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3.2 SIMULATION OF MOTIONS USING A SEIS-
MOLOGICAL MODEL

3.2.1 INTRODUCTION

In order to simulate high frequency ground motions (> about 1 Hz) at an average site
from an average earthquake of specified size, Boore (1983) presented a stochastic method
in which the Fourier spectrum amplitude (spectrum) of simulated ground motion approx-
imates the acceleration spectrum with w2 property and a single corner frequency, which
is given by physical consideration of earthquake source modeled by a point source, path,
and local site effects on ground motions (Hanks and McGuire, 1981).

It is well known that a fault plane of large earthquake is too large to be treated as
a point source, and the slip motion as well as stress drop are not uniform (irregular)
over the fault plane for a large earthquake. These heterogeneities of the fault may cause

2 model of source spectrum (Aki and

the significant departure from the self similar w™
Richards,1980; Papageorgiou,1988).

In order to represent a kind of heterogeneity of the extended fault, the effects of source-
station geometry, and the effects of propagating rupture in a sirriple model, Joyner and
Boore (1986) considered a model where many small faults are added together with their
start times distributed randomly with uniform probability over the rupture duration of

the large extended fault.

In this paper, we apply the above Joyner and Boore method to the general emprical
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Green’s function formﬁlation proposed by Harada, et al.(1995), Harada, et al.(1996) which
is the generalization of the Irikura formulation (Irikura, 1988). Consequently, we propose
an average spectrum of ground motions at a distance from a large extended fault where
a kind of heterogeneity of the extended fault, the effects of source-station geometry, and

the effects of propagating rupture are taken into account.

3.2.2 SPECTRUM OF GROUND MOTION FROM
STOCHASTIC

Starting Equation

The starting equations in this paper belong to the empirical Green’s function method
initially suggested by Hartzell (1978). This method, which has been discussed in detail
by Irikura (1988), is a method to simulate ground motions from an extended fault on
the basis of the representation theorem of elastodynamics. Here, a brief discussion of
the relevant mathematical formulation is presented in the frequency domain, and a new
transfer function is presented, which accounts for the difference of the slip time functions
between extended fault and small fault.

The extended fault plane with length L and width W is divided into small faults
with length AL and width AW, as shown in Fig.1. Using the representation theorem
of elastodynamics, the far-field displacement u(a,t) in a homogeneous, isotropic, and
layered medium can be expressed in the following integral form (Aki and Richards, 1980;

Somerville,et al., 1991):

Nu Nw ot +AL o+ AW .
u(x,t) = Z Z / /17 D(&my Myt — Trn)
m=1ln=1Y5m n
*G(ﬂ:, fmﬂ?n,t - tmn)dgdn (21)

where & = (z,7,2)7 is the observation station, D(£,,,t) is the velocity of the source
time function at position (£,7) on the fault, G(=x,&,n,t — t¢,) is the Green’s function
(the impulse response of medium), and * represents a convolution. 7,,, is the rupture
propagation time from the hypocenter of the extended fault to the (m,n)" small fault,

and t,,, is the propagation time for S waves to travel from the (m,n)" small fault to the
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observation station, which are defined by:

Cm'n Rm'n. - R

where (..., is the distance from the hypocenter of the extended fault to the (m,n)" small
fault, R, is the distance from the (m,n)® fault to the observation station, R is the
hypocentral distance of the extended fault, Vx is the rupture velocity of the fault, and
Cs the S wave velocity of the medium. The Fourier transform of Eq.(2.1) yields the

following equation:

NL NW Em+AL (AW .
u(@w)= LY | D(Em s )
m—ln— €m Tin
G, b, Ty w)e 0 Tmn + n) gy (2.3)

In order to take into account the difference of the slip time functions between the large

fault and the small fault, the transfer function is introduced, which is defined as:

_ D(&m, T, w)
Ton(w) = Dmn(fm, ) (2.4)

where D,,, (&m, M, w) is the Fourier transform of the velocity of the slip time function at

position (&,,,7,) of the small fault. Using Eq.(2.4), Eq.(2.3) can be written as:

N Nw
Z ZTmn w)umn (4 w) (25&)
m=ln=

where
bm+AL [ +AW .

WU (T, W) :/E / D n(&my My w)
G(@, b, My w)e ™19 Tmn + tmn) g i (2.5b)

In Eq.(2.5b), ., (2, w) is the far-field displacement due to the small fault. Equation (2.5)
indicates that the motions from the large fault is the summation of the motions from the
Np x Ny small faults with the weight of T, (w).

Based on Eq.(2.5), an approximate method can be obtained, using a single observation
record ug(z,w) due to the (mg,ng)™* fault. By assuming that the slip time function
of each small fault and the Green’s function from the position of each small fault to
the observation station are approximately equal to those from the (mqg, ng)®* fault, then

Eq.(2.5a) can be reduced as:

Ny, NW

ZZ

m=1n=1 m”

—thm"uo(m, w) (2.6a)
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where

fmn = Tmn + tmn (26b)

In deriving Eq.(2.6) the effect of the hypocentral distance on the Green’s function has
been considered approximately because the S wave attenuates inversely proportional to
the hypocentral distance in a homogeneous isotropic medium.

From the similarity conditions of earthquakes (Kanamori et al., 1975), the following

relations are derived:

M01/3_ L _ W _D_T_
Cne) TALTAW Dy m 2.7)

where N = N = Nw, and My is the seismic moment of the large fault; mq the seismic
moment of the small fault; D and 7 are the final offset of the dislocation and the dislocation
rise time of the large fault, respectively; Dy and 7y those of the small fault.

The transfer function 7;,,(w) defined by Eq.(2.4) can be obtained by specifying a slip
time function. The following transfer function is used in this paper:
. N wT
w + = 1+ 5(7)2

I or
w4 — 1+(—2*)2
T

Trn(w) = (2.8)
where k is a parameter that controls the value of the transfer function in high frequency
range(w > w, = 2/7). Although several physical models exist (Aki and Richards, 1980),
the generation process of high frequency seismic waves due to fault rupture may be quitc
complex. Therefore, without the use of physical models, one parameter x has been in-
troduced here, which has to be empirically estimated. For k=1, the transfer function is
equivalent to that obtained by assuming the exponential function for slip time function

of the large and small faults (Harada et al., 1995).
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Average characteristics of the source spectrum of an extended fault

To derive the average characteristics of the source spectrum of an extended fault, we
assume that the rupture start times of each small fault are distributed randomly with
uniform probability over the rupture duration Ty of an extended fault. The deterministic
rupture duration is unrealistic because an average characteristics of the source spectrum
are concerned in this study. Therefore the ruptute duration 7% is also assumed to be
a random variable with uniform probability. By considering the practical situation, the
small faults are assumed identical in average sense. For the attention of the source char-
acteristics, we neglect the correction of the hypocentral distance. With these assumptions
the Fourier spectrum of the uni- component waveform ug(w) from an extended fault may

be written such as:
N N o
us(w) = | 33 Tonn(w)e™Whmn | ugg(w) (2.9)

m=1n=1

where ugo(w) represents the Fourier spectrum of the uni-component waveform from a
small fault, and ¢, the time delay uniformly distributed over the rupture duration T5.
By taking the expectation over the ensemble, the average source spectrum |ug(w)| is
obtained as:

lus(w)| = SUMy (w)|T(w)][uso(w)] (2.10)
where |T'(w)|=|Tmn(w)| is the transfer function given by Eq.(2.8), and SUMy (w) the
coeflicient of random summation given by:

1/2

SUMN(w) = [N? {1+ (N? = 1)|P(w, Tyo)[*}] (2.11a)
where
1P, Tyo)l = — [ (Silm1] = Silwa]
4B ()
+ (Ci[w1] — Ci[we] — In[w ] +111[WQ])2]1/2 (2.11d)
where
w = 2(1 + \/géTf—u—}—) (2.116)
Wro
ws = 2(1 — /367, ) (2.11d)
Wro

In Eq.(2.11a) Ty is the average rupture duration, and dr; is the coefficient of variation

of the random rupture duration Ty. The functions Si and Ci represent the sine integral
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and the cosine integral. The first corner frequency wyg is defined in this study such as:

2

i 2.11c
T (211¢)

LLJf() =

The frequency variation of the function |P(w, Tyo)| is shown in Fig.2 for ér; =0.05, 0.3,
and 0.5. For small value of 679 =0.05, the frequency variation of P(w,Tye) indicates an
wavy form with peaks and troughs , similar to the behavior in the case of deterministic

rupture duration (d7p = 0) where the function P(w,Typ) is given by:

. w
Sin w—
|P(w,Tyo = T)| = |—5~ (2.12)

ws

The function of Eq.(2.12) is also shown in Fig.2. For large value of §=0.5, the frequency
variation of |P(w,Tyo)| is smooth. By considering the fact that the variation in the first

corner frequency wyo may be large, we propose the following simple function for | P(w, To)|

|P(w, Tyo)| =
( [09) 2 w 4 w s
1—61(——> +CQ(— 0<—< =
0 L Wio Wro wro 2
™ W
_ e 2.13
i 2~ Wwro ( )
Wso

where ¢;=0.16605, and ¢;=0.00761. The function of Eq.(2.13) is also shown in Fig.2.

By introducing the second and third corner frequencies defined by,
wC = —, u)c() = — (2.14)

the transfer function of Eq.(2.8) can be rewritten as:

N+i29)] [1+ w(2)?

T(w) = Typn(w) = e e (2.15a)
14+4(2—) 14+ (—)
We We
where,
MQ 1 We
N = (=3 =24 2.15b
(mo) o ( )

The source spectrum of the small fault is assumed to be w™2 model such as:

mo
— (2.16)

|u0(w)| =
+ szc)2
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In the two extreme frequencies where w — 0 and w — oo, the source spectrum of an

extended fault is found from Eq.(2.10) to be given by:

N3m0 = MO w— 0
2
s = 1 eagy () o (2.17)

Figures 3 and 4 show the average source spectra of extended fault normalized by the
seismic moment M, for the cases of k=1 and 5, respectively. In each figure, wso/w. =1/10
is assumed and the variations with the summation parameter N are shown. For compari-
son, the w2 source spectrum model with the second corner frequency w, is shown by the
heavy line in each figure. It is found from Fig.3 (for the case of k =1) that the source
spectrum of extended fault follows the w™ model at the lower frequency (wygo) and the
higher frequency (w.o) ranges, but at intermediate frequency range its spectral amplitude
is lower as the summation parameter N increases than that expected from the w=2 model.
These characteristics observed from Fig.3 are also observed from Fig.4 (for the case of
k=>5), but the source spectral amplitude is amplified by a factor of x at higher frequency
range (w > We)-

By comparing these characteristics shown in Figs. 3 and 4 with those obtained from the
various irregular source models (for examples, Izutani, 1984; Papageorgiou, 1988) where
the heterogeneity of either slip or stress drop on the extended fault plane is taken into
account, the parameter k may be found to be equivalent to the ratio of local stress drop

to global stress drop or the ratio of dynamic stress drop to static stress drop.
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Fig.3.2-3 Normalized spectra of the large earthquake by a ramdom summation of the

small earthquakes, compared to the w2 spectrum (heavy line). (In the case of k = 1)
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Average rupture duration observed at a station

The rupture duration depends on the dimensions of the fault and the rupture velocity,
but it also depends on the orientation of the observation station relative to the fault. For
simplicity we adopt the simplest model for the geometry of a rupture fault and the path
to a observation station as shown in Fig.5. The rupture duration Tyobserved at a station
(R > L where R is the hypocentral distance and L is the strike length of the fault )is
given such as (Ben-Menahem, 1961):

L V
Ty = v (1 — C—I; oS 0) (2.18a)

where @ is the azimuth angle from the strike of fault to the observation station. Vg and
C are the rupture velocity of the fault and the S wave velocity. In Eq.(2.18a), L, Vg, Cs,
and 6 may be considered as random variables. However, for simplicity, we use the rupture

duration of Eq.(2.18a) as an estimate of the average rupture duration:

To station

Source fault

Fig.3.2-5 Geometry of a rupturing fault and the path to a observation station

3.2.3 SYNTHETIC GROUND MOTION FROM
STOCHASTIC

The synthetic acceleration time history of ground motion is generated using the spec-

tral representation of stochastic waves proposed by Shinozuka (1974); Shinozuka em et
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al.(1987). In this method, the power spectrum of ground acceleration have to be given,

then the stationary acceleration time history is generated by the following equation:

a,(t) = ﬁ%,/QSaa(w]—)Aw cos(w;t + ¢;) (3.1a)

where,
wj = JAw; Aw:%; J=L2...,N, (3.1)

w

An upper bound of the frequency w, in Eq.(3.1b) represents an upper cut-off frequency
beyond which Sg.(w;) may be assumed to be zero for either mathematical or physical
reasons. In Eq.(3.1a), ¢; are independent random phase angles uniformly distributed
over the range (0,27). Note that the simulated time history is asymptotically Gaussian
as IV, becomes large due to the central limit theorem.

The nonstationary acceleration time history a(t) is obtained by multiplying an envelope

function W (¢) into the stationary time history a,(t).
a(t) = W(t)as(t) (3.2)

In this study, the following expression for the envelope function is used:

t 2
@ eses
b
W) =<1 T, <t<T, (3.3)
exp[—c(t — T,)] T.<t<Ty

where the duration (effective duration T)of the stationary strong portion (T, =T, - Tp)
of nonstationary ground motion is assumed equal to the average rupture duration in
Eq.(2.18).

T.=T.—-T, =T (3.4a)

Then, the duration of nonstationary ground motion (7y) can be given using the emprical

relations by Ohsaki(1994):

T, = 2.63T}, (3.4b)
Ty, = [0.12 — 0.04(Mypa — 7)|T4 (3.4¢)
T. =[0.50 — 0.04(Mypra — 7)|T4 (3.4d)
. In0.1 (3.46)

Ty —T.
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The power spectrum S,,(w) of ground acceleration appearing in Eq.(3.1a) is constructed
using the spectrum of chapter 2. Then, S,,(w) with the effective duration T,=TY% is given
by:

_ 1 2
Sea(w) = 5 = [A(W)) (3.5)
where |A(w)| is the spectrum of ground acceleration which is given by:
|A(w)| = SUMy(w)|T(w)||Ao(w)] (3.6)

where |Ag(w)| is the acceleration spectrum of small earthquake observed at a distance R
(the hypocenter of a small earthquake is assumed to be a same place of an extended fault)

with seismmic moment mg, which is given by:
|Ag(w)| = CAso(w)Ap(w)Aa(w) (3.7)

where C, Ago(w), Ap(w), and A,(w), represent a scaling factor, a source spectrum, a
diminution factor, and a local soil amplification factor, respectively.
The scaling factor and the source spectrum of the small earthquake are given by:

mow?

o BlO.9)FV. -
B 1 + (w/wCO)Q

- 3.8
4rpC3 (3.8)

Ago(w)

where R(6, ) is the average correction factor for radiation pattern, F accounts for free-
surface amplification, V' accounts for the partitioning of the energy in two horizontal
components, p is the density of the material at the source, Cg is the S wave velocity at
the source, and wg is the corner frequency of the small earthquake.

The diminution factor and the local soil amplification factor are given by:

1 1 wR

Ap(w) = 1 +(w/wmaz)"—éeXp(_2Q—Cs ; (3.9a)
e L+ 4h3(=)?
Aa(w) =/ d (3.90)
B

The first factor in Ap(w) is the high-cut filter that accounts for the sudden drop that
the spectrum exhibits above wy,.. It is assumed here n = 1. The second factor is the
geometric spreading factor of the S wave. The third factor is the effect of the material

damping on wave propagation in which @ is a frequency-dependent attenuation factor.
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The local soil amplification factor A4(w) is composed of the deep soil amplification
from the deep ground level near the source with the density p and the S wave velocity Cg
to the engineering ground base with py and S wave velocity Cgo of about 0.5 to 1 km/s,
and the shallow soil amplification from the engineering ground base to the ground surface.
The first factor in Aa(w) of Eq.(3.9b) corresponds to the deep soil amplification factor
proposed by Boore (1987), and the second factor to the shallow soil amplification repre-
sented by the Kanai-Tajimi spectrum (Kanai, 1957; and Tajimi,1960). w, and A, control
the peak position and the peak value of the amplification factor; w, = 15.6(rad/sec),

hg = 0.6 for a firm soil.

3.2.4 NUMERICAL EXAMPLE OF SYNTHETIC
GROUND MOTIONS

Numerical example is given now in order to deﬁlonstrate an applicability of the simulafion
method using a stochastic summation of small earthquakes to an artificial generation of
strong motions for aseismic design. The example is also given to visualize the effect of
directivity of seismic waves on the ground motions.

In this numerical example, the horizontal ground surface acceleration time histories on
rock site are generated from an earthquake with magnitude M4 = 7.0 and hypocentral
distance R=30 (km). A strike slip fault with length L=20 (km) and width W=10 (km)
is considered. The hypocenter is assumed to be at the bottom edge of the fault.

The determination of the magnitude of small earthquake is arbitrary. In this study the
magnitude of small earthquake M40 is assumed to be 5.0, because the many empirical
relationships in the parameters are usually obtained for the magnitude greater than about
4.0 to 5.0.

We determine the seismic moments of the earthquakes with My 4=7.0 and M pr40=5.0
by the following empirical relation which is obtained from the earthquakes occurred under

the sea area around Japanese teritory (Sato, 1989):

My(dyne-cm) = 10(1-5Mara +16.2) (4.1)
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From Eq.(2.7) the summation parameter N is determiend using the seismic moments, M,
and my, of large and small erthquakes such as:

M,

N =
(’I’no

)3 =10 (4.2)

In evaluating the acceleration spectrum |A4o(w)| of ground motion from small earth-

quake, the following values are used:

R(0,9)=0.63; F=2.0; V=0.5; (4.4a)
p=2.7gr/em?®; Cs = 3.6km/sec; (4.4b)
Weo = 9.3rad/sec; Wpmar = 28.7rad /sec (4.4¢)
Q= 10(@1 log(w/2) + g2) (4.4d)

where ¢;=0.64, g2=2.1.

The soil amplification of deep soil layers is assumed constant as:

‘/p/;gio =20 (4.50)

The soil amplification of shallow soil layers is evaluated using the following parameters:

w, = b.56rad/sec; hy, = 0.6 (4.5b)

The ground acceleration time histories at 5 stations on rock site in Fig.6 are generated,
with time interval At =0.01 sec, and w, = 27 x 50 rad/sec, N,=1024. The sample of
acceleration time histories at 5 stations (M 4=7.0, R= 30km, on rock site) are shown in
Fig.7. It is observed from Fig.7 that even in the same hypocentral distance R= 30 (km),
the acceleration time histories are quite different from station to station in peak ampli-
tude and duration. The higher acceleration and the shorter duration are observed in the
stations A and B which are located in the direction of propagating rupture of the fault,
while the lower acceleration and the longer duration in the stations D and E which are
located in the oposite direction of the propagating rupture. The phenomenon observed

in Fig.7 is well known as the directivity of seismic waves.
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Fig.3.2-6 Plane view of the rupturing fault and the 5 stations with equal hypocentral

distance
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Fig.3.2-7 Sample ground acceleration time histories at 5 stations on rock site with equal

hypocentral distance (M 4=7.0, R=30 km)
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3.2.5 CONCLUSIONS

This paper describes a digital simulation method of strong earthquake ground motions

using a seismological model. It can be concluded that:

1) Based on the representation theorem of elastodynamics for the far-field seismic waves
in the frequency domain, the Fourier spectrum amplitude of ground acceleration motion
from an extended fault is constructed by a stochastic summation of small earthquakes
where the rupture start times of each small earthquake are distributed randomly with
uniform probability over the rupture duration which is also random variable with uniform
probability.

2) In the stochastic summation, a new transfer function is introduced which originally
takes into account the difference of the slip time functions between the extended fault
and the small fault, but also the irregular slip motion over a heterogeneous fault plane.
3) One parameter x introduced into the new transfer function is found to be equivalent
to the ratio of local stress drop to global stress drop or the ratio of dynamic stress drop
to static stress drop in the available irregular source models where the heterogeneity of
either slip or stress drop on the extended fault plane is taken into account.

4) The source spectrum of an extended fault by the stochastic summation have three cor-
ner frequencies, wyg, w,, and w, which are related to the rupture duration of the extended
fault, the rise time of the extended fault, and the rise time of the small fault.

5) Based on the spectral representation of stochastic waves, the simulation method of the
nonstationary ground acceleration time histories is summarized.

6) Numerical example is given in order to make clear the procedure and the evaluation of
the model parameters for the generation of ground acceleration time histories.

7) Numerical example also demonstrates the effect of the directivity of seismic waves on

the acceleration time histories.
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