination.

101 Data collection

102	All of the dams had a 10-digit unique identification number (dam number) that is
103	managed by National Livestock Breeding Center (Shin-Shirakawa, Fukushima, Japan) and
104	Miyazaki Prefecture Livestock Association (Miyazaki, Japan). The following data were
105	obtained from an existing database managed by the Miyazaki Prefecture Livestock
106	Association; dam number, birth date of dam, date of AI and calving, parity, gestation length,
107	stillbirth, dystocia and causes of dystocia.
108	
109	Definitions
110	Stillbirth was defined as a dead fetus found during parturition that occurred more than
111	240 days after AI at which the born calf could survive after birth, following the definition of
112	stillbirth in Japanese Black cattle by elsewhere (Ogata et al., 1995). Stillbirth rate was
113	calculated as the number of stillbirth records divided by the number of all calving records.
114	Dystocia was defined as calving that required veterinary assistance. Veterinarians were called
115	whenever calving assistance was needed. Calving assistance was carried out by a veterinarian
116	or by a veterinarian and farmer(s). A total of 30 veterinarians were involved in calving
117	assistance and all of them used a medical recording system of the same format according to

118	the same criteria for diagnosis. Dystocia rate was calculated as the number of dystocia
119	records divided by the number of all calving records. Causes of dystocia were recorded
120	according to the standard veterinary criteria, and were classified into either maternal factors
121	including weak labor pains and narrow birth canal, or fetal factors including excessive birth
122	weight, abnormal position and/or posture, twins and congenital anomalies. Excessive birth
123	weight was defined as that fetus weight was greater than 29 kg in female and 30 kg in male
124	calves, respectively (Ogata et al., 1999; Ibi et al., 2008). Caesarean section was carried out if
125	vaginal delivery was not possible after attempt of manual correction of abnormal position
126	and/or abnormal posture. Congenital anomalies were defined as structural defects.
127	Greater than parity 10 were combined into parity 10. Calving month was divided into
128	four groups according to seasons; winter, spring, summer and autumn. Winter was defined as
129	the months from December to February, spring as March to May, summer as June to August,
130	and autumn as September to November. Gestation length was divided into five groups; ≤ 270
131	days, 271–280 days, 281–290 days, 291–300 days, and ≥301 days.
132	

133 Statistical analysis

134 All statistical analyses were conducted with SAS software (SAS Institute Inc., Cary, NC,

135	USA). A mixed-effects logistic regression model using GLIMMIX procedure with contrasts
136	was applied to investigate the association of season, parity and gestation length with stillbirth
137	and dystocia rate. Model was:
138	$Logit (p_{ijklmn}) = \alpha + PY_i + SSN_j + GL_k + F_l + Y_m + F_l \times Y_m,$
139	where p_{ijklmn} was probability of a stillbirth occurrence (stillbirth rate) or probability of a
140	dystocia occurrence (dystocia rate); α was the intercept; PY _i was the fixed effect of the <i>i</i> th
141	parity groups (<i>i</i> =1 to 10); SSN _j was the fixed effect of <i>j</i> th season groups (<i>j</i> =1 to 4); GL _k was
142	the fixed effect of <i>k</i> th gestation length groups ($k=1$ to 5); F ₁ was the random effect of <i>l</i> th farm
143	(<i>l</i> =1 to 905); Y_m was the random effect of <i>m</i> th calving year (<i>m</i> =1 to 5); $F_l \times Y_m$ was the
144	random interaction effect between the l th farm and the m th year. The two-way random
145	interaction was used to account for a part of the correlations of the data within a cattle in the
146	model.
147	
148	Results
149	During the investigation period, the average age, parity and gestation length of the
150	41,116 calvings were 2283.37 \pm 1206.05 (mean \pm SD), 4.87 \pm 2.95 and 289.73 \pm 5.92 days,
151	respectively (Table 1). Number of stillbirths was 1,013 and the rate of stillbirth was 2.46 \pm

152	15.50%. Herd average of stillbirth rate on 905 farms was $2.44 \pm 5.29\%$ (mean \pm SD). The
153	rates of stillbirth were lower in summer but higher in winter, changing cyclically throughout
154	the 4 years (Figure 1). In this survey, winter 2007 was the warmest, when the stillbirth rate
155	was the lowest $(2.41 \pm 0.56\%)$.
156	Stillbirth rate was associated with season, parity, and gestation length. Stillbirth rate in
157	winter was $3.18 \pm 17.54\%$, which was higher compared with those in spring, summer and
158	autumn. Odds ratios (ORs) were 1.008 and 1.004 for stillbirth rate in winter vs. summer and
159	spring vs. summer, respectively ($P < 0.05$; Table 3). Stillbirth rate at first calving was higher
160	than those at second to sixth, eighth and over the 10th calving. OR was 1.010 for first calving
161	vs. fifths calving ($P < 0.05$; Table 2). Stillbirth rate in the dams calved at less than 270 days of
162	pregnancy was the highest among the gestation length groups ($P < 0.05$). Stillbirth rates were
163	higher in cows at \ge 301 days of pregnancy and those at \le 280 days of pregnancy than any
164	other groups between 281 and 300 days of pregnancy. ORs were 2.072, 1.084 and 1.049 for \leq
165	270 days vs. 281–290 days, 271–280 days vs. 281–290 days, and \geq 301 days vs. 281–290
166	days, respectively ($P < 0.05$; Table 4).
167	Out of the 41,116 calvings, 3,514 were dystocia (8.55 ± 27.96 %). Herd average of
168	dystocia rate on 905 farms was 12.43 ± 15.12 %. Dystocia rate was associated with season,

169	parity and gestation length. Dystocia rate in winter and spring was higher compared with
170	those in summer and autumn. ORs were 1.011 and 1.020 for dystocia of winter vs. summer
171	and spring vs. summer, respectively ($P < 0.05$; Table 3). Dystocia rate in primiparous cows
172	was higher than that in multiparous cows. OR was 1.053 for first calving vs. fifths ($P < 0.05$;
173	Table 2). Dams calved at 291 to 300 days had the lowest dystocia rate of all the gestation
174	length groups. ORs were 1.124, 1.076, 0.981 and 1.033 for \leq 270 days vs. 281–290 days,
175	271–280 days vs. 281–290 days, 291–300 days vs. 281–290 days and \geq 301 days vs. 28
176	1–290 days, respectively ($P < 0.05$; Table 4).
177	Out of 3,514 dystocia cases, 254 (7.2%) were stillbirth. Among the different causes of
178	dystocia, excessive fetal birth weight was the most frequently encountered finding (39.7%).
179	However, the major reasons for fetal death due to dystocia were congenital anomalies, twins,
180	and abnormal position and/or posture (Table 5).
181	Dystocia rate due to excessive birth weight was associated with season, parity and
182	gestation length ($P < 0.05$; Table 2, 3, 4). The dystocia due to excessive birth weight rate in
183	spring was the highest among the four seasons $(3.99 \pm 19.57\%)$ compared with those in
184	summer and autumn. OR was 1.005 for dystocia due to excessive birth weight rate of spring
185	vs. summer ($P < 0.05$; Table 3). Dams calved at 301 days or longer of pregnancy had higher 11

186	dystocia rate due to excessive birth weight than the dams calved at 300 days or shorter of
187	pregnancy. OR was 1.031 for dystocia rate by excessive birth weight at \geq 301 days vs.
188	281–290 days (<i>P</i> < 0.05; Table 4).
189	Dystocia rate due to abnormal position and/or posture was associated with season and
190	gestation length. ORs were 1.007 and 1.006 for winter vs. summer and spring vs. summer,
191	respectively, ($P < 0.05$; Table 3, 4), but not with parity. Dams calved at gestation length of
192	291 to 300 days had the lowest rate of dystocia due to abnormal position and/or posture. ORs
193	were 1.050, 1.030, 0.996 and 1.019 for \leq 270 days vs. 281–290 days, 271–280 days vs.
194	281–290 days, 291–300 days vs. 281–290 days and \geq 301 days vs. 281–290 days,
195	respectively ($P < 0.05$; Table4). In addition, dates of dystocia due to abnormal position and/or
196	posture in winter and spring were higher than those in summer and autumn. ($P < 0.05$; Table
197	3).
198	
199	Discussion
200	The incidence was lower compared with those of previous studies. Berglund et al.
201	(2003) reported that during the past 20 years an increase from 6.0 to 10.3% occurred in the
202	incidence of stillbirth in first calving Swedish Holstein cows in Sweden. Meyer et al. (2001)

203	reported that from 1985 to 1996 the incidence of stillbirth increased from 9.5 to 13.2% in
204	primiparous and 5.0 to 6.6% in multiparous cows. Here, the stillbirth rate of Japanese Black
205	cattle was 2.46% and this figure was consistent with that shown by a previous report (Ogata
206	et al., 1995). Relatively low figures in the stillbirth rate in Japanese Black cattle may result
207	from the intensive calving management of the housed beef cattle.
208	We showed that the stillbirth rate in winter was higher compared with those in summer
209	and autumn. In this survey, winter 2007 had the highest temperature and lowest stillbirth rate
210	$(2.41 \pm 0.56\%)$ of the 4 years of the investigation period. Deutscher <i>et al.</i> (1999) reported that
211	as average winter temperatures decreased, subsequent calf birth weights increased and
212	calving difficulty increased, and that as temperature decreased, dystocia rate increased.
213	Colburn et al. (1997) suggested that severely cold winter in Nebraska can increase calf birth
214	weights and can cause calving difficulty. Increased blood flow to the uterus at low
215	temperatures is thought to be the primary factor that increases fetal growth (Ferrell, 1991).
216	The climate in Miyazaki was warmer than that in Nebraska. Further studies will be required
217	to determine whether low temperatures in winter in the area we studied may affect (increase)
218	blood flow to the uterus in Japanese Black cattle. Mee et al. (2008) reported that the principal
219	types of dystocia differ between primiparous and multiparous cows, with feto-pelvic

220	disproportion predominating in the former and fetal malposition in the latter. In order of
221	importance, the two major determinants of feto-pelvic disproportion are calf birth weight and
222	maternal pelvic size. It is, therefore, suggested that an increase in fetal weight is one of the
223	factors that increases the rates of dystocia and stillbirth in winter.
224	Primiparous cows had higher rates of both dystocia and stillbirth than multiparous cows.
225	These results suggest that feto-pelvic disproportion is also a major reason for dystocia and
226	stillbirth in Japanese Black primiparous cows. It was reported that female Japanese Black
227	cattle become fully developed in body size at 36 months (Wada et al., 1987). In this survey,
228	average age of the first calving cows was 713 days. At the first calving, the body size does
229	not mature yet. Heifers with an immature pelvis that are pregnant with a large fetus are at the
230	greatest risk of dystocia.
231	Azzam et al. (1993) reported that calves born to 2-year-old cows were more susceptible
232	to severe weather conditions than calves born to older cows, and that the negative effect on
233	survival increased with decreasing temperature. Similarly, our study showing stillbirth rate
234	was the highest in the Japanese Black primiparous cows in winter indicate that winter, when
235	the temperature was the lowest, had the greatest impact on stillbirth rate compared with other
236	seasons.

237	The average gestation length of Japanese Black cattle in the present study, 289 days, is
238	similar to another study reporting 287 days (Uchida et al., 2002). Here, rates of stillbirth and
239	dystocia were higher in cows \ge 301 days and \le 280 days of gestation period. In particular,
240	high rates of still birth and dystocia in cows \leq 270 days of gestation period (74.5 \pm 2.1% and
241	$20.5 \pm 2.0\%$, respectively) were consistent with the figures reported in Holstein cows (Olson
242	<i>et al.</i> , 2009).
243	When no delivery takes place by the expected date of birth in human, stillbirth rate will
244	be high because of decreased placental function, reduced amniotic fluid, turbid amniotic fluid
245	by meconium and damage due to excessively large fetus at delivery (Robert, 2007). It seems
246	to be logical to infer that rates of stillbirth and dystocia could be affected by the gestational
247	age of the cow as it is in humans. As to whether pathology for stillbirth and dystocia in the
248	cow is similar to humans, there is a need for further research in this area.
249	The incidence of dystocia in our study was 8.55%, which agrees with reports from
250	around the world such as Ireland (6.8%, Mee et al., 2011), Canada (6.9%, Sewalem et al.,
251	2008) and the United States (13.7%, Gevrekci et al., 2011). The dystocia definition of these
252	previous studies were considerable calving difficulty and veterinary assistance (Mee et al.,
253	2011), hard pull and surgery (Sewalem et al., 2008) and needed assistance, considerable force 15

254	and extreme difficulty (Gevrekci et al., 2011), and therefore, our definition of dystocia was
255	about the same as those by above mentioned previous studies. In addition, our finding that the
256	rate of dystocia was associated with temperature is supported by other reports (Azzam et al.,
257	1993; Zaborski <i>et al.</i> , 2009).
258	When classified on the basis of causes of dystocia, cows with abnormal position and/or
259	posture, twins and congenital anomalies were more likely to have a stillbirth. Our results in
260	Japanese Black cattle were consistent with other reports in Holstein cattle (Correa et al.,
261	1993; Emanuelson et al., 2004), and in Swedish Red White cattle (Maizon et al., 2004). Rates
262	of dystocia caused by abnormal position and/or posture were higher in winter and spring than
263	those in summer and autumn. Stillbirth caused by dystocia due to fetal abnormal position
264	and/or posture is probably one of the factors that increases stillbirth rate in winter since it not
265	only has high incidence but it also occurs in a greater number of animals. Because fetal
266	abnormal position and/or posture may also be caused by fetal death in utero before the onset
267	of parturition, a greater number of fetuses may have died in winter before calving. Possibility
268	of the fetal death in utero at the end of pregnancy are in need of further research.
269	Rate of dystocia caused by excessive birth weight was higher in spring than the other
270	three seasons. Dams spend late pregnancy in winter, calve in spring. When dams are at the 16

271	end of the gestation period in winter, the fetuses need to get through days of rapid growth in
272	winter, and this may be more likely to result in dystocia caused by excessive birth weight
273	compared with other seasons. Approximately 90% of fetal weight is increased in the last 40%
274	of the total gestation period (Ferrell et al., 1976). Although other factors such as management
275	and nutrition (feeding) need to be investigated as possible factors that may influence on the
276	incidence of excessive birth weight, we conjecture that parturition in cows exposed to a cold
277	environment during the last part of pregnancy may be more prone to have stillbirth and
278	dystocia compared to the other seasons. Effective measures in calving management must be
279	taken to reduce stillbirth and dystocia rates in winter.
280	
281	Conclusions
282	Rates of stillbirth and dystocia were significantly higher in primiparous cows compared
283	with multiparous cows. Rates of still birth and dystocia were high in cows \leq 280 days and \geq
284	301 days of gestation. Stillbirth rate in winter was significantly higher compared with in
285	spring, summer and autumn. Dystocia rates in winter and spring were significantly higher
286	compared with those in summer and autumn. Low temperatures in winter, first calving,
287	premature birth and excessive fetal weight are risk factors for stillbirth and dystocia in

289	
290	Conflict of interest statement
291	None of the authors has any financial or personal relationships that could
292	inappropriately influence or bias the content of the paper.
293	
294	Acknowledgements
295	We are grateful to the Miyazaki Prefecture Livestock Association and Miyazaki
296	Prefecture Federation of Agriculture Mutual Aid Association for the provision of data.
297	
298	References
299	Atashi, H., 2011. Factors affecting stillbirth and effects of stillbirth on subsequent lactation
300	performance in a Holstein dairy herd in Isfahan. Iranian Journal of Veterinary Research
301	12, 24-30.
302	
303	Azzam, S. M., Kinder, J. E., Nielsen, M. K., Werth, L. A., Gregory, K. E., Cundiff, L. V.,
304	Koch, R. M., 1993. Environmental effects on neonatal mortality of beef calves. Journal
305	of Animal Science 71, 282-290.
306	
307	Berglund, B., Steinbock, L., Elvander, M., 2003. Causes of stillbirth and time of death in
308	Swedish Holstein calves examined post mortem. Acta Veterinaria Scandinavica 44,
309	111-120.
310	

Japanese Black cattle.

311	Colburn, D. J., Deutscher, G. H., Nielsen, M. K., Adams, D. C., 1997. Effects of sire, Dam
312	traits, Calf traits, and environment on dystocia and subsequent reproduction of
313	two-year-old heifers. Journal of Animal Science 75, 1452-1460.
314	
315	Correa, M. T., Erb, H., Scarlett, J., 1993. Path analysis for seven postpartum disorders of
316	Holstein cows. Journal of Dairy Science 76, 1305-1312.
317	
318	Deutscher, G. H., Colburn, D. J., Davis, R., 1999. Climate affects calf birth weights and
319	calving difficulty. Nebraska Beef Cattle reports Paper 400.7-9.
320	http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1400&context=animalscinbcr
321	
322	Emanuelson, U., Oltenacu, P. A., Grohn, Y. T., 1993. Nonlinear mixed model analyses of
323	five production disorders of dairy cattle. Journal of Dairy Science 76, 2765-2772.
324	
325	Ferrell, C. L., Garrett, W. N., Hinman, N., 1976. Growth, development and composition of
326	the udder and gravid uterus of beef heifers during pregnancy. Journal of Animal Science
327	42, 1477-1489.
328	
329	Ferrell, C. L., 1991. Maternal and fetal influences on uterine and conceptus development in
330	cow: II. Bllod flow and nutrient flux. Journal of Animal Science 69,1954-1965
331	
332	Gaafar, H. M. A., Shamiah, Sh. M., Abu El-Hamd, M. A., Shitta, A. A., Tag El-Din, M. A.,
333	2011. Dystocia in Friesian cows and its effects on postpartum reproductive performance
334	and milk production. Tropical Animal Health Production 43, 229-234.
335	
336	Gevrekci, Y., Akbas, Y., Kizilkaya, K., 2011. Comparison of different models in genetic
337	analysis of dystocia. Journal of the Faculty of Veterinary Medicine, Kafkas University 17,
338	387-392.
339	
340	Hansen, M., Misztal, I., Lund, M. S., Pedersen, J., Christensen, L. G., 2004. Undesired
341	phenotypic and genetic trend for stillbirth in Danish Holsteins. Journal of Dairy Science
342	87, 1477-1486.
343	

344	Ibi, T., Kahi, A. K., Hirooka, H., 2008. Genetic parameters for gestation length and the
345	relationship with birth weight and carcass traits in Japanese Black cattle. Animal Science
346	Journal 79, 297-302.
347	
348	Laster, D. B., Glimp, A. H., Cundiff, L. V., Gregory, K. H., 1973. Factors affecting dystocia
349	and the effects of dystocia on subsequent reproduction in beef cattle. Journal of Animal
350	Science 36, 695-705.
351	
352	Maizon, D. O., Oltenacu, P. A., Grohn, Y. T., 2004. Effects of diseases on reproductive
353	performance in Swedish Red and White dairy cattle. Preventive Veterinary Medicine 66,
354	113-126.
355	
356	Mee, J. F., 2008. Prevalence and risk factors for dystocia in dairy cattle: A review. The
357	Veterinary Journal 176, 93-101.
358	
359	Mee, J. F., Berry, D., Cromie, A., 2011. Risk factors for calving assistance and dystocia in
360	pasture-based Holstein-Friesian heifers and cows in Ireland. The Veterinary Journal 187,
361	189-194.
362	
363	Meyer, C. L., Berger, P. J., Koehler, K. J., Thompson, J. R., Sattler, C. G., 2001. Phenotypic
364	trends in incidence of stillbirth for Holsteins in the United States. Journal of Dairy
365	Science 84, 515-523.
366	
367	Ogata, Y., Abe, H., Misawa, T., Takahashi, K., Ban, A., Katho, T., Sakai, J., 1995.
368	Relationship between perinatal death and birth weight in Japanese black calves. Journal
369	of Reproduction and Development 41, 77-81. (in Japanese)
370	
371	Ogata, Y., Nakao, T., Takahashi, K., Abe, H., Misawa, T., Urushiyama, Y., Sakai, J., 1999.
372	Intrauterine growth retardation as a cause of perinatal mortality in Japanese black beef
373	calves. Journal of Veterinary Medicine A 46, 327-334.
374	

375	Olson, K. M., Cassell, B. G., McAllister, A. J., Washburn, S. P., 2009. Dystocia, stillbirth,
376	gestation length, and birth weight in Holstein, Jersey, and reciprocal crosses from a
377	planned experiment. Journal of Dairy Science 92, 6167-6175.
378	
379	Robert, M., 2007. Fetal Death. Obstetrics and Gynecology 109, 153-167.
380	
381	Sewalem, A., Miglior, F., Kistemaker, G., Sullivan, P., Van Doormaal, B., 2008. Relationship
382	between reproduction traits and functional longevity in Canadian dairy cattle. Journal of
383	Dairy Science 91, 1660-1668.
384	
385	Troxel, T. R., Gadberry, M. S., 2011. Relationships of barometric pressure and environmental
386	temperature with incidence of parturition in beef cows. Journal of Animal Science 90,
387	1583-1588.
388	
389	Uchida, H., Kobayashi, J., Inoue, T., Suzuki, K., Oikawa, T., 2002. Current level of
390	reproductive performances in Japanese black cattle. Asian-Australasian Journal of
391	Animal Sciences 15, 1098-1102.
392	
393	Wada, Y., Nishida, A., 1987. Genetic aspects of the growth curve characteristics in Japanese
394	Black cows. Japanese Journal of Zootechnical Science 58, 1078-1085.
395	
396	Zaborski, D., Grzesiak, W., Szatkowska, I., Dybus, A., Muszynska, M., Jedrzejczak, M.,
397	2009. Factors affecting dystocia in cattle. Reproduction in Domestic Animals 44,
398	540-551.

400 Table 1. Descriptive statistics

	Number of animals	Mean \pm SD
Stillbirth rate	41,116	2.46 ± 15.50
Dystocia rate	41,116	8.55 ± 27.96
Dystocia by excessive birth weight	41,116	3.40 ± 18.11
Dystocia by abnormal position and/or posture	41,116	2.13 ± 14.43
Parity	41,116	4.87 ± 2.95
Age at calving	41,116	2283.37 ± 1206.05
Age of first conception in heifers	5,855	425.41 ± 63.95
Age of first calving in heifers	5,855	713.00 ± 64.13
Gestation period	41,116	289.73 ± 5.92

	Number of	Stillbirth	Stillbirth rate, %		Dystocia rate, %		Dystocia rate by excessive birth weight, %		Dystocia rate by abnormal position and/or posture %	
Parity	animals	Mean \pm SD	Odds ratio ¹	Mean \pm SD	Odds ratio ¹	Mean \pm SD	Odds ratio ¹	Mean \pm SD	Odds ratio ¹	
1	5,855	3.71 ± 18.89^{a}	1.010* (1.004-1.015)	13.00 ± 33.63^{a}	1.053* (1.042-1.064)	5.84 ± 23.45^{a}	1.033* (1.026-1.041)	2.82 ± 16.55	NS	
2	5,235	2.22 ± 14.72^{b}	NS	7.66 ± 26.60^{b}	NS	3.13 ± 17.42^{b}	NS	2.08 ± 14.28	NS	
3	4,785	2.26 ± 14.85^{b}	NS	8.13 ± 27.33^{b}	NS	3.45 ± 18.25^{b}	NS	1.59 ± 12.50	NS	
4	4,514	2.41 ± 15.35^{b}	NS	7.35 ± 26.11^{b}	NS	3.04 ± 17.16^{b}	NS	2.06 ± 14.21	NS	
5	4,239	2.22 ± 14.73^{b}	Reference	7.93 ± 27.02^{b}	Reference	2.95 ± 16.92^{b}	Reference	1.98 ± 13.94	Reference	
6	4,096	1.51 ± 12.21^{b}	NS	7.93 ± 27.03^{b}	NS	2.76 ± 16.38^{b}	NS	2.25 ± 14.82	NS	
7	3,752	2.48 ± 15.55^{ab}	NS	8.02 ± 27.17^{b}	NS	2.96 ± 16.95^{b}	NS	2.29 ± 14.97	NS	
8	3,207	2.09 ± 14.30^{b}	NS	7.33 ± 26.06^{b}	NS	$3.06\pm17.21^{\text{b}}$	NS	1.75 ± 13.10	NS	
9	2,379	2.82 ± 16.55^{ab}	NS	7.23 ± 25.90^{b}	NS	$2.48\pm15.55^{\mathrm{b}}$	NS	2.02 ± 14.06	NS	
≥10	3,054	2.62 ± 15.97^{b}	NS	$8.58\pm28.01^{\text{b}}$	NS	2.69 ± 16.17^{b}	NS	2.16 ± 14.54	NS	

Table 2. Stillbirth and dystocia rate by parity

Values within a column without a common superscript (a-b) were different (P < 0.05). ¹The values in the parentheses were 95% confidence intervals. *P < 0.05

NS = Not significant

407 Table 3. Stillbirth and dystocia rate by season

	Number of	Stillbirth rate, % Dy		Stillbirth rate, %Dystocia rate, %Dystocia excessive bir		ia rate by rth weight, %	Dystocia rate by abnormal position and/or posture, %		
Season	animals	Mean \pm SD	Odds ratio ¹	Mean \pm SD	Odds ratio ¹	Mean \pm SD	Odds ratio ¹	Mean \pm SD	Odds ratio ¹
Winter	9,659	3.18 ± 17.54^{a}	1.008* (1.004-1.012)	9.01 ± 28.63^{a}	1.011* (1.004-1.019)	3.43 ± 18.19^{ab}	NS	2.42 ± 15.38^a	1.007* (1.003-1.011)
Spring	11,131	2.62 ± 15.98^{b}	1.004* (1.001-1.008)	9.98 ± 29.98^{a}	1.020* (1.013-1.027)	3.99 ± 19.57^{a}	1.005* (1.001-1.010)	2.43 ± 15.41^{ab}	1.006* (1.002-1.01)
Summer	11,361	$2.01 \pm 14.02^{\circ}$	Reference	7.84 ± 26.89^{b}	Reference	3.24 ± 17.70^{b}	Reference	$1.80 \pm 13.31^{\circ}$	Reference
Autumn	8,965	$2.07\pm14.25^{\rm c}$	NS	7.16 ± 25.79^{b}	NS	2.82 ± 16.56^{b}	NS	1.84 ± 13.44^{bc}	NS

408 Values within a column without a common superscript (a-c) were different (P < 0.05).

409 ¹The values in the parentheses were 95% confidence intervals. *P < 0.05

410 NS = Not significant

Table 4. Stillbirth and dystocia rate by gestation length

Gestation	Number of	Stillbirth	ı rate, %	Dystoci	a rate, %	Dystoc excessive b	ia rate by irth weight, %	Dystoci abnormal po postu	a rate by osition and/or ure, %
length	animals	Mean \pm SD	Odds ratio ¹	Mean \pm SD	Odds ratio ¹	Mean \pm SD	Odds ratio ¹	Mean \pm SD	Odds ratio ¹
 ≤270	396	74.49 ± 43.64^{a}	2.072* (2.044-2.101)	20.45 ± 40.39^a	1.124* (1.095-1.154)	1.52 ± 12.23^{b}	NS	7.07 ± 25.67^{a}	1.050* (1.035-1.065)
271 to 280	1,472	9.65 ± 29.53^{b}	1.084* (1.076-1.092)	15.56 ± 36.26^{b}	1.076* (1.061-1.092)	2.99 ± 17.03^{b}	NS	4.82 ± 21.43^{ab}	1.030* (1.022-1.038)
281 to 290	19,833	1.51 ± 12.21^{d}	Reference	$8.69\pm28.17^{\text{d}}$	Reference	3.39 ± 18.09^{b}	Reference	$2.05\pm14.18^{\text{c}}$	Reference
291 to 300	18,965	1.31 ± 11.36^{d}	NS	7.54 ± 26.4^{e}	0.981* (0.976-0.987)	3.42 ± 18.18^{b}	NS	1.85 ± 13.48^{d}	0.996* (0.993-0.999)
≥301	450	$6.22 \pm 24.18^{\circ}$	1.049* (1.035-1.062)	$11.11 \pm 31.46^{\circ}$	1.033* (1.008-1.059)	5.56 ± 22.93^{a}	1.031* (1.014-1.048)	4.00 ± 19.62^{b}	1.019* (1.005-1.032)

Values within a column without a common superscript (a-e) were different (P < 0.05). ¹The values in the parentheses were 95% confidence intervals. *P < 0.05

NS = Not significant

Cause	Number of dystocia	Relative frequency of cause, %	Death nu of fetus	umber 5 (%)
Excessive birth weight	1,396	39.7	52	(3.7)
Abnormal position and/or posture	875	24.9	114	(13.0)
Weak labor pains	633	18.0	15	(2.4)
Narrow birth canal	359	10.2	30	(8.4)
Twins	34	1.0	5	(14.7)
Congenital anomaly	9	0.3	5	(55.6)
Others	208	5.9	33	(15.9)
Total	3,514	100.0	254	

Table 5. The number (%) of stillbirth per dystocia in Japanese Black cattle by different causes

Figure legend

- Figure 1. Changes in environmental temperature at Miyazaki City. Y axis indicates average daily temperature per month with error bars of standard deviation per month.