ホットプレス法により作製した CuInTe₂の成長温度依存性

田代 龍一¹⁾·吉野 賢二²⁾·碇 哲雄³⁾

Growth and Characterization of CuInTe₂ Crystals Grown by Hot-press Method

Ryuichi TASHIRO, Kenji YOSHINO, Tetsuo IKARI

Abstract

Undoped CuInTe₂ crystals were grown by hot-press (HP) method at 400 ~ 700 °C for 1 h under high pressure (10 ~ 40 MPa). One of the advantages of the HP method is that a crystal growth is easy at low temperature. The sizes of the samples were 20 mm in diameter. All samples indicated chalcopyrite structures, nearly stoichiometry and p-type by means of X-ray diffraction, electron probe microanalysis and thermoprobe analysis, respectively. However, the sample grown at 400 °C had a secondary phase. According to increasing temperature, the sample did not have the secondary phase. A single phase CuInTe₂ crystal could be successfully obtained at 600 °C. This temperature was lower than the melting point.

Keywords: CuInTe₂, Hot-Press, Chalcopyrite

1. はじめに

Cu-III-VI₂ 族カルコパイライト型化合物半導体の中で も、CuInTe₂は禁制帯幅 1.04 eV を持ち、光吸収係数は 10⁵ cm⁻¹ 程度と大きく、容易に P 型の伝導型の得られるとい う特徴をもっており、太陽電池の吸収層として期待されて いる¹⁾。CuInTe₂の作製法は、薄膜では蒸着法^{2,3)}や PLD (Pulsed Laser Deposition)法⁴⁾による作製法が報告されてい る。また、バルク結晶ではブリッジマン法⁵⁾や THM(Traveling Heater Method)法⁶⁾、CVT(Chemical Vapor Transport)法¹⁾による作製法が報告されているものの、薄 膜、バルク結晶ともに関する報告例は少ない。そこで、本 研究ではホットプレス法により CuInTe₂バルク結晶の結晶 成長を行った。

ホットプレス法は低温かつ短時間で結晶成長ができ、真空を必要としないなどの利点がある。これまでにホットプレス法を用いて、AgGaSe₂、AgInS₂、CuInS₂、AgInSe₂バルク結晶を作製・評価してきた⁷⁻¹⁰。

2. 実験方法

粉末二元系材料 Cu₂Te (99.9%、高純度化学株式会社)、 In₂Te₃ (99.99%、高純度化学株式会社)を用いて、化学量 論的組成比になるように混ぜ合わせた。これを原料として

1) 電気電子工学専攻大学院生

2) 電気電子工学科准教授

3) 電気電子工学科教授

HP法を用いてCuInTe₂ バルク結晶を作製した。

 $Cu_2Te + In_2Te_3 \rightarrow 2CuInTe_2$ (1)

また、結晶の評価として、構造特性と結晶化度を X 線 回折(XRD)法、組成分析を電子プローブマイクロ分析、密 度を比重測定、電気的特性をホール測定により行った。

XRD 測定では、測定温度を室温、加速電圧 40 kV,管電 流 40 mA で、Cu ターゲットに衝突させて得られる Ka線 (λ =1.54050 Å)を用いた。強度の強い Ka₁線を光源とし、 Ka₂線は後に解析処理にて除去を行った。カルコパイライ ト半導体 CuInTe₂は正方晶系であるので、面間隔 d、面指 数 (*h k l*)、格子定数 a、c は式(2)を満たす¹¹。

$$\frac{1}{d} = \frac{h^2 + k^2}{a^2} + \frac{l^2}{c^2}$$
(2)

また粒径tは、測定によって求めたピークの半値幅B[rad]、入射角の波長 λ)、反射角 θ [rad]との関係から下式で 表される。

$$t = \frac{0.9 \cdot \lambda}{B \cdot \cos \theta} \tag{3}$$

電子プローブマイクロ分析は試料を1.3×10⁻³ Pa以上の高 真空な試料室にセットし、電子銃から20 kVで加速された 電子ビームを電子レンズで絞って試料に照射し、試料から X線、反射電子、透過電子、二次電子を発生させる。これ らの内、二次電子によりSEM (S-4100 型 日立走査型電子 顕微鏡)にてCRT上に写し出された試料像を拡大し、約1 mm² 部分に加速電子を当て、そこから発生するX 線を Cu はK殻、In、Te はL 殻で測定し、装置内部の標準資料 で補正した。これによりCu、In、Te の組成分布の測定を 行った。

比重測定はアルキメデスの原理を利用している電子比 重計MD-200(ミラージュ貿易株式会社)を用いて、CulnTe₂ バルク結晶の比重の測定を行った。試料の比重、体積をそ れぞれ X_0 、Vとすると、試料の空気中の重量は X_0Vg とな る。ここでgは重力加速度である。次に試料を水中(比重 X)に沈め、水中での試料の重量Yを測定する。試料は浮 力を受けるので、XVgだけ軽くなる。この原理を用いて 比重の測定を行った。

ホール測定は Ecopia 社製 HMS-3000SP Hall Effect Measurement System を使用した。まず、試料表面に目的 のオーミック電極を作成するにあたり、スパッタ法を用い て、Au をオーミック電極として作成した。磁束密度を 0.5 T、測定温度を 300 K として測定を行った。

実験結果および考察

3.1 結晶成長

作製した試料をFig.1 に示す。カーボンダイスの形状よ り作製した試料は、直径20 mm、厚さは約2 mmの円柱状 である。圧力を25MPaとして成長温度を400~700℃と変化 させて作製した。成長時間は1時間である。成長温度400℃ の試料は作製後の研磨において焼結体全体が崩壊してい くほど、結晶がもろく、焼結があまり進行していないと思 われる。

表面の状態については、成長温度 400 , 500℃の試料 では表面は粗く、光沢が見られなかった。試料の表面、試 料を割ったときの試料断面には、加圧焼結の際にできる小 さな気孔が肉眼で確認できる程度の大きさで観察された。 成長温度 600℃の試料では表面の粗さは改善され、光沢も 観察されるようになった。試料内部の気孔は減少し、密に なっていた。成長温度 650,700℃の試料では、試料表面は さらに滑らかになり、光沢も強く観察された。また、成長 温度 700℃の試料ではカーボンダイス内で出発原料の In-Te₃ (融点 667℃¹²) と思われる試料の漏れが観察された。

Fig. 1 Sample grown by Hot-Press method.

3.2 X線回折

Fig. 2 に成長温度400℃~700℃で作製したサンプルの XRD 測定結果を示す。測定結果と一緒にICDDカード CuInTe₂¹³、Cu₂In₄Te₇¹⁴、Cu₂Te¹⁵、In₂Te₃¹⁶も示す。

Fig. 2に示す400~700[°]CのサンプルをICDDデータと照 らし合わせたところ、400,500[°]Cで作成したサンプルは、 CuInTe₂のピークを含んでおらず、Cu₂In₄Te₇のスペクトル が見られた。さらに、400[°]Cのサンプルには原料である Cu₂Teと一致するスペクトルが観察された。600~700[°]Cの サンプルでCuInTe₂の単相が得られた。

これらの原因としては、成長温度 400℃で作成したサン プルでは温度が不十分であったため、原料が十分に拡散す ることなく残ってしまったと思われる。400、500℃のサン プルで Cu₂In₄Te₇が得られた原因として、Palatnik 等の論文 ¹⁷⁾ 中で、Cu₂In₄Te₇は CuInTe₂を昇温させた際に Cu と In の秩序性が失われることで得られる OVC(Ordered Vacancy Compounds)相であると報告されている。そのような相が 今回低い成長温度で得られた原因としては、結晶中での熱 の拡散が不十分であったためを結晶全体で CuInTe₂を十分 に形成することができず、Cu と In の秩序が乱れたことに より Cu₂In₄Te₇が形成されたと思われる。

500℃で作製したサンプルは CuInTe₂の相を含んでおら ず 600℃で作製したサンプルは単相であったことから、 500~600℃の間に異相は減少し、CuInTe₂の成長が促進し たと考えられる。

Fig. 2 X-ray diffraction patterns.

Fig. 3はCuInTe₂の面方位を基にXRDの測定結果から得られた格子定数をICDDカード¹³⁾と共に載せたもので、Fig. 4はCu₂In₄Te₇の面方位を基に、XRDの結果から得られた格子定数をICDDカード¹⁴⁾と共に載せたものである。

Fig. 2 より求めた格子定数では成長温度が増加するに

したがい、a 軸、c 軸共にCuInTe2の格子定数の値に近づ く傾向を示した。特に600℃付近からICDDカードに近似し た値を示した。このことはX線回折の結果同様、成長温度 が増加するにしたがい異相が減少し、600℃から700℃のサ ンプルでCuInTe2の単層が得られたことが起因していると 思われる。

Fig. 4 Lattice Constant (Cu₂In₄Te₇).

X線回折の結果からシェラーの式によって求めた 112 面の粒径を Fig. 5 に示す。

粒径は(112)、(204)、(312)面とも全体として成長温度が 増加するに伴い粒径は増加する傾向を示した。しかし、 (112)面の650℃から700℃の成長温度の増加では粒径は減 少傾向を示した。この原因としては In_2Te_3 の融点が667℃で あること¹²⁾、 $Cu_2In_4Te_7$ への相転移が672℃であること¹⁷⁾か ら、CuInTe₂の成長が減少し、 $Cu_2In_4Te_7$ の結晶成長へ相転 移し始めたことによると思われる。よってX線回折では CuInTe₂の(112)と $Cu_2In_4Te_7$ の(111)の回折角20が近似した 値であるため、CuInTe₂の成長が減小したと思われる650℃ から700℃の間で粒径が縮小したと思われる。また、焼結 を促進するという目的で焼結温度を増加させることは非 常に有用である¹⁸⁾ため、600~650℃の焼結温度では CuInTe₂の焼結が促進されたため、温度を増加させること で結晶性が増したことにより粒径が増加したと思われる。

3.3 電子プローブマイクロ分析

Fig. 6 は作製したサンプルの EPMA の 3 箇所での測定 結果を示したものである。Fig. 19 中では、400,500℃での 測定結果は全ての測定箇所で Cu, In, Te の秩序性が乱れて いる。650,700℃のサンプルの測定では 3 箇所の測定であ る程度封入量と対応した秩序性が保たれた結果が得られ た。

また、X線回折の結果から CuInTe₂の単層が得られたと 思われる 600℃以上の成長温度で作製したサンプルで傾 向的には Cu-poor In-rich Te-rich の結果が得られた。こ のことから、点欠陥として Cu 空孔(V_{cu})、格子間 In(In_i)、 格子間 Te(Te_i)、Cu に置換した In(In_{cu})、Cu に置換した Te(Te_{cu})などが考えられるが、これらの試料はサーモプロ ーブ測定の結果より P 型であったため、アクセプタ性欠陥 として V_{cu}、Te_iがドナー性欠陥より多く含まれたと思われ る。また、第一原理計算により Cu-poor の CuInSe₂、CuGaSe₂、 CuAlSe₂の点欠陥の構成エネルギーを計算するとこれらの 化合物では完全結晶よりも V_{cu}の点欠陥を含んだ方が熱 力学的に安定な状態になるため、自然に V_{cu}は形成される という報告がある ^{19, 20)}。よって、本研究でもこれらと同 様に 600℃以上の成長温度で作成したサンプルでは V_{cu}が 十分に形成されていると思われる。

Fig.6 EPMAの測定結果.

3.4 比重測定

比重測定の結果を Fig. 7 に示す。密度の測定結果では全体の傾向として焼結温度を増加させるにしたがい、密度も大きくなるという結果が得られた。この理由としては、出発粉体の粒径を小さくすること、および焼結温度の上昇は焼結を促進する上で非常に有用である¹⁸⁾ので、焼結温度を増加させると結晶全体に熱拡散は行き届きやすくなるため、成長温度と共に密度は増加したと思われる。

また、成長温度 650[°]C以上での密度は若干の減少傾向を 示した。これは粒径サイズと同様に、 In_2Te_3 の融点が 667[°]C であること ¹²⁾、 $Cu_2In_4Te_7$ への相転移が 672[°]Cであること ¹⁷⁾から、 $CuInTe_2$ の成長が衰退し、 $Cu_2In_4Te_7$ へ相転移し始 めたことによると思われる。

CuInTe₂の密度は ICDD カード¹³において 6.0430 g/cm³ で、Cu₂In₄Te₇の密度は、Congiu 等の論文 ²¹によると比重 測定で行った場合 5.93g/cm³である。今回作製したサンプ ルではすべてのサンプルで ICDD カードの CuInTe₂に比べ 小さい値が得られた。このことは Hot-Press 法は熱の拡散 過程よる格子振動の活発化を促した結晶成長法であるの で、試料中で十分に気孔率を下げられるほどの焼結が進行 しなかったことが原因であると思われる。

3.5 ホール測定

ホール測定によって求めたキャリア濃度、移動度、抵抗 率を Figs. 8-10 に示す。

ホール測定では 400℃で作製したサンプル以外すべて のサンプルにおいて、金の電極でオーミック特性が得られ、 成長温度 500℃の試料の伝導型は N 型、600~700℃での伝 導型は P 型となった。

 $500 \sim 600$ Cの試料で N 型から P 型に変化した理由としては、 X 線回折の結果から成長温度の増加により Cu₂In₄Te₇ より CuInTe₂ の全体量が上回ったことに原因が あると思われる。Cu₂In₄Te₇は CuInTe₂に比べ、本来 Cu が 入るところに In が入った際に形成されるものだと考えら れるので、結晶中でドナー性を示す In_{Cu}が多く形成された

ことでN型が形成され、600℃以上のサンプルでは結晶全体で $Cu_2In_4Te_7$ に比べ $CuInTe_2$ の割合が増えたため、ドナー性欠陥数が減少しアクセプタ性欠陥数が上回った結果 P型が得られたと思われる。

キャリア濃度、移動度、抵抗率は、500℃から 650℃に おける変化と 650℃から 700℃における変化に違いが見ら れる。このことから、温度増加に伴い 650℃付近でドナー 性欠陥 In_{Cu} が大幅に減少し、650℃以上ではアクセプタ性 の欠陥 V_{Cu} , Te_i が増加したと思われる。また Congiu 等の 論文²¹⁾によると、室温状態(300K)での CuInTe₂の移動度 は 100 cm²v⁻¹s⁻¹ であり、Cu₂In₄Te₇ の移動度は 0.1~1 cm²v⁻¹s⁻¹ であるという報告がある。このことからも 600℃ 付近から Cu₂In₄Te₇の成長が徐々に衰退し、CuInTe₂の成長 が促進されたことが伺える。

ホール測定の結果より最も大きな移動度が得られた 650℃で結晶成長させたサンプルはキャリア濃度 2.26×10¹⁹ cm⁻³、移動度 77.3 cm²v⁻¹s⁻¹、抵抗率 3.57×10⁻³ Ω cm であった。参考として Prabukanthan 等による論文 ¹⁾の CVT 法により作製した CuInTe, バルク単結晶のキャリア 濃度、移動度、抵抗率を示すと、キャリア濃度 2.33×10¹⁷ cm⁻³、移動度 106 cm²v⁻¹s⁻¹、抵抗率 3.00×10⁻² Ω cm であっ た。参考文献と650℃で作製したサンプルを比較してみる と、参考文献に比べ今回650℃で作製したサンプルのキャ リア濃度は高く、移動度は低い。また、抵抗率は低い値を とっている。参考文献に比べ、キャリア濃度が高く、移動 度が低くなった原因としては、今回得られたサンプルは多 結晶であったため、CVT 法に比べ結晶中に多くの欠陥を 含んだことによりキャリアが増加したと考えられる。これ によりキャリア濃度が増加し、そのキャリアが散乱機構を 示すことで移動度が減少したと思われる。

Fig. 8 キャリア濃度.

4. 結論

粉末二元系材料 Cu₂Te、In₂Te₃ を用いて、ホットプレ ス法により、CuInTe₂ バルク結晶の作製を試みた。圧力 25MPa、成長時間 1 時間で、成長温度 400℃から 700℃と 変化させた。

作製した結晶は、成長温度 400,500℃では表面が粗く、 光沢が見られなかった。また、試料内部に小さな気孔が見 られた。成長温度増加にしたがって試料の状態は変化し、 成長温度 600℃では表面は滑らかになり、光沢がみられた。 このとき、試料内部の気孔は見られなかった。

X線回折の結果より、全ての試料で多結晶であった。成 長温度 400℃では、CulnTe₂のピークは観察されず、粉末 二元系材料 Cu₂Te のピークや Cu₂In₄Te₇のピークが顕著に 観察された。成長温度増加にしたがって、粉末二元系材料 のピークは 500℃で消え、Cu₂In₄Te₇のピークは 600℃で消 えた。成長温度 600, 625, 650, 675, 700℃で ICDD カードの CulnTe₂のピークと一致した。格子定数は、成長温度 400, 500℃で多少の相違が見られたが、成長温度 600~700℃で ICDD カードの a 軸、c 軸の値に近づいた。粒径は成長温 度増加にしたがって増大し、単相が得られた成長温度 650℃で 92 nm が得られた。 電子プローブマイクロ分析の結果より、成長温度増加に したがって、Cu, In, Teの組成比は化学量論的組成比に近づ き、成長温度600[°]C以上でより顕著に近づいた。このとき Cu-poor In-rich Te-richの結果が得られた。ホール測定、 サーモプローブ測定の結果より、P型の伝導型を示したこ とから、 V_{Cu} 、Te_iのアクセプタ性欠陥がドナー性欠陥より 豊富に含まれたと考えられる。

比重測定の結果より、成長温度の増加と共に密度は増加 傾向を示した。しかし、650℃では若干減少する傾向があ った。また、すべてのサンプルでCulnTe₂のICDDカードの 値よりも小さい値となった。650℃以上の成長温度で密度 が減少した原因としてはCu₂In₄Te₇へ相転移し始めたこと によると思われる。成長温度650℃のとき、ICDDカードの 値に最も近い 6.02 g/cm^2 となり、最も良質なCuInTe₂の単相 が得られた。

ホール測定の結果より、成長温度500[°]Cのサンプルでは N型であり、600[°]C以上のサンプルではP型が得られた。キャリア濃度、移動度、抵抗率は、500[°]Cから650[°]Cにおける変化と $^{650^{\circ}C}$ から700[°]Cにおける変化に違いが見られる。このことから、温度増加に伴い $^{650^{\circ}C}$ 付近でドナー性欠陥 In_{Cu}が大幅に減少し、 $^{650^{\circ}C}$ 以上ではアクセプタ性の欠陥 V_{Cu}, Te_iが増加したと思われる。最も大きな移動度が得られた成長温度 $^{650^{\circ}C}$ のサンプルは、キャリア濃度 $^{2.26\times10^{19}}$ cm⁻³、移動度77.3 cm²v⁻¹s⁻¹、抵抗率 $^{3.57\times10^{-3}}$ Ω cmであった。

参考文献

- P. Prabukanthan and R. Dhanasekaran, Mater. Res. Bull 43 (2008) 1996.
- V. Nadenau, T. Walter and H. W. Schock, J. Cryst. Growth 146 (1999) 251.
- S. Roy, B. Bhattacharjee, S.N. Kundu, S.Chaudhuri and A. K.Pal, Mater. Chem. and Phys. 77 (2002) 36.
- V. F. Gremenok, I. A. Victorov, I.V. Bodnar, A.E. Hill, R. D. Pilkington, R. D. Tomlinson and M.V. Yakushev, Mater. Lett. 35 (1988) 130.
- 5) A. Messous and B. Belhouki, J. Eng. and Appl. Sci. 2 (2007) 1403.
- H. Miyake, K. Sugiyama, K. Hiramatsu, Jpn. J. Appl. Phys. 39 (2000) 54.
- 7) A. Kinoshita, H. Matsuo, K. Yoshino, T. Ikari and K. Kakimoto, Phys. Stat. Sol. c **3** (2006) 2093.
- K. Yoshino, H. Komaki, T. Kakeno, Y. Akaki and T. Ikari, J.Phys. Chem. Solid. 64 (2003) 1839.
- H. Komaki, K. Yoshino, S. Seto, M. Yoneta, Y. Akaki and T. Ikari, J. Cryst. Growth 236 (2002) 253.
- K. Yoshino, A. Kinoshita, Y. Shirahata, M. Oshima, K. Nomoto, T. Yoshitake, S. Ozeki and T. Ikari, J. Phys. 100 (2008) 042042.
- 11) 山口高光 粉末 X 線による材料分析 (講談社サイエ ンス 1993).
- 12) H. Inuzuka and S. Sugaike, Proc. J. Acad. 30 (1954) 383.
- 13) ICDD No.00-034-1498.
- 14) ICDD No.00-026-0524.

- 15) ICDD No.00-053-0524.
- 16) ICDD No.00-017-0086.
- L. S. Palatnik and E. I. Rogacheva, Sov. Phys. Dokl. 12 (1967) 503.
- 18) 粉体工学会:粉体工学便覧 第2版 p.207 (日刊工 業新聞, 1998).
- 19) S. H. Wei, S. B. Zhang and A. Zunger, Appl. Phys. Lett., 72 (1998) 3199.
- T. Maeda and T. Wada, J. Phys. Chem. Solids, 66 (2005)1924.
- 21) A. Congiu, L. Garbato, P. Manca and S. Serci, J. Electrochem. Soc., 119 (1972) 280.