原料供給シーケンスの違いが原子層エピタキシー法による GaAsN 薄膜成長に与える影響

芳賀 章博^{a)}・貞任 萌^{b)}・原口 智宏^{c)}・鈴木 秀俊^{d)}・福山 敦彦^{e)} 尾関 雅志^{f)}・碇 哲雄^{g)}

Effects of Gas Flow Sequence on GaAsN Films Grown by Atomic Layer Epitaxy

Akihiro HAGA, Hajime SADATO, Tomohiro HARAGUCHI, Hidetoshi SUZUKI, Atsuhiko FUKUYAMA, Masashi OZEKI, and Tetsuo IKARI

Abstract

GaAs(N) films have been grown on semi-insulating GaAs(001) substrate at substrate temperatures of 480, 500 and 520 °C by atomic layer epitaxy (ALE). We investigated the effects of gas flow sequences on self-limiting mechanism (SLM), N incorporation, and residual impurities as a first step to grow GaAsN on precisely controlled surface by ALE. N precursor molecules were supplied to Ga (On-Ga) and As terminated surfaces (On-As). The On-As case showed rough surface and their crystal qualities were not good. In On-Ga case, SLM functioned well in whole growth temperature region and On-Ga sample showed low density of residual impurities. These demonstrated that On-Ga sequence is effective to grow GaAsN thin films on precisely controlled surface by ALE technique.

Keywords: Atomic Layer epitaxy, gas flow sequence, Gallium arsenide nitride, Residual Impurities, selflimiting mechanism

1. はじめに

(In)GaAsN は GaAs と Ge に格子整合し、バンドギャッ プエネルギーを 1.0-1.3eV に変化できることから格子整合 系多接合型太陽電池への応用が期待されている¹⁾。しかし、 GaAs へのN添加により少数キャリアのライフタイムや移 動度等の電気特性が悪化してしまう。これらは、高い残留 キャリア濃度や格子間 N の存在、N 不均一分布が原因と されている。最近、化学ビームエピタキシー(CBE)法によ り、他の成長法よりも優れた電気特性をもつ GaAsN の作 製が報告されている²⁾。これは CBE 法が他の成長法と比 較するとステップやテラスといった成長表面モロホロジ ーに敏感であることが関係していると考えられる。つまり、 高品質な GaAsN 薄膜作製には成長表面を制御した N 吸着 過程が重要である。そこで我々は、GaAsN 薄膜成長表面

- a) 応用物理学専攻大学院生
- b) 電気電子工学専攻大学院生
- c) 工学部技術職員
- d) IR 推進機構特任助教
- e) 電子物理工学科准教授
- f) 電気電子工学科名誉教授
- g) 電子物理工学科教授

を制御するために原子層一単位で成長可能な原子層エピ タキシー(ALE)法を選択した。

ALE 法では、自動停止機構(self-limiting mechanism: SLM)により、一原子層程度の厚さで成長表面を制御する ことが可能である³⁾。ALE 法では、SLM が働くことが非 常に重要である。過去の研究において、GaAs 薄膜成長時 に、SLM が働く条件は明らかになっており、III 族元素で あるGa 一原子層とV族元素であるAs 一原子層交互の製 膜制御が可能である。しかし、本研究で扱う GaAsN 薄膜 の ALE 成長では、V 族元素として As と N の 2 種類の元 素があるため、GaAs の場合とは異なり、V 族 2 元素で一 原子層を形成しなければならない。そのため、SLM が働 く条件の再検討が必要である。また、N 原料として有機ガ スを用いることで N 原子と共に炭素(C)、水素(H)といった 不純物が混入することが知られており、これらの残留不純 物は残留キャリアやキャリア散乱体として働くため軽減 しなければならない。

本研究では、ALE 法による GaAsN 薄膜成長における原料供給シーケンスとしてN原料をGa終端面に供給する方法とAs 終端面に供給する方法の2種類を用いた。そこで、これらの原料供給シーケンスの違いがGaAsN薄膜のSLMやN組成、不純物量(C、H)に与える影響を調べることで、

ALE 法による GaAsN 薄膜成長に最適な条件の検討を行った。

2. 実験

本研究では、ALE 法により半絶縁性 GaAs(001)基板上に GaAs(N)薄膜成長を行った。Ga、As、N 原料としてそれぞ れトリメチルガリウム(Ga(CH)3、TMGa)、トリスジメチル アミノヒ素([N(CH₃)₂]₃As、TDMAAs)、モノメチルヒドラ ジン (H₁N₂CH₃、MMHy) を用いた。キャリアガスとして 水素を用い、原料供給法としてガスパルスジェットを用い た。原料は反応管の下部から導入され反応管上部からロー タリー ポンプより高速排気する。反応管は縦型の高速ジ エット方式に対応する形状であり、ガスの乱流や渦流を発 生させないように最適に設計されている。原料供給の切り 替えは Vent-and-Run 方式により制御されている。GaAs(14 ×16 mm²)基板は成長前に自然酸化物を除去する為に As 雰囲気下で 550 ℃ で熱アニールした。サーマルクリーニ ング後、原料の交互供給により GaAs(N)薄膜作製を行った。 Ga、As、N の原料供給時間はそれぞれ 4、10、10 s と固 定した。Ga、As 原料供給量は 0.33 ± 0.05、0.80 ± 0.05 ML/s である。GaAs 薄膜作製に用いた原料供給シーケンスを Fig. 1a に示す。GaAsN 薄膜作製においては N 原料を As 終端 面 (On-As) または Ga 終端面(On-Ga) に供給した。これら の供給シーケンスは Fig. 1b と 1c にそれぞれ示す。

成長層の表面と膜厚は SEM で評価し、N 組成は X 線回 折(XRD)から算出した格子定数により見積もった。また、 XRD により結晶性を評価し、残留不純物(C、H) は二次イ オン質量分析 (SIMS) により評価した。

Fig.1 Gas pulse sequence of (a) GaAs and GaAsN in N supply (b) On-As (c) On-Ga.

3. 実験結果および考察

異なる終端表面に N 原料を供給して成長させた GaAsN 薄膜の XRD 測定結果を Fig. 2 にそれぞれ示す。Ga 終端面 に N 原料を供給した場合、鋭い GaAsN(004)ピークと明瞭

Fig. 2 XRD patterns of GaAsN with different N pulse duration and growth temperature.

なフリンジピークが観測された。これは薄膜の表面および 界面が平坦であることを示している。また、成長温度変化 の影響をみると成長温度上昇に伴い GaAsN(004)ピーク位 置が単調に低角側にシフトした。一方、As 終端面にN原 料を供給した場合、ブロードな GaAsN(004)ピークが観察 されフリンジピークはほとんど観測されなかった。これは 薄膜の結晶性が悪いことを示している。また、成長温度上 昇に伴う GaAsN(004)ピーク位置はN原料を Ga 終端面に 供給した場合とは異なり単調に変化しなかった。

XRD の結果から見積もった N 組成を Fig. 3 に示す。Ga

Fig. 3 N content of grown GaAsN films by On-As and On-Ga sequences as a function of growth temperature.

Fig. 4 Growth rate of grown GaAsN films by On-As and On-Ga sequences as a function of growth temperature.

Fig. 5 Surface morophologies GaAs and GaAsN films grown by different growth condition.

終端面にN原料を供給した場合、N組成は最大 3.2%であ り成長温度上昇と伴に減少した。一方、As 終端面に N 原 料供給した場合、N 組成は温度上昇とともに単調に変化せ ず成長温度 500 ℃ の時 N 組成が最大となった。また、 520 ℃では両者のN組成が一致した。この実験結果は以 下に示すようなN吸着過程の違いから説明できる。Ga 終 端面に N 原料を供給した場合、N 取り込み率は N の脱離 量のみで決まるが、As 終端面に供給した場合、N の取り 込み率は V 族の空きサイトと N 脱離量の両方のバランス で決まる。そのため、N を As 終端面に供給した場合は N 組成が温度上昇とともに単調変化しなかったと考えられ る。また、成長温度 520 ℃ では N 原料を As 終端面に供 給した場合、熱エネルギーが高く As が多く脱離してしま う。そのため、V族の空きサイトが十分にある。その結果、 N原料をGa終端面に供給した時と同様にN取り込み率が N 脱離量のみで決まる。以上から両者の N 組成が一致し

Fig. 6 Residual impurities (H and C) in the On-As, On-Ga and GaAs films grown at 500°C.

たと考えられる。

Fig.4に成長温度の関数としての GaAsN 成長速度を示す。 図中の破線は SLM が働いた時の GaAs の成長速度を示し ている。N 原料を Ga 終端面に供給した場合、成長速度は GaAs とほぼ一致しており全ての成長温度で SLM が働く ことがわかった。一方、As 終端面に供給した場合、成長 速度にばらつきがあり、その成長速度は全ての成長温度で 1ML/cycle 未満となった。

Fig. 5 に SEM 表面図を示す。SEM 表面図から N 原料を Ga 終端面に供給した場合、平坦な表面が得られており SLM が適切に機能していると判断できる。一方、N 原料 を As 終端面に供給した場合、表面が粗く、楕円型の欠陥 が見られる。楕円形の欠陥は GaAs 成長時に As が不足し た時によく見られるものである⁴⁾。これは N 原料を As 終 端面に供給した場合、N 供給後に V 族原子は完全に一原 子層を形成できず SLM が機能していないことを示してい る。

成長温度 500 °C における GaAs(N)の残留不純物(H、C) を Fig. 6 に示す。N 原料を As 終端面に供給した場合、C 不純物量は GaAs の 3 倍であった。この C 不純物は N 原 料中の CH₃ 基の不十分な分離から生じたと考えられる。 一方、N 原料を Ga 終端面に供給した場合、C 不純物は GaAs と同程度であった。これは N 原料供給後の As 原料である TDMAAs の炭素引き抜き効果によると考えられる ⁵⁾。H 不純物は N 原料を Ga 終端面、As 終端面に供給したどち らも GaAs よりも上昇した。これは N-H 間の結合エネルギ ーが高いことに起因した不適切な解離が影響していると 考えられる。

4. 結論

本研究では、原料供給シーケンスが ALE 法による GaAsN 薄膜成長のSLM 機構や残留不純物に与える影響を 調べた。N 原料を As 終端面に供給した場合、表面に凹凸 が見られ結晶性も低い事が分かった。一方、N 原料を Ga 終端面に供給した場合、全ての成長温度で SLM が働き、 その時の不純物量はN原料をAs 終端面に供給した場合と 比べて少ない事が分かった。以上の結果より ALE 法によ る GaAsN 薄膜作製にはN 原料を Ga 終端面に供給した方 が有効であることが見出された。

参考文献

- D.J. Friedman, J.F. Geisz, S.R. Kurtz, J.M. Olson, and R. Reedy, "Nonliner dependence of N incorporation on In content in GaInNAs", J. Cryst. Growth, **195** (1998) 409.
- 2) H. Suzuki, M. Inagaki, T. Honda, Y. Ohshita, N. Kojima, and M. Yamaguchi, "Improvements in Optoelectrcal Properties of GaAsN by Controlling Step Density during Chemical Beam Epitaxy Growth", Jpn. J. Appl. Phys. 49, 04DP08 (2010).
- M. Ozeki, "Atomic layer epitaxy of III-V compounds using metalorganic and hydridesources", Mater. Sci. Rep. 8, 97 (1992).
- Naresh Chand, S.N.G Chou, "A comprehensive study and methods of elimination of oval defects in MBE-GaAs", J. Cryst. Growth, **104** (1990).
- 5) M. Mitsuhara, T. Sato, N. Yamamoto, H. Fukano, Y. Kondo, "Carbon reduction and antimony incorporation in InGaAsSb films grown by metalorganic molecular beam epitaxy using tris-dimethylaminoantimony", J. Cryst. Growth, **311** (2009) 3637.