Ga を添加した酸化亜鉛膜の熱処理効果

新宮 政人¹⁾ · 吉野 賢二²⁾ · 碇 哲雄³⁾

Annealing Effect of Ga Doped ZnO Thin Film.

Masato SHINMIYA, Kenji YOSHINO, and Tetsuo IKARI

Abstract

Gallium doped zinc oxide (GZO) films were prepared by ion plating. Heat treatment of the samples was carried out. The samples prepared with a hexagonal wurtzite structure were evaluated by X-ray diffraction, scanning electron microscopy, transmission measurement and hall measurements. GZO films showed a high visible light transparency and the resistivity showed $2.4 \times 10^{-4} \Omega$ cm. Resistivity increased in the Annealing treatment under oxygen atmosphere at 400 ~ 500 °C. This was considered to contribute to the reduction of surface oxygen vacancies.

Keywords: Zinc oxide, GZO, Ion plating, Annealing treatment

1. はじめに

透明導電膜は、透明性と導電性を併せ持つ膜である。 透明導電膜は情報化社会が進んでいる昨今、ディスプ レイの進化に伴い研究が盛んになった。また CRT モニ タの画面は11インチ対角長の時代からかけてフラット になってきた。また、クリーンエネルギーの1つとし て注目されている太陽電池にも欠かせないものである。 太陽電池はp型とn型の半導体を積層したものであり、 表側の電極に透明導電膜が使用されている。他にも、 プラスチックにコートしてタッチパネルにしたり、窓 ガラスに透明導電膜をコートして通電加熱すると、曇 り止めや凍結防止になるので、乗り物の操縦席に使わ れるなど、幅広い用途がある¹⁾。

液晶ディスプレイ及び太陽電池を作製する上で、重要な技術の1つが透明電極の作製である。現在最も普及している透明電極は、ITOであり、酸化インジウム (In₂O₃)にスズ(Sn)を添加したものである。

しかしながら、In は、希少元素の1つとされ、高価で、将来的に不安な材料である。そこで、ITO に代わる代替材料として ZnO 膜に注目した。

ZnO 膜作製法には様々な方法があり、マグネトロン スパッタリング法²¹、イオンプレーティング法³¹、レー ザー分子線エピタキシー法⁴¹、イオンビームスパッタ リング法⁵¹、ゾル・ゲル法⁶¹、スプレー熱分解法⁷¹な どがある。ここでは成膜時に基板へのダメージが低く、 尚且つスパッタ法に比べ高速成膜で、大面積化も可能なイオンプレーティング法によって Ga-doped ZnO (GZO)膜を作製した³⁾。更に作製した膜を熱処理することで結晶性の向上を試みた。

実験方法

2.1 作製方法

成膜にはイオンプレーティング法を用いた。イオン プレーティング法とは半導体薄膜を製膜するとき、蒸 着物や反応ガスのイオン化させることで成膜を行う方 法である。イオンプレーティング法における成膜レー トは 170 nm/m であり一般的なスパッタリング法と比 較すると 5~6 倍の高速成膜である。イオンプレーティ ング法における膜厚制御は基板を搬送形式とすること で制御可能である。他にも重要パラメーターとしては、 基板温度、真空度、製膜中に流す酸素ガスの流量など である。蒸発材料としては酸化亜鉛粉末を成形、焼結 したものを用いている。作製装置の概略図を Fig. 1 に 示す。

¹⁾ 電気電子工学専攻大学院生

²⁾ 電気電子工学科准教授

³⁾ 電気電子工学科教授

2.2 熱処理方法

次にイオンプレーティング法によって成膜された膜 に熱処理を行った。一般的に熱処理は金属の軟化や硬 化を目的に行われる。しかし、今回は熱処理を施すこ とにより粒径の増大と電気的特性の向上を目的に行っ た。熱処理を行うさいに熱処理雰囲気を酸素とアルゴ ン雰囲気で熱処理を行った。熱処理温度は100~500 ℃ で、熱処理時間は5 min とした。

2.3 各評価方法

作製した膜の評価方法として、結晶同定や配向性、 粒径、格子定数をX線回折法より、表面状態を走査型 電子顕微鏡と原子間力顕微鏡によって、光学特性を透 過率測定、電気的特性をホール測定により行った。

3. 実験結果

3.1 X線回折測定

イオンプレーティング法で作製し熱処理を施した GZO 膜を XRD により評価した。X 線回折法は、X 線 が物質原子によって回折されることにより、物質の構 造や格子定数などを測定する。評価した結果 ZnO の JCPDS カード⁸⁾と比較すると (0002) 面のピークが確 認された。回折ピーク位置と JCPDS カードのピーク位 置から六方晶ウルツ鉱型構造の ZnO 膜と特定され、熱 処理を施しても配向性には変化が見られなかった。Fig. 2に酸素雰囲気中における XRD スペクトルを示し、Fig. 3にアルゴン雰囲気中における XRD スペクトルを示す。 この XRD スペクトルからこのサンプルは c 軸配向性 が確認された。更に、この XRD スペクトルより半値幅 より粒径と格子定数を算出した。粒径はシェラーの式 より算出した。算出した粒径は酸素雰囲気中で 61~67 nm、アルゴン雰囲気中で 61~68 nm であり、熱処理時 のガス雰囲気における粒径の違いは確認されなかった (Fig. 3)。熱処理温度変化における格子定数は、熱処理 温度を増加させるに伴い若干の減少傾向を示した(Fig. 4)。

Fig.6 熱処理温度変化による 酸素雰囲気中熱処理での透過スペクトル

3.2 透過率測定

次に透過測定を行った。透明導電性酸化物は紫外 線・赤外線領域では光を吸収・反射し、可視光領域の みで光を透過する。可視光透過の短波長側の閾値は物 質固有のエネルギーギャップによって定められ、長波 長側の閾値はキャリア濃度の関数であるプラズマ振動 によって決まる。一般的に ZnO のバンドギャップは室 温で 3.3 eV で、吸収端が 376 nm に位置することから、 今回使用した GZO 基板のバンドギャップとほぼ一致 している。また、熱処理後も吸収端はほぼ同じ位置に 存在した。今回の測定結果から、酸素、アルゴン各雰 囲気中において熱処理を行ったが、バンドギャップが 高エネルギー側にシフトする Burstein Moss シフトは確 認されなかった⁹⁾。このため熱による GZO 膜への影響 は少ないと考えられる。透過スペクトルの結果からア ルゴン雰囲気中における熱処理では変化がなかったが 酸素雰囲気中において 400~500 ℃の熱処理において 長波長側の透過率の改善が確認された(Fig. 6)。これは GZO 膜表面に酸素が取り込まれた結果、酸素空孔が減 少したことによりフリーキャリアが低下し、そのため プラズマ振動が抑えられることにより、長波長側の透 過率が改善したと考えられる。

Fig. 7 熱処理温度変化による アルゴン雰囲気中熱処理での透過スペクトル

3.3 ホール測定

最後に 作製した GZO 膜をホール測定によって電気 的特性を評価した。ホール測定では、外部電場を加え た時に電流方向に対して垂直方向に生じる起電力を測 定し、キャリア濃度、抵抗率、移動度を求める。キャ リア濃度においては各雰囲気で熱処理した結果、減少 傾向を示した。抵抗率においてアルゴン雰囲気中では 熱処理温度を高くするに従い減少傾向を示したものの 酸素雰囲気中の熱処理では 400 ~ 500 ℃で増加傾向を 示した。これは、GZO 膜表面に酸素が取り込まれ酸素 空孔が減少しドナー性欠陥が少なくなることで抵抗率 が増加したと考えられる。

Fig. 11 ホール測定による移動度

4. 結論

今回イオンプレーティング法に作製されたGZO膜に 熱処理を行った。熱処理は酸素・アルゴン雰囲気中に おいて、熱処理時間5分間、熱処理温度を100~500 ℃ に変化させた。作製した膜の評価方法として、結晶同 定や配向性、粒径、格子定数をX線回折法より、表面状 態を走査型電子顕微鏡と原子間力顕微鏡によって、透 過率測定に積分球、電気的特性をホール測定により行った。

今回作製したサンプルはZnOのJCPDSカードと比較 し、X線回折ピークと格子定数の一致から六方晶ウルツ 鉱型構造である多結晶のZnOと特定した。熱処理にお ける構造の変化は見られなかったが、酸素雰囲気中に おいて、透過率と抵抗率に変化が見られた。その結果 として、膜表面に酸素が取り込まれることによりドナ 一性欠陥である酸素空孔が減少することで抵抗率が増 加し、キャリア濃度が減少することで透過率の長波長 側のプラズマ振動が抑えられ、透過率が増加したと考 えられる。

参考文献

- 監修/澤田豊,透明導電膜,(シーエムシー出版, 2006)
- J. Yoo, J. Lee, S. Kim, K. Yoon, I. J. Park, S. K. Dhungel, Thin Solid Films, 480, (2005), 213.
- T. Yamamoto, T. Sakemi, K. Awai, S. Shirakata, Thin Solid Films 452, (2007), 439.
- K. Sakurai, D. Iwata, S. Fujita, Jpn. J. Appl. Phys., 38, (1999), 2602.
- T. Tsurumi, S. Nishizawa, N. Ohashi, T. Ohgaki, Jpn. J. Appl. Phys., 38, (1999), 3682.
- 6) D. Bao, Thin Solid Films, 312, (1998), 37.
- M. Krunks, E. Mellikov, Thin Solid Films, 270, (1995), 33.
- 8) JCPDS 361451
- G. Goncalves, E.Elangovan, P. Barquinha, L. Pereira, R. Martins, E. Fortunato, Thin Solid Films 515, (2007), 8562.