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Abstract

Improvements in irrigation management are urgendgded in regions where
water resources for irrigation are being deplefédds paper combines a water balance
model with satellite-based remote-sensing estimategvapotranspiration (ET) to
provide accurate irrigation scheduling guidelines individual fields. The satellite-
derived ET was used in the daily soil water balamcelel to improve accuracy of field-
by-field ET demands and subsequent field-scalgation schedules. The combination
of satellite-based ET with daily soil water balanoeorporates the advantages of
satellite remote-sensing and daily calculation tstepps, namely, high spatial resolution
and high temporal resolution. The procedure wadieppo Genil — Cabra Irrigation
Scheme of Spain, where irrigation water supply fterolimited by regional drought.
Compared with traditional applications of water dmale models (i.e. without the
satellite-based ET), the combined procedure pravidgnificant improvements in
irrigation schedules for both the average condiaiod when considering field-to-field
variability. A 24% reduction in water use was estied for cotton if the improved
irrigation schedules were followed. Irrigation eféincy calculated using satellite-based
ET and actual applied irrigation water helped teniify specific agricultural fields
experiencing problems in water management, as agetb estimate general irrigation
efficiencies of the scheme by irrigation and crgpet Estimation of field irrigation

efficiency ranged from 0.72 for cotton to 0.90 $oigar beet.

1. Introduction
Irrigated agriculture currently faces the dilemafameeting the increases in food
demand associated with a growing world populatioat is changing its diet, while

ensuring the sustainable use of an already scaater wesource and protecting the



quality of the environment. Improving water managemin irrigated areas and
assessment of irrigation performance are criticdivities for this endeavor. These
activities are needed not only to improve waterdpativity (Hsiao et al., 2007), but
also to increase the sustainability of irrigatedicdture, improving the irrigation
efficiency in a situation of strong competition tbe water resources.

Most of the consumptive use of irrigation waterfirtkd as the water abstracted
which is no longer available for use because it éasporated, transpired or been
incorporated into crops, is transferred to the afphere as evapotranspiration (ET), and
therefore, the spatial and temporal quantificabdbiT is essential in agricultural water
management, especially in areas experiencing $garcitotal fresh water resources.
Estimates of ET at the regional scale are difficmlobtain and thus, spatial information
is limited. Field techniques such as soil waterabeé residual methods, Bowen ratio
and eddy covariance systems provide ET measurer{Batgas et al., 1991), but they
are obtained at the plot scale or are limited t® litcal environment in which the
instruments are installed. Methods used to obtatmates of ET at large scales are
often based on a physical-mathematical procedwse, Simulation models or remote
sensing algorithms (Black et al., 1989; Kite anddyers, 2000; Bastiaanssen et al.,
2005).

Remote sensing techniques for estimating ET haee becently developed and
are based on using satellite-based energy balaxtcthas producing estimates of actual
ET (Bastiaanssen et al., 1998; Allen et al., 20078)ETRIC (Mapping
EvapoTranspiration with high Resolution and Internalized Calibration) is an ET
estimation model developed by the University ofhldlaUSA (Allen et al., 2007a) and
based on the SEBALS(rface Energy Balance Algorithms for Land) model of

Bastiaanssen et al. (1998). The SEBAL model has lagplied and tested at a large



number of locations around the world (Bastiaanssgeal., 2005) while METRIC has
been applied in the Western United States (Allealet2005; Allen et al., 2007b) to
produce high resolution ET maps. Estimates of ETMyTRIC have been compared
favorably with a series of lysimeter ET measuremeittwo locations in the northwest
US (Tasumi et al., 2005b).

Although satellites routinely measure surface otflece and some measure
surface temperature, none measure near surface eaptent. Therefore in METRIC,
ET is determined from Landsat satellite imageryabplying an energy balance at the
surface, where the energy consumed by the ET moseslculated as a residual of the
surface energy balance equation. The energy balarcaibrated for each image using
a reference ET calculation determined from waeadlaga. Once crop ET is determined,
it is possible to calculate the ratio between rrap evapotranspiration and reference
crop evapotranspiration (E)I This ratio is termed the real crop coefficient (. Crop
ET estimations based on kvalues derived from satellite images have been show
be useful in field and regional water managemeas(iimi and Allen, 2007).

Many models have been used to simulate componémtite dydrologic cycle in
irrigated agriculture, from empirical or function@SDA-SCS, 1972; Williams, 1991;
Allen et al., 1998) to mechanistic (Van Aelst et 4B88). Water balance components,
including ET, may be estimated with these modeks avwvariety of time periods. When
used with polar-orbiting satellites such as Land&&TER and MODIS, or with aerial-
based images, remote sensing provides only a soiaffeih Landsat images once in a
period of 16 days and only if the atmosphere ie i€ clouds). However, images are
generally produced with high spatial resolution.n®ining hydrologic models and
remote sensing can overcome many of the shortcamasgociated with low spatial

coverage of field scale models and with the lowpgeral resolution of high spatial



resolution remotely sensed images (Droogers andtiddassen, 2002). This
combination can thereby facilitate detailed spatral temporal analyses used to assess
the performance of irrigation schemes (Kite 200@¢e kand Droogers 2000). To verify
the accuracy of such an approach, it must be tedtdte scale of an irrigation scheme
where there is sufficient information (weather datail, cropping patterns, water use
records and irrigation practices)

The opportunities to combine satellite-based ETa daith soil water and ET
estimates obtained with simulation models or witliter use information collected in
the field are numerous. Here, we have combined METdrerived estimates of ET in
the Genil — Cabra Irrigation Scheme in southwestilsvith a water balance model by
Lorite et al. (2004a) hereafter named LORMOD, taleate the potential of using near-
real time ET estimates to update and correct ingsscheduling predictions made with
the model at the plot level and to assess its impascheme water use. Additionally,
we show here that such ET estimates may be usethtrgwith on-farm measurements
of applied irrigation water to provide reliable iesdtes of irrigation efficiency, thus
identifying those plots within the scheme that iegjumprovements to their irrigation

management.

2. Material and Methods

a. Satellite-based enerqgy balance estimationogf ET (METRIC)

Eleven Landsat 5 TM images were used in this wookering Landsat path 201
and row 34. The images have corner coordinatesrsim Table 1. The Landsat image
dates were November 13 of year 2004, and Mar&p6l| 22, May 8, June 9, June 25,

July 11, August 12, August 28, September 13, Seper®9 of year 2005. The images



were processed using the METRIC energy balance ctatipn procedure (2006
version) of Allen et al., (2007a) to obtain daily Eor each image date.

METRIC estimates ET as a residual of the energgrua at the surface, where
energy consumed by the ET process is calculateal r@sidual of the surface energy
equation:

LE=R,-G-H (1)
where LE is the latent energy consumed by EJisRet radiation, G is sensible heat
flux conducted into the ground, and H is sensi@atHlux to the air. Details of the
METRIC model are given in Tasumi et al. (2005a) Afidn et al. (2007a).

Net radiationis computed by subtracting all outgoing radianxdlsl from all
incoming radiant fluxes and includes solar andrtarradiation. Incoming shortwave
radiation is calculated by analyzing solar positior intensity of radiation (Allen et al.,
2006). Surface albedo is calculated by integrataflgctivities from bands 1-5 and 7 of
Landsat. Incoming longwave radiation is estimategingi a regionally calibrated
equation, and outgoing longwave radiation is cal®ad by surface temperature)(and
emissivity.

Soil heat flux is estimated as a function of, Hs, and vegetation indexes.
Sensible heat flux is estimated by deriving a remface air-temperature gradient (dT)
and aerodynamic resistance between two near sunigats (0.1 and 2 m above zero
plane displacement), assuming dT is linear to radioic Ts. Calibration of the dT
function is accomplished by selecting two extrensalibration pixels” representing
very dry and very wet agricultural surfaces, ascdbed in Allen et al. (2007a). Some
site-specific coefficients (e.g. surface roughrieagth by land use type) must be locally
derived and were adapted here to Andalusian conditiTo sample ET by which to

characterize each field, pixels located near timtecs of fields were selected. In fields



with enough size, more than one pixel was seleictenider to develop analyses on ET
variability within fields. For Landsat 5 TM, thedimal band resolution is 120 m x 120
m, thus sampled pixels locations were at leastm2fbm field edges.

We define a crop coefficient,cK¢; as the ratio between actual ET estimated by
METRIC, and the grass reference ET {Edalculated following the ASCE standardized
Penman- Monteith method (ASCE-EWRI, 2005). Thisddiffers from the standard K
(Allen et al., 1998) in that our actual ET estimgtesually below the maximum ET due
to agronomic factors. Real crop coefficient () images were created by dividing the
ET images derived from METRIC by ETWeather data for calculating EWwere
provided by five automatic weather stations locatlede to the GCIS. These weather
stations are part of the Agroclimatic Informatioetivork of Andalusia (Gavilan et al.,
2006) and provide semi-hourly weather data inclgdwvind speed, air temperature,
humidity and solar radiation. The weather inforrmatiwas evaluated and quality
controlled following standardized procedures rec@mded by ASCE-EWRI (2005).
The values obtained for K were interpolated between each image date (16 atags
minimum) using a spline, to define the temporalletron of K. ,values and to thus

obtain the K sccurves.

b. Simulation model

A water balance model was used to calculate tteedhwater applied to field.
The water balance components include rain, irmgatsoil evaporation, transpiration,
run-off and drainage. Details are provided in leomt al. (2004a). Surface run-off is
estimated from daily precipitation using the USD/Aeil Conservation Service (1972)

curve number method. The curve number method watkfied to include the effect of



field slope (Williams, 1991) in addition to consiohg precipitation, soil type, land use
and management (Lorite et al., 2004a).

Three soil water thresholds are characterizeddRMOD (Lorite et al., 2004a)
for each soll layer: the saturated water contdrat,drained upper limit or field capacity
(FC) and the lower limit of plant extractable waterwilting point. Infiltrated water
(precipitation minus run-off) is distributed withthe soil profile following a cascading
approach where the soil profile is divided intol2@ers. The amount of water above FC
in any given layer is transferred to the layer indrately below. This procedure is
repeated for all layers until drainage from a lageless than the water deficit (below
FC) of the layer below. Drainage below the profdeassumed to occur when the soil
water content of the deepest layer is above FC.

Maximum crop evapotranspiration was calculatedhftbe product of reference
evapotranspiration and dual crop coefficients (Alkt al., 1998) where the duldk
contains components for both evaporation and treatgm and is calculated on a daily
timestep. Reference evapotranspiration was estimagng the FAO-56 Penman-
Monteith method (Allen et al., 1998) which is ideat, for 24-hour calculation
timesteps, to the standardized Penman-Monteith adeti ASCE-EWRI (2005) for
ETo.

Crop water extraction in each soil layer was daked as a function of root
density and water content in that layer (Coelhal€l2003). Actual plant water uptake
from each layer was linearly reduced after its saiter content decreased below a
given fraction of the extractable water (the allbleadepletion). Actual crop ET was
then calculated as the sum of soil evaporationpdauct water uptake from each layer. In

the original formulation, the season length anddheation of each growth stage of the



Kc curve were based on Allen et al. (1998), but wetpisded with data collected
locally. The magnitude of was not varied from Allen et al. (1998).

The water balance model calculated requiredatiog applications as the depth
of irrigation water needed to refill the soil piefi termed net irrigation requirement
(NIR). The NIR values derived for fields were digdl by an irrigation efficiency
accounting for deep percolation losses due toatiog ununiformity (Wu, 1988) to
obtain the gross irrigation requirement. Other gmscof the LORMOD model are

described in Lorite et al. (2004a).

c. Integration of METRIC ET estimation with thensilation model for irrigation

scheduling.

Figure 1 describes the procedure followed to irdEgestimates of actual ET
derived from METRIC with LORMOD simulation model, ittv the objective of
including real K ,cvalues over time and providing adjusted irrigatsminedules of
each field. In the procedure followed here, inifialORMOD developed preliminary
irrigation schedules for each field using the maximK; ,.values that were obtained
by METRIC over all the fields for each crop (valupovided later in the Results
section). Such values provide an upper limit of Kecfor each crop over the scheme,
and were used to generate preliminary schedulésaidsof using K values from the
literature, as in Lorite et al. (2004a) or ratheaut using the field specific K values
from METRIC. Using the maximum calculated. K. values ensured that these
preliminary irrigation schedules generated providedficient water to meet the full
crop demands for all fields. However, in almostth# cases irrigation scheduled in this
fashion would recommend watering in excess of ttead needs. To prevent excessive

irrigation, the preliminary schedules were upddtadeach case using field-specifi¢ K



actinformation determined by METRIC. Soil water deficbWD) is the parameter used
to determine the final irrigation schedule. Forleaatellite image available, a new daily
ET rate was back-calculated using the,fobtained via METRIC and the SWD of each
field was recalculated for each day up to the mevimage date. In that way, the SWD
was updated using real. K values for the plot (and actual ET) that was presidy
METRIC instead of the maximum (K values used initially. The LORMOD model
adjusted the next irrigation date based on the tepd&WD. Once the SWD was

updated, the next irrigation event was delayed raaagly, if necessary.

d. Area description

The study area was located within the Genil — @abyrgation Scheme (GCIS),
near the town of Cordoba, Spain (4° 51’ W, 37°I8L'The area evaluated encompasses
about 6,800 ha of irrigated land developed arow®@D]1being under full water supply
since 1995. The climate is Mediterranean continemtgh an annual average
precipitation of 610 mm, and a rainless summer. aherage air temperature ranges
from 10 °C in winter to 27 °C in summer. The predwnt soils in the area are Chromic
Haploxererts (35%) and Typic Xerorthent (34.7%).

Cropping patterns are fairly diverse. The most irtgpa crops in the area during
2004/05 were wheat, cotton and olive, represerizBig, 18%, and 14% of the irrigated
area, respectively. Other crops in the area incluoheorder of importance, maize, sugar
beet, beans, garlic, sunflower, and several vetgetabps.

The area is serviced by a modern pressurized ftioigalelivery system, which
allows complete flexibility in frequency, rate addration of water delivery. The water
application methods depend on the crop. Thus, csoph as wheat or sunflower are

irrigated with hand-move sprinkler systems, whilerticultural crops or olive are
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mainly irrigated with drip systems. In maize andt@o, approximately half of the area
Is drip irrigated and the rest with sprinkler sys¢e Land use has the following
characteristics: there are 290 fields of less th&a, occupying 4.3% of the area, about
360 fields between 2 and 10 ha, representing 226f#te area, and 190 fields between
10 and 100 ha (65.7% of the area). Three commaeak aerve fields that are over 100
ha, occupying 8.5% of the area. Over 90% of theviddal fields are less than 20 ha in
size. Every field outlet has a water meter thatvigles cumulative water delivery
records. These records are compiled by the statiefrrigation scheme, who read the
meters at least four times throughout the irrigageason.

The 2004/05 irrigation season was very dry; sedsamnaall was 271 mm while
in the last fifteen years the average seasonakvalthe area was 529 mm. The average
irrigation depth applied in the irrigation schemaridg the 2004/05 irrigation season
was 417 mm, a value that was much greater thaavbge depth applied over the last

ten years (261 mm).

3. Results

a. Seasonal ET and Crop Coefficients

The seasonal ET estimated with METRIC for all thatgin the Genil — Cabra
Irrigation Scheme (GCIS) are depicted in FigureoR the 2004/05 irrigation season.
Seasonal ET varied from more than 1000 mm for wedated fields, to almost zero
for non-agricultural areas. Rain fed areas surrmgnthe GCIS (in the north) had ET
values around 200 mm, which were commensurable thigthseasonal rainfall, while
values comparable to those calculated for the G@8 found towards the south, in

another irrigation scheme (Fig. 2).
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Crop coefficients calculated by dividing METRICT Eor individual fields by
ET, exhibited very high variability for the differentops (Fig. 3). Variability associated
with irrigation and cropping practices (as in cajt@dds to the variability caused by
different sowing dates (as in maize) and by difietearvest dates (as in sugar beet and
garlic). This high variability in actual ET can leeplained in large part by the plot to
plot variability in irrigation management in the 8C as characterized previously by
Lorite et al. (2004b) in terms of the volume oigation water delivered to individual
fields. Lorite et al. (2004b) found substantialighility in seasonal depth of irrigation
delivery among fields of the same crop, leadinth®oconclusion that soil water deficits
occurred in some fields, given that delivery resongre significantly less than crop ET
needs.

Traditionally, during the early crop stages (Apviky), cotton is irrigated in the
area using hand-move sprinkler systems (even ldsfiequipped with drip irrigation)
for effective germination and crop establishmerangzquently, the initial Kytvalues
for cotton were high after planting but then deseeh after sprinkler irrigation
applications ended, following seedling establishimerearly June (Fig. 3a). For sugar
beet and garlic, KactS were high during the winter period (Nov 2004 thMarch 05;
Fig. 3c,d), a consequence of the dry winter thatefd farmers to irrigate during that
period, hence the high (K, values. The season length for sugar beets was
extraordinarily long (more than 8 months until AsguFig. 3d) because, due to winter
frosts, farmers had to replant several times. Toigy season caused a significant
increase in total sugar beet ET and in irrigatiequirements, as shown in Table 2.
Actual irrigation water use for sugar beet washhigthan for maize and cotton during

2004/05 (785 mm vs. 710 mm; Table 2).

12



The variability in ET among fields having the saonep type can be assessed by
plotting the cumulative frequency of the observiettfET values for the different crops
(Fig. 4). This distribution allowed the calculatiohthe percentage of fields that had ET
values higher or lower than a fixed value. Crogtedkd in their ET variability; in some
crops such as sunflower, variability was high (€0/28; Table 2) while average ET
was low (378 mm; Fig. 4). Other crops such as maizeotton, showed lower relative
variability (CVs=0.12) and high average ET (around 700 mm; FigO#).an absolute
basis, variability among fields was similar acrairop types, ranging from 70 to 110

mm.

3.2. ET Variability within Fields

In addition to the ET variability encountered argdields in the GCIS, it was
possible to assess the ET variability within fieidsthose that had enough size to
contain more than one thermal pixel with valid MBTRET estimates (samples were
taken far enough inside fields to avoid contamoratof thermal pixels from areas
outside the field). The coefficient of variationtkin fields (C\,) varied from 0.03 for
pepper to 0.13 for sunflower (Table 2), implyingiadons of more than 160 mm (44%
of seasonal ET) within a sunflower field, while nragm variability in pepper fields
was 70 mm (12% of seasonal ET) (Data not shown).

Additionally, the variability within fields (C¥) was well correlated with
variability among fields (CY: Crops with low ET variability among fields, suels
cotton or maize showed low variability within fisldCVs for cotton was 0.12 while
CV,, was 0.05; Table 2), while sunflower had high valoé C\; and C\,, (0.28 and
0.13 respectively). Given the low input managenpgatticed in this crop in the GCIS,

variations in crop husbandry (seeding rates, ieation, etc.) must have been largely
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responsible for the high CV’s observed. NDVI wasedained for the sunflower fields
where ET was found to vary within the field. Therdkeof variability in NDVI was
similar to the level of ET variability (data notakn) suggesting that the main cause of

ET variations in this case was the degree of gramaveér by the crop.

3.3. Updating Irrigation Schedules with  METRIC ®&ithin the Simulation Model

Significant differences were found among the dales generated using the
standard methodology and using actual estimatdsTofFor cotton, average seasonal
irrigation depth calculated with the standard mtign schedule was 733 mm while
when the schedule was routinely updated using bfield-scale ET estimates from
METRIC, the average depth decreased to 559 mmeie@iftes in seasonal irrigation
demand were also found for the other crops, as showigure 5 and in Table 3. The
magnitude of differences depended on the cropsémre crops such as cotton or maize,
where actual ET was less than maximum, the updsteddules generated important
irrigation savings (around 24% for cotton and 1086 rhaize; Table 3 and Fig. 5). In
other crops such as garlic or sugar beet, updatkddsles required more irrigation
water than that specified by the standard schedalesind 10% for garlic and 21% for
sugar beet; Table 3 and Fig. 5), and would potiytiacrease crop yields for these
crops by reducing water stress. These differennethe irrigation scheduling were
caused by differences between the standandakies taken from the literature by Lorite
et al. (2004a), and the real kvalues as determined by METRIC (Fig. 3) as disediss
below.

When the irrigation schedules were developedgudia uppermost values of the

K¢ actcurves in Figure 3, the seasonal irrigation deptijuired was even greater (766
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mm for cotton or 843 mm for maize; Table 3) thaat tbbtained with the standard K

values from the literature used by Lorite et al(2a).

3.4. Estimation of irrigation efficiency using MBRTIC ET estimates.

Field irrigation efficiency (IE, Burt et al., 19Pwas estimated for selected fields
using the ET determined by METRIC, the effectivanfal, and the actual plot water
use obtained from water meter records. Resultprasented in Figure 6 and in Table 4.
Two groups of efficiency values were found; one $ammer crops such as cotton or
maize, that had an average IE of around 0.75 (f@r7@otton and 0.76 for maize; Table
4), and another for winter crops, such as garlat sugar beet that had higher IE values
of around 0.85 (0.82 for garlic and 0.90 for sugeet; Table 4) .

The average IE for the area was 0.77. In termsrigition method, sprinkler
systems had lower IE values than drip systems (@s70.75 in cotton, or 0.70 vs. 0.80
in maize; Table 4) and higher plot to plot variapi{(CV=0.17 vs. CV=0.09 in cotton).
The variation in IE within each crop shown in Figu confirms the high variability in
irrigation management that exists among farmerthénarea, as determined with other
procedures by Lorite et al. (2004b).

To estimate the actual irrigation use associaiéd each field, we calibrated and
validated a procedure using averages for |IE vgiuegiously developed. An average IE
value was determined for each crop by choosingradam 20% of the total number of
fields for which there were ET estimates and wateter records. The value of IE thus
obtained was used to estimate the actual wateolsige remaining fields. This was
done by dividing seasonal ET for each field, deteett by METRIC, less effective
rainfall, by the average IE. The results are showiigure 7. On average, estimation of

irrigation water used by farms based on METRIC \wage accurate when compared
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with actual measurements; thus, while actual aweveafer use was 699 mm, irrigation
water use estimated by METRIC was 677 mm, implyangerror in the estimation of
3%.

Many points in Figure 7 fall along a 1:1 line gagting that this approach may
be very useful to estimate the actual water usgelds, if a good estimate of IE is
available. In some cases, field values departeah fifee 1:1 relationship (points lying
within the black circle), because, either of oweigation or a low, actual IE value. In
both cases these fields should be targeted fgairan management improvements. A
few other cases are above the 1:1 line possiblausscthe actual IE of the field was
higher than the average estimate. Neverthelessmiomre than 60% of the fields,
METRIC ET provided accurate estimation of water ((5eg. 7) and allowed the

labelling of fields that were over-irrigated (blacikcle in Fig. 7).

4. Discussion

A satellite-based energy balance process called RIETwas used to estimate
seasonal ET and associated Jd curves for a number of fields within an irrigation
scheme in southwest Spain. This approach, usedopsty by Tasumi et al. (2005a), is
an alternative methodology to satellite-based \aget index procedures used in other
studies (Ray and Dadhwal, 2001). From the real &llies determined (Fig. 2), it was
possible to quantify the variability in ET amonglfls and associated variation in crop
coefficients (Fig. 3), and in seasonal ET (Fig.4)this study, eleven Landsat images
were processed over the growing season. The relatiarge number of available
images during spring — summer allowed i peaks to be correctly detected and
described. The winter period (from Nov. 2004 urdlarch 2005) was uniquely

described using two images. The relatively higlydiency of images collected in this
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study produced a high level of confidence in ETnestes, especially during the period
of high irrigation requirements. Thus, the qualdly results were not impacted by
infrequent timing of remote sensing data acquisits other authors have previously
referred to (Guerif and Duke, 2000). The seasonal dstimates constitute an
improvement in the temporal analysis of ET as camegbavith previous studies that
have used as few as one satellite image (Consali,&006).

The determination of ET via remote sensing techesgcan help to identify a
number of factors that appear to have affectedahdfI, such as disease, drought,
limited irrigation, adverse weather conditions darnping date (Tasumi and Allen,
2007). These factors are difficult to detect wather methods (Burt et al., 1997). For
example, during 2004/05 in the GCIS, winter frosasised the need to replant sugar
beet crops and that led to an important increas&Tinfor some fields due to the
extension of the crop cycle (Fig. 4). This was acoméd by the records of actual sugar
beet water use that were nearly double those ofqure seasons (62% higher), while, in
spite of the drought that caused a severe pretgitghortage in 2005, water use for
maize and cotton increased only by 18% (Loritd.e2807).

The cumulative ET curves (Fig. 4) had similarpdsato those obtained by Mo et
al. (2005) for maize and winter wheat in China. Vhagability of ET encountered in the
GCIS (CV=0.12 for cotton and C¥0.28 for sunflower; Table 2) indicate significant
variation in irrigation management among farmerswelver, although a low spatial
variability does not necessarily mean that therproper system management (Sanaee
and Feyen, 2001), in the case of the GCIS, wherdeomand supply is practiced, the
significant spatial variability is likely associdtavith suboptimal crop husbandry and/or
deficit irrigation management. Similar values of &driability (CVs=0.25) were found

for orange orchards irrigated with a suboptimalevaupply, based on high resolution
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vegetation indexes and agro-meteorological datang@lo et al., 2006). In general,
variability is a suitable indicator for water sup@quity (Bastiaanssen and Bos, 1999),
but also, a large variability in performance amdagners may indicate a substantial
potential for improvement in performance, evenhi¢ taverage performance values or
seasonal ET are reasonable. The use of averagemarfce values does not shed light
on the actual level of scheme performance (BastEanet al., 2001; Bandara, 2003;
Lorite et al., 2004b). Thus, the assessment ofbdity, as offered by satellite image
processing, is essential for a thorough and revgaliigation performance analysis.

The ET estimates for fields that had sufficieitesto sample provided
information on seasonal ET variability within fieldC\,,; Table 2). Such variability is
attributed to problems associated primarily wittigetion uniformity. The within field
variability detected in GCIS was lower than thataeed by Roerink et al. (1997).
Those authors determined a level of variabilityemsurface irrigation ranging from 9.2
to 18.6%, with a mean GWalue of 14%, using remote sensing data from orage in
an irrigation scheme. In the current work, a catieh between the variability among
and within fields was noted, as in the case of lswdr (CV=0.28 and C}{=0.13;
Table 2). This high variability (among and withirléls) suggests that irrigation and
crop management were not optimal from the proditgtstandpoint. However, because
the sunflower crop has generally low income and Veater productivity, such practices
probably lead to maximum profits (Lorite et al. 020).

In this work, we have applied a water balance ehasimilar to Droogers and
Bastiaanssen (2002), to fill in temporal gaps betwsuccessive satellite overpasses,
which can be a handicap of current satellite-bassdote sensing techniques when
applied to irrigation scheduling. The integratidrtlte water balance model LORMOD

with METRIC allowed the adjustment of irrigationhgclules as the season progressed,
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considering the circumstances that the specifiddieinderwent through the irrigation
season, in contrast with the traditional fixed stthes based on average data (Lorite et
al., 2004a). In the GCIS, adjustments to ET demargisg real time ET estimates
reduced the average irrigation depth in cotton 486 2while it increased 21% for sugar
beet during the 2004/05 season to meet the unysugh ET demand (Table 3 and Fig.
5). The magnitude of these differences was directlpted to the accuracy of the
original, general K curves used, and the specific circumstances df esaason. The
integration methodology carried out in this worlkcapsulated nearly all of the field-
specific characteristics that affect crop waterureaments, and therefore, a greater
variability among irrigation schedules was obtaig€¥=0.21 for cotton; Table 3) than
when schedules were calculated with the conventiorethodology (CV=0.04), that
considered standard.Kalues (Allen et al., 1998).

When seasonal ET was transformed into actual tragawvater use (Fig. 6) it
was possible to estimate values for field irrigatefficiencies (IE). This is an important
application result, from combining plot water uséormation with satellite-based ET
estimation, due to the scarcity of IE data worldsvahd the difficulties in obtaining IE
estimates using field evaluation (Mateos, 2006thinanalyzed area, sprinkler systems
had lower IE values than drip systems (Table 4) @petally had higher values for
winter crops such as sugar beets and garlic tharsdmmer crops, due to lighter
irrigation depths (around 40 mm) and more contdoifegation in the winter crops (for
sugar beet crops, full cover sprinkler systems whiph distribution uniformity are
promoted by the sugar industry). Thus, sprinklesteays in the area had relatively high
IE values (around 0.75). A explanation for some i@lues in IE for some fields (Fig.
6) was the existence in the area of clay soildy tdpography and poor irrigation

management. Even drip systems installed in somthede cotton and maize fields
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contributed to the generation of significant irtiga runoff, causing a reduction in the
irrigation efficiency. Additionally, some fields thi cotton were over-irrigated (extreme
values of Fig. 6a) decreasing the average IE ftiondo 0.72 (Table 4).

Finally, estimating water use by METRIC consgtita useful tool to quantify
and improve irrigation system performance on tledfievel and/or to quantify and
control water consumption under restricted suppéied even to determine pumping
extractions. Until now, several studies have edtohaET using remote sensing
techniques applied to district areas (Mo et alQ=®2CEr-Raki et al., 2007) and from
those, water consumption was inferred. In our casee water meter records of plot
seasonal use were available, we were able to dstitha irrigation efficiency (IE) or,
after assessing an average IE value (Fig. 6), we algle to compare actual water meter
records to the estimated plot water use (Fig. 78. ak& not aware of previous studies
where both actual water use and spatially quadtiiEd have been computed over a
large number of plots as has been done here. Thardearth of field data on plot water
use, as many schemes do not have water meteriilgigacat the plot scale. The
methodology described in this paper for the deteation of irrigation efficiencies or
irrigation use can be a valuable tool for distiaectd watershed managers, especially
during drought periods, to first identify irrigagohaving low irrigation efficiency levels
and to provide advice for improvement. Also, prdducan be used to spatially assess

water requirements within an irrigation districtweatershed.
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Figure 1. Flow chart describing the integrationtied water balance simulation model

LORMOD with METRIC ET estimation. SWD means soilteadeficit.

Figure 2. Seasonal ET determined by METRIC forfiald plots within the Genil —

Cabra Irrigation Scheme for the irrigation seasod4205.

Figure 3. Real crop coefficient curves for weligated primary crops in individual
fields within GCIS obtained with the METRIC estiraaif ET. The solid line (FAO 56)

indicates the standard crop coefficient values ltdrAet al. (1998).

Figure 4. Curves of cumulative frequency of seakBilavalues for nine crops in GCIS

during the 2004/05 irrigation season.

Figure 5. Irrigation depth calculated using theegnation of METRIC with LORMOD
(triangles) compared with values (squares) obtairvith the standard FAO
methodology (Allen et al., 1998) for four crops ab8 to 75 fields in GCIS during

2004/05.

Figure 6. a) Plot of the calculated ET by METRICaiagt the volume of irrigation
water delivered to fields of four crops and, b) ¥&& of cumulative frequency of the

estimated irrigation efficiency for four crops cgi2004/05 in GCIS.

Figure 7. Comparison between irrigation water ustmated by METRIC and the
measured irrigation water delivery in four crops. drey, line 1:1. For additional

explanation, see text.
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Table 1. Coordinates for the four corners of thages used located in UTM Zone 30N.

Corner

coordinates UTM Zone 30N
X Y

Upper Left 327567 4161534

Upper Right 341898 4161558

Lower Left 327543 4148815

Lower Right 341945 4148791
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Table 2. Number of fields analyzed for variabiltjthin fields, seasonal ET, variability
among fields (CY), variability within fields (C\},) and irrigation delivery for the main

crops during 2004/05 in GCIS.

Irrigation
Analyzed Seasonal ET CVs CVu delivery
Fields (mm) (mm)
Sugar beet 5 829 0.11 0.09 785
Maize 16 733 0.12 0.04 754
Cotton 13 649 0.12 0.05 711
Pepper 3 641 0.04 0.03 -
Garlic 4 523 0.12 0.03 478
Bean 13 493 0.15 0.07 370
Onion 6 433 0.16 0.08 -
Wheat 49 424 0.09 0.06 218

Sunflower 9 378 0.28 0.13 279
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Table 3. Average recommended irrigation depth aodfficients of variation (in
parentheses) for the three irrigation schedulesergéed by integration of METRIC
results (METRIC), using the maximum Kc act valuéserved via METRIC (ENV),

and using the standard FAO 56 (Allen et al., 1908Yalues (FAO).

Fields

number METRIC ENV FAO

Cotton 75 560 766 733
(0.21) (0.08) (0.04)

Maize 33 663 843 738
(0.22) (0.08) (0.04)

Pepper 6 630 657 546
(0.01) (0.01) (0.02)

Garlic 13 548 557 497
(0.05) (0.04) (0.08)

Sugar Beet 24 882 953 730

(0.06) (0.03) (0.05)
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Table 4. Average values of estimated irrigatiomceghcy for the main crops in GCIS.

Coefficients of variation for each of the four csogre indicates in parentheses.

Global Sprinkler Drip

Cotton 0.72 0.71 0.75
(0.15) (0.17) (0.09)
Maize 0.76 0.70 0.80
(0.11) (0.09) (0.08)
Garlic 0.82 0.82 -
(0.13) (0.13) -
Sugar Beet 0.90 0.90 -
(0.05) (0.05) -
Average 0.77 0.75 0.77

(0.15) (0.17) (0.09)
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