容量比に鈍感な SC 循環型 A/D 変換器

田島 翔太^{a)}•松本 寛樹^{b)}

SC Algrithmic A/D Converter Insensitive to Capacitance Mismatch

Shota TAJIMA, Hiroki MATUMOTO

Abstract

This paper shows an improved algorithmic A/D converter insensitive to capacitance mismatch. By using modified clock sequence, error caused by it is reduced and resolution is estimated to 12 bit. Converter operation is confirmed on SIMetrix.

Keywords: Swiched-capacitor, A/D Converter, capacitance ratio

1. はじめに

近年、情報通信の果たす役割はますます拡大している。 自然量がアナログ量で表現される一方、電子機器ではデジ タル値で表現される。情報通信を行うにはアナログ信号と デジタル信号間でデータを変換する回路であるアナロ グ・デジタル(A/D)変換器とデジタル・アナログ(D/A)変換 器が必要不可欠であり、その性能が通信システムやサービ ス品質と深く関わっている。

A/D 変換器は速度と精度の両立が難しいため適所適材 で様々な方式のものが使用される。1[kHz]程度の低速度で 20 ビット程度の高精度な分解能を持つ A/D 変換器はデジ タルテスター等の計測器に、1[Mhz]程度の A/D 変換器で は 15 ビットの精度に適したマイコンなどに、映像や音声 など遅延が許されないような速度のものには 1[Ghz]、10 ビット分解能の A/D 変換器が用いられる。

本研究ではこのうち中精度の A/D 変換器として適して いるスイッチトキャパシタの循環型と逐次比較型の A/D 変換器に関して精度を向上させ比較を行う。

2. 基礎原理

2.1 循環型 ADC

循環型 ADC は巡回型 ADC とも呼ばれ、入力電圧を2ⁱ Vr の電圧で加減算し0に近づけていき、0との電圧の大小比 較で出力ビットを決定する方式の ADC である。

変換アルゴリズムは次式で表される。

a)大学院電気電子工学専攻

b)工学部准教授

 $V_t(i+1) = V_t(i) + (-1)^{b_i} 2^{-i} \mathrm{Vr}$ ただし

$$\begin{cases} b_i = 1 \mid V_t(i) \ge 0 \\ b_i = 0 \mid V_t(i) < 0 \end{cases}$$

 $V_t(0) = Va$ ここで V_a は入力電圧を示す。

2.2 逐次近似型 ADC

逐次近似型 A/D 変換器は、入力電圧を 2⁻ⁱV_rの電圧で加 減算し入力電圧に近づけていき、入力電圧との電圧の大小 比較で出力ビットを決定する方式の ADC である。変換ア ルゴリズムは行列式を用いて次式で表される。

$$\begin{pmatrix} V_t(i+1) \\ V_r(i+1) \\ V_a(i+1) \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{b_i}{2} & \frac{\overline{b_i}}{2} \\ \overline{b_i} & b_i & 0 \\ b_i & 0 & \overline{b_i} \end{pmatrix} \begin{pmatrix} V_t(i) \\ V_r(i) \\ V_a(i) \end{pmatrix}$$

ただし符号ビット $b_0 = 1$ $V_t(0) = \frac{V_r}{2} = \frac{1}{2}$ $V_r(0) = V_r = 1$ V_r は基準電圧 $V_a(0) = 0$

いずれの場合においても、それぞれ長所短所が存在する。 循環型の長所として負の入力電圧に対応している点、逐次 近似型の長所として素子数が少ないという利点がある。

3. 回路構成

図1 従来回路

		\$1	-52	\$3	S4	55	S6	S7	S8	-59	510	\$11	\$12	\$13
SET	1.			1		1	1		1		1		1	
	2	.1												1
	3			1								1		
	4		1			1								
	5				1									
CONV	1						-	1		1	b_{i-1}		$\overline{h_{i-1}}$	
	2						0880		9006			b_{i-1}		b
	3					1	8008		oeea					
	4					-		at.		1	$\overline{b_{i-1}}$		b_{i-1}	
	6						0000		0000		10000	$\overline{b_{i-1}}$	114.0	b1-1
	6				1		8006		0000					

3.1 循環型 ADC

従来回路^[1]を図1に、提案回路を図2に示す。それぞれ のスイッチ表を表1、表2に示す。

従来回路では、 C_1 に入力電圧を一度保持した上で C_3 または C_4 と C_2 を用いて分圧を行い、 C_2 の電圧を±0.5倍の値として使用し C_1 に転送する変換を繰り返し、この電圧の正負を基にビットを決定する。そのため、 C_2C_3 間の容量比不整合に加え C_4 のキャパシタの容量不整合に依存するという問題点を有する。

一方提案回路では図 1 の回路に新たに C_3 というキャパ シタを挿入する。 C_1 に充電された電圧は、 C_AC_B を用いて 分圧を行い、 C_A または C_B の電圧を 0.5 倍として使用しそ れを C_4 又は C_5 へ保存し、 C_1 を V(i)としてビットを決定

Va O S1Vr O C1 S3S5 C1 S3S5 C S10 S10 S10 S12 S12

図 2 提案回路

			-											
-		\$1	52	53	\$4	55	58	\$7	58	\$9	510	511	S12	513
SET	1			1		1	1		1		1		1.5	
	2	Τ.												1
	3			1			1					1		
	4		3			- 1								
	5				1									
	1							1		1	b 1		$\overline{b_{i-1}}$	
	2						oneo		eooe			b_{i-1}		b ₁₋₁
8	3					1	8008		0000					
No.	4							1		-1	$\overline{b_{i+1}}$		b_{i-1}	
	5						0860		0000		1000	$\overline{b_{i-1}}$		b_{i-1}
	8				1		8008		0000					

表2 提案回路 スイッチ表

する。よって、 $C_1C_4C_5$ の容量比不整合の影響は受けない。 また、 C_AC_B の役割を交互に入れ替え動作を2回行うこと で、分解能を向上することが可能とした。

3.2 逐次近似型 ADC

従来回路^[2]を図3に、提案回路を図4に示す。それぞれ のスイッチ表を表3、表4に示す。

共に C_U と C_L はそれぞれ 2.2 で述べる式の $V_r(i)$ 、 $V_a(i)$ の電圧がかかり、 C_A と C_B は $V_t(i)$ の電圧がかかる。

図 3 では、 C_A に V_t (i-1)の電圧が充電された後、 $C_A C_B を$ 用いて分圧が行われる。その為、 C_A の容量比不整合の値の影響を受けやすい欠点を有する。

一方図4では、1ビットずつ交互にC_AまたはC_BにV_t(i-1)の電圧が充電される。その為、図3の回路と比較し、容量比不整合の影響を受けにくい利点を有するが、2度変換す

図 3 従来回路

表3 従来回路 スイッチ表 s 5 6 3 4 7 8 9 10 11 12 1 S¢1 1 1 1 1 1 S¢2 1 1 1 SØ3 1 1 CØ1 $\overline{b_{l-1}}$ b_{l-1} 1 1 Сф2 b_{i-1} $\overline{b_{l-1}}$ 1 СфЗ 1 1

ることで処理時間が増加するという欠点を有する。

4. 誤差解析

4.1 循環型 ADC における容量比不整合

循環型 ADC のアルゴリズムを解くと次式になる。

$$Vt = (b_0 - 1)Vr + \sum_{i=1}^{n} b_i 2^{-i} Vr$$

容量比不整合の影響を与えたアルゴリズムを容量比不 整合 ε を用いて記述する。

図1の回路における容量不整合誤差は、文献[1]より

$$Vt = (b_0 - 1)Vr + \sum_{i=1}^{n} b_i (2 + \varepsilon)^{-i} Vr$$

と与えられている。

ここで、容量比不整合 ε は

$$\varepsilon = \frac{C_A - C_B}{C_A + C_B}$$

表4 提案回路 スイッチ表 8 2 5 4 7 8 12 5 11 SAL 1 1 1 1 t. $S\Lambda 2$ 1 1 $\overline{b_{i-1}}$ \$1 1 θ_{i-1} ϕ_{2}^{2} tin *bio "bie trie b ... \$3 1 SBI 1 1 1 -1 t SB2 1 1 1 b 01 1 b_{l-1} "hee "his h ... 62 bie his Di. 1 43 1

とする。一方、図2の容量比不整合は

$$Vt = (b_0 - 1)Vr + \frac{1 + \varepsilon^2}{2}b_1 +$$

$$\sum_{i=1}^{n_{/2}or^{n+1}_{/2}} (1-\varepsilon^2)^i b_{2i} 2^{-2i} Vr +$$

$$\sum_{i=1}^{n_{2}or^{n+1}/2} (1-\varepsilon^4)(1-\varepsilon^2)^{i-1} b_{2i+1} 2^{-(2i+1)} Vr$$

として与えられる。

容量比不整合 $\varepsilon = 1.1\%$ 、4 ビット間隔で誤差をプロット したグラフを図 5 に示す。ただし、図 2 の誤差が微少とな るため、横軸 1LSB とし図 1 は 1LSB=5 ビット、図 2 は 1LSB=13 ビットとする。これより図 1 では(F)_H、図 2 では、 (8)_Hが誤差が最大となることが分かる

図5 循環型 ADC における容量比不整合誤差

前述式において、誤差最大となる点に関して分解能 n に関する式へ変形を行う。図1では、(FF)_Hより、すべて のビットが1の時誤差が最大であるので、

$$\Delta V t = \sum_{i=1}^{n} (2^{-i+1} - (2+\varepsilon)^{-i+1}) < \frac{1}{2^{n+1}}$$

を満たす必要がある。よって、

$$2^{n+1} - n < 2 + \frac{1}{\varepsilon}$$

が得られる。

図 2 では、 $(80)_H$ である。 $b_1=1$ かつ、 $b_2\sim b_n=0$ のとき、 誤差が最大である。よって同様に変形すると

$$n < -6.644 \log_{10} \varepsilon$$

が得られる。

4.2 逐次近似型 ADC における容量比不整合

逐次近似型の場合における容量不整合誤差について述 べる。逐次近似型 A/D 変換器のアルゴリズムは行列を用 いて次のように示される。

$$\begin{pmatrix} V_t(i+1) \\ V_r(i+1) \\ V_a(i+1) \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{b_i}{2} & \frac{\overline{b_i}}{2} \\ \frac{\overline{b_i}}{\overline{b_i}} & \frac{b_i}{2} \\ b_i & 0 & \overline{b_i} \end{pmatrix} \begin{pmatrix} V_t(i) \\ V_r(i) \\ V_a(i) \end{pmatrix}$$

図 4 における容量比不整合の影響を考慮すると次式に 変形できる。

$$\begin{pmatrix} V_t(i+1) \\ V_r(i+1) \\ V_a(i+1) \end{pmatrix} = \begin{pmatrix} 1 \pm \varepsilon & (1 \pm \varepsilon)b_i & (1 \pm \varepsilon)\overline{b}_i \\ \overline{b}_i & b_i & 0 \\ b_i & 0 & \overline{b}_i \end{pmatrix} \begin{pmatrix} V_t(i) \\ V_r(i) \\ V_a(i) \end{pmatrix}$$
$$\begin{pmatrix} V_t(0) \\ V_r(0) \\ V_a(0) \end{pmatrix} = \begin{pmatrix} (1 \pm \varepsilon)V_r \\ V_r \\ 0 \end{pmatrix}$$

この式について、8ビット間隔で誤差率を計算する。その時の誤差を図6に示す。ただし横軸は1LSBとし、1LSBは13ビット、容量比不整合は4.1同様に1.1%とす

図6 図4における容量比不整合誤差

る。この時、誤差が最大となる点は、(F3)_Hであり、1.1% 容量不整合下13ビット分解能を有することがわかる。

4.3 有限開放利得誤差

有限開放利得とは、オペアンプを非反転増幅器として用 いる時に生じる誤差である。

図 2 では、変換アルゴリズム式を利得 A を用いて次の ように変形できる。

$$W_a = (b_0 - 1)V_r + \sum_{l=1}^n b_l 2^{-l} (1 - \frac{2}{A})^l V_r$$

この式において、8ビット間隔で誤差を計算したものを 図7に示す。なお、1LSBは14ビットである。図7より、 誤差が最大となるビットは(FF)_Hであり、その時上式を変 形すると、

$$2^{n+2} < A$$

が得られ、利得 100[dB]時、分解能 14 ビットである。 図 4 では、次のように変形できる。

$$\begin{pmatrix} V_t(i+1) \\ V_r(i+1) \\ V_a(i+1) \end{pmatrix} \\ = \begin{pmatrix} \frac{1}{2} & \frac{b_i}{2} (\frac{A}{A+1}) & \frac{\overline{b_i}}{2} (\frac{A}{A+1}) \\ \overline{b_i} (\frac{A}{A+1}) & b_i & 0 \\ b_i (\frac{A}{A+1}) & 0 & \overline{b_i} \end{pmatrix} \begin{pmatrix} V_t(i) \\ V_r(i) \\ V_a(i) \end{pmatrix}$$

この式において、8ビット間隔で誤差を計算したものを

図8 図4の有限開放利得誤差

図8に示す。なお、1LSBは13ビットである。図8より、 誤差が最大となる点は(D5)Hである。よって、100[dB]の 時の分解能は13ビットである。

5. 研究結果

図 2、図 4 について、回路シミュレータ SIMetrix を用 いてシミュレーションを行う。

設定値として、分圧に用いるキャパシタの値を容量不整 合 1%となる C_A =9.95[pF]、 C_B =10.05[pF]に固定し、容量比 不整合の影響を受けない他のキャパシタを 10[pF]とする。 オペアンプは増幅率 100[dB]の理想オペアンプとする。

入力値として、図5および図6の誤差が最大となるビットと予想される入力電圧を入力する。

5.1 Va=666.666mV を図2で変換したとき

図9に図2へV_a=666.666Vを入力ときの出力b_iを示す。 図9中において、中央部の波形はオペアンプの出力波形で あり、この波形の0[V]の大小比較によってb_iが決定され、 左半分、右半分の2つの出力結果が得られ平均したものを 出力ビットとして取り扱う。

図 9 より、(AA3E)_H、(AB14)_Hが得られる。この結果を平 均化すると、(AAA9)_Hが得られる。理想的なビットは (AAAA)_Hであるため、15 ビット目で誤りを生じていること が分かる。

図 11 図 4 に 951mV を入力した時の出力波形

5.2 Va=951mV を図4で変換したとき

4.2より $(F3)_{H}$ に相当する V_{a} =951[mV]を図4に入力する。 この時得られる波形を図10に示す。図中央部の波形は $V_{U}(i)$ 、 $V_{t}(i)$ 、 $V_{a}(i)$ を示す。

図 10 より、(F35F)_H、(F38F)_Hが得られる。この結果を 平均化すると、(F377)_Hが得られる。理想的なビットは (F374)_Hであるため、15 ビット目で誤りを生じていること が分かる。

5.3 他の値を変換したとき

同様に、V_a=250[mV]、333[mV]、500[mV]、750[mV]、834[mV] を図 2、図 4 へ入力した時に得られるビットを表 5 にまと める。これより誤差が最大となる点は、図 2 では 500[mV] の時、図 4 では 834[mV]の時誤差が最大となり、分解能は 図 2 で 9 ビット、図 4 で 12 ビットと評価できる。

6. 結論

今回提案した容量不整合 1%の A/D 変換器では図 2 では 9 ビット、図 4 では 12 ビットの分解能を有していること が分かった。図 3 は同等条件で 9 ビット^[2]であったため、 容量比不整合の影響は低減できたことが分かる。

+			••••••	10 ···	-	
入力店	田相佔	循環型回路	<u>z</u>	逐次近似型回路		
可以以	里思胆	出力結果	ビット数	由力結果	ビット数	
250[mV]	(4000) _H	(4051) _H	10	(3FFF) _H	16	
333[mV]	(5555) _H	(5559) _H	15	(5558) _H	14	
500[mV]	(8000) _H	(7F5D) _H	9	(8007) _H	14	
666[mV]	(AAAA) _H	(AAA9) _H	16	(AAAE) _H	13	
750[mV]	(C000) _H	(C029) _H	13	(C002) _H	15	
834[mV]	(D581) _H	(D580) _H	16	(D586) _H	13	
951[mV]	(F374) _H	(F373) _H	16	(F377) _H	15	

表5 図2、図4の変換結果と誤差ビット

また、図2と図4を比較したとき、逐次近似型 ADC である図4の回路のほうが精度がよいことが分かる。

しかしながら、処理時間が大幅に増加した問題点が現われた。図1の場合16ビット変換で850[us]の処理時間であったのに対し、図2では2[ms]の処理時間がかかっている。 同様に図3の場合510[us]の処理時間であったのに対し、 図4の場合、1[ms]の処理時間がかかっているという問題 点がある。

また、図4は、負の入力電圧に対応していないという問題点もある。図2では単純に大小で比較を行うため、負の基準電圧は不要のまま負入力に対応できる。しかし図4の場合 $V_L(0)=0$ としているため、それ以下の電圧の変換が行えない。 $V_L(0)=-V_t$ と定義するように動作を変更する必要がある。

今後の課題として、図4の負電圧変換に対応した回路の 作成と処理時間の短縮が今後の課題として挙げられる。

参考文献

- [1] 渡辺健蔵・松本寛樹・藤原一伸著、スイッチドキャパシタ循環型データ変換器、静岡大学電子工学研究所研究報告、 p.105-p.114、7月 1985
- [2] Watanabem Kenzo and Ogawa Satomi, "A Switched-Capacitor Successive-Approximation A/D
- Converter", IEEE Transactions on Instrumentation and Measurement., p.p.847-853, Vol.42, No.4, Aug 1993.