ポルフィリン型有機光触媒による可視光殺菌

保田昌秀*

Visible-light Assisted Sterilization by Porphyrin-type Organic Photocatalysts

Masahide YASUDA

Abstract

A silica gel-supported dihydroxo(tetraphenylporphyrinato)antimony(V) (Sbtpp/SiO₂) could induce remarkable photocatalytic activity for bactericidal reaction of E. coli cells under fluorescent light irradiation. Also the Sbtpp/SiO₂ photocatalyst showed much superior bactericidal activity to the commercially available TiO₂ under irradiation by sunlight. Moreover, visible-light irradiation of the Sbtpp/SiO₂ catalyst was effective for sterilization of *Legionella* species in the living environment. Under the operation of a cylindrical photocatalytic bactericidal apparatus in a cooling tower for 10 days, the concentrations of *Legionella* species were reduced to less than the detection limit. Also, a photocatalytic sterilization was conducted with a fountain. The concentrations of Legionella species were reduced to less than the detection limit 12 days after the Sbtpp/SiO₂ catalyst was installed in the fountain receiving sunlight irradiation. The concentrations of Legionella species were less kept at than an environmental quality standard for three months. Dimethoxo(tetraphenylporphyrinato)phosphorus immobilized on silica gel (Ptpp/SiO₂) was examined for the sterilization of E. coli. It was found that the bactericidal reaction obeyed zero-order kinetics by analysis according to Michaelis-Menten's equation. Adsorption of bacteria on the catalyst is thought to be a key pathway. The Ptpp/SiO₂ which was treated with tetraethoxysilane was applied to the sterilization of *Legionella* species occurring in fountain.

Thus the sterilization was able to be performed under the visible light irradiation. Silica gel is most suitable for visible light-driven catalyst support because silica gel is transmitted visible light effectively and immobilize porphyrin chromophores. Sbtpp and Ptpp had high affinity with microorganisms owing to their cationic complexes. The bactericidal effect was mainly attributed to singlet oxygen ($^{1}O_{2}$) which was generated by energy transfer from the excited triplet state of the porphyrins to O_{2} .

Key words:

Bactericidal effect, Antimonyporphyrin, Phosphorusporphyrin, Silica gel, Singlet oxygen

1. はじめに

近年, レジオネラ属菌, O-157, MRSA, ノロウィル

ス等の有害微生物による感染で多くの被害が報告され, 尊い命が奪われてしまう例も少なくない。現在の殺菌 方法の主流は,界面活性剤,酸,塩素,オゾン,アル コール等を主体とする化学殺菌であり,薬剤を使用す

^{*}物質環境化学科 教授

る事により環境,人体に対する二次汚染を考慮に入れ る必要がある。そこで,次世代殺菌技術として,薬剤 を用いない,省エネルギー,メンテナンスフリーの殺 菌技術の開発が,社会から要望されている。

現在,有害微生物の殺菌方法として,酸化チタン光 触媒による殺菌が多く検討されている。酸化チタン光 触媒は,駆動エネルギー源が光である事から,環境に 優しく,経済性に優れている。現在までに Lactobacillus acidophilus, Saccharomyces cerevisiae, Escherichia coli

(大腸菌), Chlorella vulgaris について紫外光を駆動源 にした酸化チタン光触媒の効果が報告されている¹⁻⁸⁾。 しかし,酸化チタンの励起波長領域が紫外光領域のた め,光源に紫外光を必要とし,この紫外線が人体に悪 影響を及ぼす可能性があるのが最大の欠点である。そ のために、酸化チタンを中心とする化合物半導体光触 媒系でも,可視光領域で駆動する光触媒の開発が望ま れている⁹⁻¹⁰⁾。

一方,ポルフィリン化合物は,4 つのピロール環が 環状に縮合した芳香族化合物であり,環の中心の4 つ の窒素原子によってほとんどの金属イオンと配位結合 して金属錯体を形成することができる(Scheme 1)。自 然界に存在する葉緑素中のクロロフィルもマグネシウ ムポルフィリン錯体であり,赤血球のヘモグロビンの ヘム鉄は鉄ポルフィリン錯体である。一般に,金属ポ ルフィリン錯体は 420 nm 付近に Soret 帯と呼ばれる強 い吸収帯と 500 nm~600 nm 付近に Q帯と呼ばれる比較 的弱い吸収帯をそれぞれ持つ¹¹⁻¹⁴。金属ポルフィリン 錯体は「可視光触媒」の有力候補であるが,いままで に金属ポルフィリン錯体自身が光触媒活性を示す例は 少なく,電子メディーターとしての役割を担う研究例 がほとんどである⁸。

Scheme 1. Porphyrin and metalloporphyrin

我々は、中心金属がアンチモンおよびリンのポルフィリン錯体 (Mtpp, M= Sb, P) に着目した (Figure 1)。 これらの錯体は+5 価の高原子価状態を取り、錯体自体 がカチオン性である。このことは、電子受容性が増大 すると同時に,酸化力が増大することを意味する。こ のため,他の金属ポルフィリン錯体よりも酸化反応に 適している。

また、シリカゲル(SiO₂)は、安全性が高く、光透 過に優れ、表面積が高く、豊富なシラノール基により 固定化力が強く、多孔質のために優れた担体である¹⁵⁾。 そこで、ポルフィリン錯体をシリカゲル担体に固定化 させる事により、効率的に光触媒作用を発現させ、取 り扱いも容易になることが期待される。当研究グルー プでは今までに、シリカゲル担持金属ポルフィリン(有 機光触媒)を調製して、クロロフェノール類の脱塩素 化反応およびシクロアルケンのエポキシ化反応などに ついて検討している¹⁶⁻¹⁸⁾。

ここでは、当研究グループが 2000 年から研究を進め ているシリカゲル担持 Mtpp 触媒による可視光殺菌に ついて報告する。

Figure 1. Absorption spectra of dihydroxo(tetraphenylporphyrinato)antimony bromide (Sbtpp; dotted line) and dimethoxo(tetraphenylporphyrinato)phosphorus chloride complexes (Ptpp; solid line) at Soret and Q bands.

2.実験

2.1 シリカゲル担持金属ポルフィリン光触媒 (Mtpp/Si0₂)の調製

ジヒドロキシ(テトラフェニルポルフィリナト)アン チモン(V)臭化物(以下 Sbtpp と略)¹⁹⁻²⁰⁾, ジメトキソ(テ トラフェニルポルフィリナト)リン(V)塩化物錯体(以下 Ptpp と略)²¹⁻²²⁾,およびジヒドロキソ(テトラフェニ ルポルフィリナト)リン(V)塩化物錯体(以下 Ptpp'と 略)²¹⁻²²⁾は既報にしたがって合成した。

SiO₂への固定化は、Sbtpp 170 mgをトルエン 400 cm³ に溶解させ、そこへパウダー状シリカゲル (p-SiO₂, 30 g、0.04 mmφ、429 m²g⁻¹、BW300、富士シリシア化学 製)を加え一昼夜加熱し、濾別後、アセトンおよび水 洗浄および乾燥することでSbtpp/p-SiO₂ 触媒を調製し た²³⁾。Sbtp/b-SiO₂ 触媒の調製は、Sbtpp 60 mgをトル エン-MeOH混合溶媒 (4:1 v/v、500 cm³)に溶解させ、 ビーズ状シリカゲル (b-SiO₂、70 g、1.7-4.0 mmφ、306 m²g⁻¹、CARIACT Q-10 富士シリシア化学製)を加え 18 h 放置し、MeOHを減圧留去後、濾別してアセトンおよ び水洗浄後、70℃で乾燥することで調製した。

Ptpp/b-SiO₂の調製は, Ptpp 132 mg の入ったトルエン 溶液 400 cm³ に p-SiO₂ 30 g を加え 18 h 還流することで 行った²⁴⁾。反応後, 濾別乾燥して Ptpp/p-SiO₂を得た。 同様に, Ptpp 13.2 mg のトルエン-MeOH 溶液 (4:1 v/v, 200 cm³) に b-SiO₂ 30 g を加えて還流を行った。反応後, 濾別し, アセトン 100 cm³ および水 100 cm³ で洗浄をし て, Ptpp/b-SiO₂を得た。

また、Ptpp/b-SiO₂ 触媒の安定性向上のために、 (EtO)₄Si (TEOS) によるポアフィリング (pore filling) 処理を行った。Ptpp 8.5 mgをMeOH 1 cm³に溶解し、さ らにTEOS 10 cm³を加えた。得られた溶液にb-SiO₂10 g を攪拌しながら少しずつ加え担持を行った。70°Cで減 圧乾燥してTEOS処理触媒 (Ptpp/m-SiO₂) を得た。調製 した光触媒の担持量等は**Table 1** に示す。

Table 1. Characterization of photocatalysts

catalyst ^a	Average particle	Contents of Mtpp
	size (mm)	(wt%)
$Sbtpp/p-SiO_2$	0.04	0.87
$Sbtpp/b-SiO_2$	3.0	0.05
Ptpp/p-SiO ₂	0.04	0.42
Ptpp/b-SiO ₂	3.0	0.042
Ptpp/m-SiO ₂ ^b	3.0	0.085

^a Silica gel powder (p-SiO₂): 0.04 mm ϕ , 429 m²g⁻¹, BW300, Fuji Silysia. Silica gel beads (b-SiO₂): 1.7-4.0 mm ϕ , 306 m²g⁻¹, CARIACT Q-10, Fuji Silysia. ^b Modified silica gel (m-SiO₂) was prepared by the pore-filling treatment of b-SiO₂ by (EtO)₄Si.

2.2 共焦点走査レーザー顕微鏡による触媒の解析

共焦点走査レーザー顕微鏡 (CLSM) は,一般的にレ ーザー光をガルバノミラーおよび対物レンズによって 試料上を走査し,試料の表面および内部の焦点面から 発した蛍光を対物レンズおよび共焦点に位置するピン ホールを経て検出し,空間分布をコンピュータ処理に よって画像に変換する顕微鏡である.特に,深さ方向 の分解能がきわめて高く,高画質な画像解析を行うこ とができる.本研究に用いたCLSMは,本体 (Olympus FV-300) に分光器 (STFL 250, Seki Technotron) をガラ スファイバーでつなぐことで画像解析だけでなく,表 面および断面での蛍光スペクトルの測定できる。Mtpp に由来の600および650 nm付近の蛍光をCLSMによって 測定することでMtppの固定化を確認した。

また、CLSMの透過照明装置のハロゲンランプを光源 として用いて吸収スペクトルを測定した。試料を透過 した透過光は、対物レンズで集光され、ピンホールお よびファイバーを通り、分光器および検出器(PMT) で検出されて吸収スペクトルが測定することができる

(Figure 2)。また,吸光スペクトルの測定領域は,対 物レンズの倍率 (X) およびピンホールの直径 (h)ま たはファイバーコアの直径 (f) によって決められる円

Figure 2. Microscopic absorption spectrophotometry using confocal laser scanning microscope (CLSM).

d = 3f / (3.5 X)	(eq. 1)
$A = b \varepsilon C$	(eq. 2)

形内となる。円形の直径(d) は、fの三倍の値またはh の値の小さい方で規制され、 $h \ge 3f$ の時は(1)式で表され る²⁵⁾。dの値が触媒の触媒の粒径(b cm)に比べて十分 に狭くなるXの対物レンズを用いて微小領域の吸光度 分析を行った。

触媒の吸光度(A)は、溶液の吸光度分析の場合と同 様にLambert-Beer則によって, 光路長, *ε*, およびMtpp のモル濃度(C/mol dm⁻³)の積で表すことができる。A を触媒の中心線で測定した場合、光路長はbと同じにな ることから, Aは(2)式で表される。そこで、CLSMのス テージに置いたスライドガラス上に数十個の触媒を置 き,その上にカバーガラスを乗せて固定した。同時に, スライドガラス上にMtppを固定化していない同じ粒径 のSiO₂数個を置き,吸光度分析のブランクとして用い た。無作為に5個の触媒を選んで、ステージを移動させ て顕微鏡の視野の中心に触媒の中心線が来るようにし た。吸収スペクトルを500~650 nmの範囲で測定し、極 大吸収波長の547 nmにおけるAを求め、さらに画像解析 からbを求め、(2)式からMtppの担持量を決定した。この 様にして触媒の吸光度分析から求めた担持量は、吸着 されずに溶液に残ったMtpp量の分析から算出した担持 量の値とよい一致を示した25)。また、本分析法は使用後 の触媒分析にも利用された。

2.3 菌体量の測定方法

E. coli の生菌数の測定のために, バクトトリプトン 1%, 酵母エキス 0.5%, および塩化ナトリウム 1%から なる基本培地 (pH 6.5) に寒天 2%を添加した培地をシ ャーレに入れ, 寒天プレートを作成した²⁶⁾。E. coli の 菌体量の測定は, 検体 100 µl を三枚の寒天プレートそ れぞれ塗布し, 30℃で 24 時間培養して出現したコロニ ーを計数することで行った。

生活環境場に存在する Legionella 属菌の生菌数は, 100 CFU/100 cm³ (CFU= colony formation unit) 程度と低 濃度であることから,菌体測定は Figure 3 のように行 った²⁷⁾。検水 (500 または 1000 cm³)を採取し,孔径 0.45 µm の滅菌済メンブランフィルター (HA, ミリポ ア)で吸引ろ過した。このフィルターを滅菌済 0.9%生 理食塩水 5 cm³の入った遠沈管 (100 cm³) に入れ,フ ィルターが砕けるまで激しく撹拌した。遠沈管に

Figure 3. Determination of the amounts of *Legionella* species occurring in the living environmental fields.

HCI-KCI 緩衝溶液 (0.2 M, pH 2.2, 5 cm³) を添加し, 時々撹拌しながら室温で正確に 20 分間放置した。そこ から, ピペッターを使って 0.1 cm³ずつ採取し, 三枚の 選択寒天培地 (WYO-α, 栄研化学) の全面に塗抹し, 36 °C で7日間培養した。7日目に現れた青みを帯びた 灰白色のコロニー数を計数し, 三つの平均値から検水 100 cm³当たりの生菌数を求めた。

Legionella 属菌の同定は,BCYE-α寒天培地と羊血液 寒天培地を用いた培養試験および Legionella 免疫血清 によるスライド凝集試験によって行った。さらに,宮 崎県衛生環境研究所において,LEG 遺伝子と Lmip 遺伝 子を PCR 法を用いて調べ,既知の L. pneumophila との 比較から,後述のクーリングタワーおよび噴水から採 取した Legionella 属菌は I 型と判定した。

3. 結果と考察

3.1 Sbtpp/p-Si02光触媒による E. coliの可視光殺菌

可視光殺菌実験は、初濃度 6.4×10³ cells cm⁻³の *E. coli* (K-12, IFO3335) および Sbtpp/p-SiO₂ 10 mg を含むリ ン酸緩衝溶液 10 cm³ を L 字型反応管 (**Figure 4A**) に入 れ、振とう機で振とうしながら上部から蛍光灯 (FL-15ECW, λ= 400-723 nm,最大強度波長: 545 nm) 2本 で光照射行った (**Figure 4B**)²³⁾。10 分間隔でサンプル 100 µl を採取して、寒天プレートに塗布し、30℃で 24

Figure 4. A phosophate buffer solution (10 cm^3) containing Sbtpp/p-SiO₂ (10 mg) and *E. coli* (6.4×10³ cells cm⁻³) was introduced in L-type tube (A) which was set on a shaker and irradiated by florescent lamp (B).

Table 2. Bactericidal effect of Sbtpp/p-SiO₂ under irradiation of sunlight ^{a)}

Time	Survival ratio (%) ^{b)}		
(min)	Sbtpp/p-SiO ₂	$\operatorname{TiO}_2^{c)}$	Blank ^{d)}
0	100	100	100
10	0	103	99
30	0	83	90
60	0	63	79

a) An L-type tube containing 6.4×10^3 cells cm⁻³ of *E coli* and 5 mg of catalyst in phosphate buffer was set on a shaker and exposed to sunlight. Light intensity of sunlight varied from 200 to 1100 W·m⁻² during 60 min and average intensity was about 530 W·m⁻². Average temperature of reaction mixtures was about 30 °C.

b) Survival ratio = $100B/B_0$ where B and B_0 denote the amounts of bacteria at given time and initial amounts of bacteria.

c) HQA51, Shinto V-cerax Ltd., Japan

d) In the absence of photocatalyst.

Figure 5. Bactericidal effect of Sbtpp/p-SiO₂ on *E. coli*. O: Dark reaction in the absence of the photocatalyst ●: Under irradiation in the absence of the photocatalyst

- Δ : Dark reaction in the presence of Sbtpp/p-SiO₂
- \blacktriangle : Under irradiation in the presence of Sbtpp/p-SiO₂
- . Onder interaction in the presence of Sotpp/p-Sio

Figure 6. An oval-type of photo-bactericidal apparatus are consisted of $Sbtpp/b-SiO_2$ photocatalyst (A), oval mirror (B), and a fluorescent lamp (C). Cell suspension was fed from sample holder (D) to A by pump (E) and the reacted cell suspension was returned to the holder.

時間培養して出現したコロニーを計数した。

可視光照射実験の結果(Figure 5),光照射下で触媒 が存在する時に菌体数が減少し、40分後に E. coli は ほぼ消滅した。非照射下および触媒が存在しない場合 には菌体量がほとんど減少しなかったことから Sbtpp/p-SiO₂の E. coli に対する可視光殺菌効果が確認さ れた。また,光量・触媒量・初期菌体量を変化させた 実験を行い,殺菌効果は光量および触媒量に依存して いることを明らかにした。 さらに、比較のために3種類のTiO₂光触媒(アナタ ーゼ型、ルチル型;和光純薬製)およびSiO₂粉末に担 持されたTiO₂ (新東Vセラッミクス製 HQA51)を用 いて、同様の殺菌実験を行ったところ、いずれのTiO₂ においても120分の蛍光灯照射では90%程度は生存し ており、Sbtpp/p-SiO₂はTiO₂に比べて可視光殺菌能力が 高いことが示された²⁶⁾。

次に,太陽光照射下において殺菌実験を行った。Table 2 に示すように,この実験においても Sbtpp/p-SiO₂は TiO₂よりも高い光殺菌作用を示した。また,実用化を 目指して楕円形殺菌装置(Figure 6)を用いた連続殺菌 反応を行った。楕円形殺菌装置は,楕円の二つの焦点 の位置に蛍光灯と反応管を配置することで,蛍光灯か ら発した光は楕円ミラーで反射して反応管に集約する 構造になっている²⁸⁾。菌体懸濁液をホルダーから反応 管に送液して行った連続殺菌実験においても Sbtpp/b-SiO₂の高い殺菌効果が確認された²⁶⁾。そこで, 生活環境場での殺菌実証実験へ展開することとした。

3.2 生活環境場に存在する *Legionel la* 属菌に対する Sbtpp/b-Si0₂による可視光殺菌

レジオネラ菌(Legionella pneumophila)は、比較的水 温の高い場所で、藻あるいはバイオフィルムのある場 所に生息し、肺炎症を発症させる病原性細菌である。 1976年にアメリカのフィラデルフィア市のホテルにて 開催された在郷軍人会(American Legion)への参加者 が原因不明の重症肺炎を発症し、米国疾病管理センタ ーが新たな細菌による感染症(在郷軍人病)であると したことから、その発見に至っている²⁹⁾。

L. pneumophila は浴槽や空調用クーリングタワー冷 却水,噴水等の修景用水,滞留型加湿器等の滞留水中 で繁殖する。我々の噴水中のL. pneumophila 菌体数の調 査結果 (Figure 7) に示すように気温の上昇とともに菌 体数が増加し,気温 15℃で急激に繁殖する特徴がある。 そこで,生活環境場において水温が比較的高く,閉鎖 水系の空調用クーリングタワーおよび循環式噴水を実 験場として選定し,Sbtpp/b-SiO₂による Legionella 属菌 に対する光殺菌実証実験について検討した。

実証実験に先駆けて、L字型試験管を用いた Sbtpp/p-SiO₂触媒による *Legionella* 属菌の可視光殺菌実 験²⁷⁾を行った。菌体には、後述の噴水での実証実験で 採取・増殖させて *Legionella* 属菌 I 型と判定されたもの を用いた。*Legionella* 属菌 10⁴ cells cm⁻³および

Figure 7. Dependence of amounts of *Legionella* species naturally occurring in the fountain on the highest atmospheric temperature.

Figure 8. Bactericidal effect of Sbtpp/p-SiO₂ on *L. pneumophila*.

•: Under irradiation by fluorescent lamp in the presence of Sbtpp/p-SiO₂.

O: Under the irradiation in the absence of the catalyst.

 \blacktriangle : Under dark reaction in the presence of Sbtpp/p-SiO₂.

 \triangle : Under dark reaction in the absence of the catalyst.

Sbtpp/p-SiO₂ 10 mg を含むリン酸緩衝液(10 cm³)をL 字型反応管に入れ, 3.1 と同様の方法で蛍光灯照射によ る可視光殺菌実験を行った。10 分間隔でサンプル 0.1 cm³を採取し,三枚の WYO-α寒天培地で培養し,7 日目に現れたコロニー数を計数し,三つの値の平均値

Figure 9. A cylindrical type photo-bactericidal apparatus (A) was set in the cooling-tower (B).

Figure 10. Time-course plots of the amounts of *Legionella* species in the cooling-tower along with the atmospheric temperature (\bullet). The cylindrical photo-bactericidal apparatus was operated during October 1 to October 21, 2002 under the following reaction conditions: Sbtpp/b-SiO₂ catalyst; 4 kg, contents of water; ca. 800 dm³, flow rate; 28 dm³·min⁻¹, and the average retention time; 26 sec.

から菌体数を求めた。その結果、コントロール殺菌実 験(Figure 8)に示すように、光照射下で触媒が存在す る時のみに菌体の減少が観測された。非照射下および 触媒が存在しない場合には菌体量がほとんど減少しな かったことから、Sbtpp/p-SiO₂の Legionella 属菌に対す る可視光殺菌効果が確認された。これは、世界で初め て見い出された Legionella 属菌に対する光触媒殺菌効 果である。

次に、クーリングタワーでの実証実験のために、蛍 光灯(18W,7本)と可視光触媒(Sbtpp/b-SiO₂,4 kg,12 dm³)を組み込んだ光殺菌装置(Figure 9A)を製作し た。クーリングタワーの冷却水溜(水量 800 kg)から 流速 28 dm³·min⁻¹で水を光殺菌装置に循環させて、光照 射を行い、定期的に 100 cm³中の検水中の菌体量(単 位:CFU/100 cm³)を測定した(Figure 9B)。その結果, 投入後すぐに Legionella 属菌の減少が確認され、11 日

Figure 11. (A) Survey of *Legionella* species found in the fountain from November 26, 2002 to May 26, 2003. (B) The bactericidal experiment of *Legionella* species was performed using a leaf-type photo-bactericidal apparatus containing Sbtpp/p-SiO₂ (80 g) under sunlight irradiation from May 26 to August 22, 2003. The highest atmospheric temperature was denoted by \bullet .

目から実験終了まで *Legionella* 属菌の繁殖は確認され なかった (Figure 10)。検出された *Legionella* 属菌を同 定した結果, *Legionella pneumophila* I型であることが 分かった。

次に噴水での実証実験を行うために, 宮崎市内の噴 水(水量13トン)のLegionella 属菌の菌体数調査を2002 年 11 月から 2003 年 5 月にかけて行った。その結果, Figure 11A に示すように気温変化および定期的な清掃 によって菌体量は増減するが,季節を通じて菌体の存 在を確認した。そこで,ハスの葉型光殺菌装置(Figure 12)の中に Sbtpp/b-SiO₂ (80g)を充填し,同噴水に浮か べて太陽光による殺菌実証実験を2003 年 5 月に開始し た。その結果,投入後 12 日目に菌体数の減少が確認さ れ,それ以降 3 ヶ月間以上, 80 g (Sbtpp 含有量: 40 mg)

Figure 12. A leaf-type photo-bactericidal apparatus (A) was installed in the fountain (B).

Table 5. Elemental analysis of $Solpp/0-SiO_2$		
Elements	Before use	After use in fountain
	(ppm)	for 3 months (ppm)
Al	29	89
Na	67	208
Ca	12	316
Fe	0.2	0.5
Mg	6	79
Sb	80	13

Table 3. Elemental analysis of Sbtpp/b-SiO $_2^{a}$

a) Measured by atomic absorption.

の光触媒によって水量 13 トンの噴水中の Legionella 属 菌量を環境基準値の 100 CFU/100 cm³以下に抑制する ことに成功した(Figure 11B)。これによって, Sbtpp/b-SiO₂ を使った生活環境場での殺菌技術の有用 性が実証された。

Table 3 に使用前および使用後の触媒の元素分析結果 を示す。市水由来の Na, Ca, Mg などの金属が増加し, 替わって触媒由来の Sb が実験前の 80 ppm から実験終 了後には 13 ppm まで減少した。Sbtpp/b-SiO₂は蒸留水 中では全く脱色を示さないことから,市水中では噴水 中に含まれるアルカリ金属およびアルカリ土類金属と カチオン性の Sbtpp がイオン交換を起こして脱離して いることが分かった。

3.3 Ptpp/p-Si0₂光触媒による E. coliの可視光殺菌

Sbtpp/b-SiO₂ 触媒は生活環境場で効果的な光殺菌性 を示したが, Sbtpp が溶出する問題あることがが分かっ た。溶出した Sbtpp は自然界で発ガン性の三酸化アンチ モン³⁰⁾ に変換する可能性があることから,実用化に向 けて,中心金属をアンチモンからより安全性の高い同

Figure 13. Bactericidal experiment for *E. coli* in the presence of Ptpp'/p-SiO₂ under irradiation by a fluorescent lamp (\bigcirc), in the absence of a catalyst under irradiation (\square), and in the presence of Ptpp'/p-SiO₂ under dark conditions (\blacktriangle). Reaction conditions were shown as follows: Initial concentration of *E. coli* = ca. 1.0 × 10⁴ cells·cm⁻³, [Ptpp'/p-SiO₂] = 1.0 g·dm⁻³, light intensity = 21 W·cm⁻².

族のリンに変えた軸水酸基型リンポルフィリン (Ptpp') および軸メトキシ型リンポルフィリン (Ptpp) を用いて *E. coli* に対する光殺菌効果について検討を行った²⁴⁾。

最初に、Ptpp'担持触媒(Ptpp'/p-SiO₂)を調製して、 可視光殺菌実験を行った。Ptpp'/p-SiO₂(10 mg)および *E. coli* に(1.0×10⁴ cells·cm⁻³)を含むリン酸緩衝液(10 cm³, pH=7.0)をL字型試験管に入れ、3.1 に示した方 法と同様の方法で蛍光灯照射下で殺菌実験を行った。 **Figure 13** に示すコントロール殺菌実験の結果、触媒存 在下での光照射条件のみで殺菌効果が認められた。

次に、可視光触媒による殺菌機構を解明するため, 光強度 (*a*),触媒量 ([*C*])を変化させて,照射時間 (*t*) 毎の菌体量 ([*B*])を測定した結果,[*B*]はtに対して直 線的に減少し、その直線の傾きが*a*および[*C*]に比例し ていることが分かった²⁴⁾。そこで,基底状態で光触媒 (*C*)と *E. coli* (*B*)が複合体を形成する Michaelis-Menten 型の反応機構 (Scheme 2)を仮定して速度論的解析を 行った。Scheme 2 に従えば,反応速度 (*v*)は(3)式で 表される。ここで, $k_{\cdot 1}$ が $k_{\cdot 1}$ および k_{2} に比べて十分に 大きいと仮定すると, K_{m} (= $(k_{\cdot 1} + k_{2})/k_{1}$)=0と仮定 することができ,(4)式および(5)式が得られる。(5)式で は、菌体減少量 ([*B*₀] - [*B*])が*t*,*a*,[*C*]に比例し,[*B*] に対して 0 次であり,実験結果と良い一致を示してい る。これは,Scheme 2 の平衡が複合体形成側に大きく

$$B + C \xrightarrow[k_1]{k_1} [BC] \xrightarrow[hv]{hv} [BC^*] \xrightarrow{k_2} [DC]$$

Scheme 2. Possible mechanism. B: living cells, C: catalyst, D: deactivated cells.

$v = k_2[B][a \ C]/(K_m + [B])$	(eq. 3)
$v = -d[B]/dt = a k_2[C]$	(eq. 4)
$[B_0] - [B] = a k_2[C] t$	(eq. 5)

傾いており、菌体が触媒に強く吸着していることを示 している。

当初はアンチモンの場合と同様に、軸水酸基型リン ポルフィリン (Ptpp')を用いて触媒を調製したが、水 中での安定性に問題があった。これは Ptpp'の軸水酸基 のプロトンが解離性であるために、錯体が中性化して 吸着力が弱まるためである (Scheme 3)。そこで、軸配 位子を非解離性の軸メトキシ型 Ptpp'/p-SiO2の可視光殺 菌効果を検討した。L字形試験管を用いて、光照射下、 暗下および酸素存在下、非存在下の条件で、E. coli に対 する Ptpp/p-SiO2の光殺菌効果の検討を行った結果、光 照射・酸素雰囲気下において可視光殺菌効果が発現し た (Figure 14)。このことにより、殺菌には酸素が必要 なことが明らかになった。

これらの結果から、光殺菌のメカニズムは Ptpp 三重 項状態から三重項酸素へのエネルギー移動により、一 重項酸素(¹O₂)が発生し、これが菌細胞を攻撃する事 により、菌が死滅するというメカニズムが推察された ³¹⁾。 OH ラジカルが光殺菌作用を発現するということ

Scheme 3. Plausible mechanism for elution of Ptpp' from the SiO₂ support

Figure 14. Effects of oxygen to the photochemical sterilization of *E. coli* by Ptpp/p-SiO₂. Visible light irradiated reaction under under an aerobic conditions (\bigcirc) and under a nitrogen atmosphere (\bigcirc). Dark reaction under an aerobic atmosphere (\bigtriangleup) and a under nitrogen atmosphere (\bigtriangleup).

が知られている酸化チタンとは異なる反応機構が推測 された³²⁾。また, Ptpp はカチオン性であることが,生 体親和性を増加させ,効率の高い殺菌が実現されたと 思われる。

3.4 噴水のレジオネラ属菌に対する Ptpp/m-SiO₂による太陽光殺菌

カチオン性の Ptpp の SiO₂への固定化はイオン吸着に よっているために,3.3 で示したようにイオンを多く含 む市水中で触媒を用いた場合,市水中の Na, Ca,イオン とのイオン交換によって Ptpp が脱離する問題があった。 そこで,TEOS によるポアフィリング処理(2.1 を参照) によって SiO₂ 細孔を狭くすることで溶出を防いだ TEOS 処理触媒 (Ptpp/m-SiO₂)を用いて噴水中での実証 実験を行った。3.2 に示した実証実験に使用した噴水に 比べて水量の多い噴水の太陽光殺菌に対応するために, 大型の噴水用殺菌装置を製作した。

上部に小穴 (直径 2 mmφ), 下部に金網 (24 メッシュ) を有する円筒型モジュール (アクリル製, 直径 24 cmφ, 厚さ 2 cm, Figure 15A および 15B)を㈱ヒュウガ化工 (宮崎県延岡市)において製作した。円筒型モジュー ル内に Ptpp/m-SiO₂ 光触媒 120 g を充填した (Figure 15C)。円筒型モジュールはフロート (SUS 製, 直径 14 cmφ, 厚さ 11 cm)に固定化し, さらに水面に安定して 浮かべるためにフロートを金具で連結し, 5 個のモジュ

Figure 15. A leaf-type module and a float (A) were manufactured according to a draft (B) and was packed with Ptpp/m-SiO₂ (C; 120 g/module). The modules were connected with floats and five modules were jointed each other with the attachment to form photo-bactericidal apparatuses (D) which was set in fountain (E; water amounts: 255 m³). A picture (F) shows D during the experiment.

Figure 16. Amounts of bacteria ([*B*]) in the bactericidal experiment using Ptpp/m-SiO₂ under sunshine in 2005–2006 (\blacksquare) in comparison with [*B*] for experiment without the photocatalyst in 2004–2005 (\blacksquare). The atmospheric temperatures were donated by \triangle for 2005–2006 and \bigcirc for 2004–2005. The bactericidal apparatus was installed at mark (\bigtriangledown) and removed at mark (\bigtriangledown).

ールを円状に配列した光殺菌装置 (**Figure 15D**) を製作 した³³⁾。

宮崎県都市公園総合事務所が管理している運動公園 の噴水(長さ:28 m,幅:13.5 m,深さ:0.675 m,水量: 255 m³, Figure 15E)を実験場とした。まず,光殺菌装 置を投入しないで,2004年4月から2005年3月までの 1年間にわたって検水500 cm³を7-10日間隔で採水を 行い, Legionella 属菌の生菌数([B];単位 CFU/100 cm³) の調査を行った。同時に採水日当日とその前2日間の3 日間の宮崎市の最高気温の平均値を記録した。実験中 に管理者によって清掃,水の入れ替え等が行われ,生 菌数がほぼ100CFU/100 cm³以下に抑制されていたが, 気温の低い冬季も含めて1年間を通じて噴水中に Legionella 属菌を確認した。この測定値を,光殺菌実証 実験のブランクとした。

光殺菌実験は、2005 年 12 月から 2006 年 3 月にかけ て行った。Ptpp/m-SiO₂ 600 g (Ptpp 含有量 510 mg)を 充填した殺菌装置 (Figure 15D)を噴水に投入し、定期 的に[*B*]を測定した。菌体量を 2004 年度のブランクと比 較して Figure 16 に示す。ブランクと比較して、大きく 生菌数が抑制され、光殺菌装置を撤収した 2006 年 3 月 16 日にまで 100 日間殺菌効果が持続した。つまり、510 mg の Ptpp が 5×10⁸ 倍の水量にあたる 255 トンの水を 100 日間太陽光によって殺菌を行うことができた³³⁾。し かし、TEOS で細孔を閉塞させるポアフィリング処理を したのにも関わらず、撤収後の触媒の顕微蛍光分析で は、ほとんどの Ptpp が溶出しており、Ptpp/m-SiO₂の安 定性に問題を残している。

4. 結論

これまでの結果からScheme4に可視光殺菌機構についてまとめた。水中に存在する微生物の多くはシリカ ゲル表面および細孔内に吸着されると思われる。一方, 金属ポルフィリン(Mtpp)は、水中に多く存在するア ルカリ金属イオンとイオン交換されて、SiO₂から遊離 すると思われる。遊離したMtppは微生物の中に進入し, そこで、光照射を受けて一重項酸素が発生し、微生物 のDNA等を損傷し、殺菌が起こると考えられる。その 後、Mtppは再びシリカゲルに吸着し、再吸着されなか ったものは水中に溶出すると思われる。そのために、 シリカゲルは触媒担体としての役割とMtppを徐放す る効果を有している。 シリカゲルは表面積が広く吸着性があり,可視光透 過性に優れている環境負荷の少ない安全な材料である。 また,Sbtpp および Ptpp は生体親和性が高く,その急 性毒性 LD₅₀は 2000 mg/Kg 以上³⁴⁾であり,毒性がほと んどないことが確認されている。さらに,酸化チタン と比較して,可視光および太陽光照射下で効率的な光 殺菌を起こすことも明らかにされた。また,太陽光お よび蛍光灯などの可視光線は人体に無害であり,水中 での透過性が高く,紫外線による殺菌方法に比べて効 率的である。これらの特徴を組み合わせた可視光殺菌 技術は,安全安心な生活環境の構築に役立つ技術であ ると思われる。

Scheme 4. Visible light-assisted sterilization was proceeded according to the following steps.

- (1) Bacteria is adsorbed on SiO_2 .
- 2 Mtpp liberates from SiO₂ and adsorbs inside bacteria.
- (3) $^{1}O_{2}$ is generated under irradiation of to Mtpp damage the bacteria.
- (4) Mtpp is adsorbed on SiO_2 again.

謝辞

可視光殺菌の研究は,2000年に首藤里香氏(共同研 究員,1995年卒業)に地域共同研究センターで大腸菌 を使った光殺菌実験をしてもらったのが切っ掛けで始 まった。その後,山根賢也(2002年卒,敬称略),増田 絵里子(2003 年卒業),中島功司(2004 年卒業),江藤寿 哲(2005 年大学院修了),河内岳史(2006 年修了,横井 研究室),朝倉有香(2005 年卒業),小宮康宏(2006 年大 学院修了),新井博之(2006 年卒業),佐藤哲平(2006 年 卒業),鈴木秀茂(2007 大学院修了,横井研究室),江馬 智(2007 年大学院修了),中原卓郎(2009 年大学院修了) ら,多くの学生が可視光触媒の研究に従事した。なか でも,笛田佳之氏(富士シリシア化学㈱)は工学研究 科博士後期課程に社会人入学され,2007 年 9 月に「シ リカゲル担持金属ポルフィリンの可視光殺菌効果」で 博士(工学)の学位を取得した。これらの方に感謝致 します。

また,財政的支援を,2002年度九州地域環境リサイ クル産業交流プラザ(K-RIP)プロジェクト「太陽光/ 光触媒を利用した屋外クーリングタワーの防かび・抗 菌システムの開発」,2003年度宮崎県新産業創出共同研 究委託事業「生活環境場におけるレジオネラ属菌の可 視光駆動触媒による除菌技術の開発」,2004~2005年度 地域新生コンソーシアム「生活環境場に調和した可視 光殺菌技術の開発」から受けました。これらの研究を 共同で行って頂いた東洋検査センター,第一ビル管理 ㈱,富士シリシア化学㈱,旭化成エンジニアリング㈱, 東西化学産業㈱,㈱ヒュウガ化工の皆様に感謝申し上 げます。

また,2002-2006 年度科学研究費補助金特定領域研究 「光機能界面の学理と技術」に採択され、"シリカゲル 担持金属ポルフィリン錯体の界面光触媒機能と物質変 換"の研究テーマで研究を行うことができました。領 域代表の藤島昭先生(神奈川技術アカデミー理事長, 東京大学名誉教授)および班長の真嶋哲朗先生(大阪 大学産業科学研究所教授)に感謝申し上げます。

実験場を提供して頂きました宮崎県都市公園総合事 務所,宮崎市,財団法人弘潤会野崎病院,および第一 ビル管理㈱に感謝致します。また,殺菌メカニズムの 解明では平川和貴准教授(静岡大学)に,菌体実験で は横井春比古教授に,レジオネラ属の同定では宮崎県 衛生環境研究所の河野喜美子科長,鈴木泉所長(当時) にお世話になりました。これらの方および共同研究者 の白上努准教授および松本仁助教に感謝申し上げます。

参考文献

1) A. L. Pruden, and D. F. Ollis, J. Catalysis., 82, 404

(1983).

- J. C. D' Oliveria, G. Al-Sayyed, and P. Pichat, Environ. Sci. and Technol., 24, 990 (1990).
- T. Hisanaga, K. Harada, and T. Tanaka, J. Photochem. Photobiol. A: Chem., 54, 113 (1990).
- C. Kormann, D. W. Bahnemann, and M. Hoffman, Environ. Sci. and Technol., 25, 494 (1991).
- O. Legrini, E. Iliveros, and A. M. B. Braun, Chem. Rev., 93, 671 (1993).
- K. Vinodgopal, U. Stafford, K. A. Gray, and P. V. Kamat, J. Phys. Chem., 98, 6797 (1994).
- J. Theurich, M. Lindner and D. W. Bahnemann, Langmuir., 12, 6368 (1996).
- C. Wei, W. Y. Lin, Z. Zainai, N. E. Williams, K. Zhu, A. P. Kruzic, S R. L. Smith, and K. Rajeshwar, Environ. Sci. Technol., 28, 934 (1994).
- R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science, 293, 269 (2001).
- 10) 橋本和人,大谷文章,工藤昭彦,光触媒 基礎・ 材料開発・応用,エヌ・ティー・エス出版 (2007).
- D. Gust, T. A. Moore, K. M. Kadish, K. M. Smith, and R. Guilard (Eds.), The Porphyrin Handbook, Vol. 8, p.153, and reference cited therin, Academic Press, New York, 2000.
- K. Kalyanasundaram, and M.Graetzel, "Photosensitization and Photocatalysis using Inorganic and Organometallic Compound, Kluwer Academic Publishers, Amsterdam, 1993.
- 13) M. R. Wasiselewsiki, Chem. Rev., 92, 435 (1992).
- 14) S. Anderson, H. L. Anderson, and J. K. M. Sander, Acc. Chem. Res., 26, 469 (1993).
- R. H. Iler, The chemistry of silica, Wiley- Interscience Publication, John Wiley & Sons, New York, 1979.
- T. Shiragami, J. Matsumoto, H. Inoue, and M. Yasuda, J. Photochem. Photobiol. C: Review, 6, 227 (2005).
- 17) 保田昌秀, 白上努, 松本仁, 光化学, 38 9-14 (2007).
- 18) 金属ポルフィリン錯体の光触媒作用と応用展開, 白上 努,保田昌秀,光機能性高分子材料の新たな 潮流―最新技術とその展望―, 25,シーエムシー (2008).
- T. Shiragami, K. Kubomura, D. Ishibashi, and H. Inoue, J. Am. Chem. Soc., 118, 6311 (1996).
- 20) S. Takagi, M. Suzuki, T. Shiragami, and H. Inoue, J.

Am. Chem. Soc., 119, 8712 (1997).

- R. P. Pandian, T. K. Chandrashekar, and V. Chandrasekhar, Indian J. Chem., 30A, 579 (1991).
- H. Segawa, K. Kunimoto, A. Nakamoto, and T. Shimidzu, J. Chem. Soc, Perkin Trans., 1, 939 (1991).
- 23) T. Shiragami, Y. Shimizu, K. Hinoue, Y. Fueda, K. Nobuhara, I. Akazaki, and M. Yasuda, J. Photochem. Photobiol. A: Chem. 156, 115 (2003).
- 24) Y. Fueda, H. Suzuki, Y. Komiya, Y. Asakura, T. Shiragami, J. Matsumoto, H. Yokoi, and M. Yasuda, Bull. Chem. Soc. Jpn., 79, 1420 (2006).
- 25) 松本朋子,白木隆一,松本仁,白上努,保田昌秀,分 析化学,57,819-824 (2008).
- 26) H. Yokoi, T. Shiragami, J. Hirose, T. Kawauchi, K. Hinoue, Y. Fueda, K. Nobuhara, I. Akazaki, and M. Yasuda, World J. Microbiol. Biotech., 19, 559 (2003).
- 27) Y. Fueda, M. Hsashimoto, K. Nobuhara, H. Yokoi, Y. Komiya, T. Shiragami, J. Matsumoto, K. Kawano, S. Suzuki, and M. Yasuda, Biocontrol Science, 10, 55 (2005).
- 28) 保田昌秀,白上努,信原一敬,笛田佳之,公開特 許公報,"光触媒装置" 特開 2002-136879.
- 29) F.-Y. Chang and V. L. Yu, Legionella infection. In Fishman's Pulmonary Diseases and Disorders, ed. by A. P. Fishman, J. A. Elias, J. A. Fishman, M. A. Grippi, L.R. Kaiser, and R. Senior, McGraw Hill, New York vol 2, 3rd edn.1996, p. 945.
- IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 47, 291 (1989).
- K. Hirakawa, S. Kawanishi, J. Matsumoto, T. Shiragami, and M. Yasuda, J. Photochem. Photobiol. B: Biol., 82, 37 (2006).
- T. Saito, T. Iwase, J. Horie, and T. Morioka, J. Photochem. Photobiol. B: Biol., 14, 369 (1992).
- 33) 江馬智,柴田博文,弥富勝美,信原一敬,笛田佳之, 松本仁,白上努,保田昌秀,防菌防徽学会誌,35, 547 (2007).
- 34) Fifty percent of lethal dose (LD_{50}) of Ptpp was examined by Japan food research laboratories for use in male and female mice on 2005 (404110082-001).