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Abstract

The Lin-Kemighan (LK) heuristic is one of the most effective and efficient algorithms for the

Traveling Salesman Problem (TSP). However, the LK heuristic is quite complicated and has many

choices for implementing it. Especially, the data structure for tour representation plays an important

role in the LK's performance. Traditionally, binary trees (including splay trees) are asymptotically

the best tour representation. Empirically, however, they are utilized only for solving problems with

more than one million cities due to the large overhead. Arrays are suitable for solving problems

having up to a thousand cities and two-level trees are used for the problems with a thousand to a

million cities. This paper proposes three-level trees as a new data structure. Although this structure is

asymptotically not better than the existing ones, it perform empirically better than the existing ones

in the range being investigated in this study (from 103 to 106
.
5 cities).
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1. Introduction

The Traveling Salesman Problem (TSP) is one of the

most important and representative combinatorial

optimization problems, because it is simple to state and

widely applicable but difficult to solve. The TSP has

applications in many fields such as vehicle routing, robot

control, and crystallography. For example, the problems of

collecting coins in automatic vending machines, scheduling

jobs in a single machine, and ordering drill holes in a

circuit board can all be fonnulated as TSPs.

The TSP can be stated as follows. In the TSP, locations

of all the cities are given and the salesman's task is to find

the cheapest route connecting them all, with each city

visited only once and return to the city of origin. The cost

here can be distance, time, or money etc. This paper only

deals with symmetric TSPs, in which all the costs between

any two cities are equal in both directions.
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The TSP is NP-complete. Any method that guarantees to

find the true optimal solution requires running time

growing exponentially with the size of problem. The

biggest TSP solved to optimality so far has 15,112 cities.

The problem has been solved by a cutting-plane algorithm1
),

running on a network of computers. The equivalent

sequential time is about 22.6 years of a 500-MHz Compaq

computer. Therefore, to attack larger problems, we need to

develop approximate algorithms that do not aim at finding

the true optimal solution but at finding a good solution in

an acceptable running time. Among approximate

algorithms for the TSP, the Lin-Kernighan (LK) heuristic2
)

is one of the most effective algorithms. Since the LK

algorithm was proposed, it had been the champion heuristic

for the TSP for about 15 years. Furthennore, most of

algorithms that supersede the LK algorithm are meta­

heuristics including it in one or other ways, e.g., chained

LK3
),4), iterated LK5

), and hybrid Genetic Algorithms6
)-9).

Thus, improvements to the LK heuristic are always of

significant, since they improve not only the algorithm itself

but also other algorithms that include it.

The LK heuristic is very complicated and has many

choices for implementing it. Especially, the data structure
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for tour representation plays an important role in the LK's

performance. Traditionally, arrays have been used for tour

representation for problems with the size up to a thousand

cities. Two-level trees have been used for problems with a

thousand to a million cities and binary trees (including

splay trees) have been used for problems with more than a

million cities.

This paper newly proposes three-level trees for tour

representation for large problems. Although the new data

structure is asymptotically not better than the conventional

ones, it performs empirically better than the conventional

ones in the range covered by this study (from 103 to 106
.
5

cities). Furthermore, the splay tree representation, which

has the best time complexity, does not seem to catch up

with it until the number of cities reaches 107
•

The paper is organized as follows. Section 2 presents the

conventional data structures. Section 3 describes the new

data structure. Experiments and validations of the new data

structure are presented in section 4. Finally, conclusions

are given in Section 5.

2. Conventional Data Structures

In the abstract level, a data structure for representing a

tour in the LK heuristic must support the following four

basic operations:

• Next(T, a): This operation returns the successor of a

in tour T.

• Prev(T, a): This operation returns the predecessor of

a in tour T.

• Between(T, a, b, c): This operation returns true if b

lies between a and c in tour T (suppose that the

direction for traversing the tour is well defined). It

returns false otherwise.

• Flip(T, a, b): This operation reverses the segment

between a and b in tour T.

Which data structure should be used for tour

representation depends mainly on the size of the problems

to be solved. Here we will briefly discuss three

conventional tour representations: arrays, two-level trees,

splay trees, which are most commonly used in current

implementations of the LK heuristic. More details about

these tour representations can be found in Fredman et al. ID
).

2.1 Arrays

The array data structure is the most straightforward

implementation of the tour representation used in the LK

algorithm. The tour is represented by two one-dimensional

arrays of length N. (Throughout this paper, N is used to

denote the number of cities.) The first array contains the

names of the cities in visiting order. The second array

contains the indices of the cities. It is an inversion of the

first array. For example, if city i is to be visited at the jth

visit, then the value at the jth position of the first array is i,

and the value at the ith position of the second array is j.

With these two arrays, the three queries Next, Prev, and

Between can be implemented in 0(1) amortized time. The

Flip operation takes an amortized worst-case time O(N).

Therefore, this representation is not well scalable with the

size of problem. Given its small constant time overhead for

the three query operations, however, the array

representation is appropriate for solving problems with up

to a thousand of cities.

2.2 Two-level Trees

The two-level tree data structure was first proposed for

tour representation by Chrobak et al. 11). The idea is to

divide the tour into roughly N I
/
2 segments, each of which

having length in the range from NJ/212 to 2NI
/
2 cities. These

segments are maintained as a doubly-linked list of nodes. It

has been proved that the amortized times for performing

the Next, Prev, and Between operations of the two-level

tree representation are all 0(1) while the amortized WOfSt­

case time for performing the Flip operation is 0(NJ/2) if we

always rebalance the tree after each Flip, or O(N) if we do

not rebalance it. This is currently the fastest and most

robust tour representation for solving problems ranging in

size from a thousand to a million of cities. Many real-world

TSP applications have sizes falling in this range.

2.3 Splay Trees

Another way for representing a tour is using binary

search trees, with each node represents a vertex in the tour

and each subtree represents a subtour. To facilitate the Flip

operation, each node is attached with a reversal bit that
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indicates in what order the subtree rooted at that node

should be traversed. If the reversal bit of a node is off (on),

the subtree rooted at that node should be traversed in in­

order (reversed in-order). In the case that all of the four

tour operations are performed by using the Splay

operation10), binary trees are also called splay trees. It has

been proved that all of the four tour operations of splay

trees can be implemented in O(logN) worst-case time if we

always rebalance the trees after each Flip. This is the best

time complexity that has been known for tour

representations used in the LK heuristic. However, due to

the large overhead, splay trees are only suitable for solving

very large problems (a million or more cities).

3. New Data Structure: Three-level Trees

We analyzed that although two-level trees need to be

kept roughly balance to yield the O(N1I2
) amortized time

for the Flip operation in the worst case, most of current LK

implementations do not implement it in practice. Without

rebalancing, the amortized time for doing the Flip

operation of two-level trees in the worst case is O(N), the

same as with the array data structure. The performance of

two-level trees without rebalancing, however, has been

proved to be much better than the array data structure when

solving large problems. It is probably because the

amortized average-case time for doing the Flip operation

of two-level trees without rebalancing is better than that of

the array data structure.

Based on this analysis, we propose three-level trees to

represent the TSP tour for solving large problems. The

three-level tree data structure, as its name inspires, has 3

levels. The first (children) level has N elements. The

second (parent) level has roughly N2
/
3 elements and the

third (grandparent) level has roughly Nl/3 elements. Similar

to two-level trees, the elements of each level of three-level

trees are maintained in a doubly-linked list. It can be easily

seen that three operations Next, Prev, and Between of

three-level trees take amortized time 0(1), the same as

with two-level trees, but with larger overheads. The

amortized time for performing the Flip operation of three­

level trees in the worst case is 0(N2
/
3
) with rebalancing

(since there are roughly N2
/
3 elements at the second level),

or O(N) without rebalancing.

In the case that rebalancing is not implemented, both

two-level tree and three-level tree data structures have the

same amortized worst-case time O(N) for doing the Flip

operation. However, we expect that in practice the

performance of three-level trees is better than that of two­

level trees when solving large problems.

It is quite straightforward to extend two-level trees to

three-level trees, so we will not present the detail

implementations of our three-level trees here. Instead, the

readers are recommended to refer to the two-level tree data

structure in Fredman et al. 10).

4. Experiments and Validations

We must first mention about our LK implementation. Our

code was written in the C programming language. To save

time, we only coded the LK search engine and the three­

level trees. Other parts such as reading problems, building

k-d trees, creating neighbor lists, generating initial tours etc.

were taken from the Chained Lin-Kemighan heuristic2
),

which is a part of the Concorde optimization code that has

been written by Applegate et al. 1), and made available on

their TSP homepage (http://www.math.princeton.edu/tsp/)

for research purposes. The code for the array, two-level

tree, and splay tree representations was also taken from the

above source.

TSP benchmarks are taken from the TSPLIB 12) and the

8th DIMACS challenge homepage on the TSP

(http://www.research.att.com/~dsj/chtsp/). They are a part

of the testbed that Johnson and McGeoch13
) have used for

studying the asymptotic behavior of TSP heuristics. The

benchmarks are divided into four groups as follows:

(1) Random uniform Euclidean group: This group

includes 25 problems, ranging in size from 103 to 106
.
5

cities. There are 10 problems with N = 103
, 5 problems

with N = 103
.
5
, 3 problems with N = 104

, 2 problems with

each size N = 104
.
5and N =105, and one problem with each

of the size N= 105.5, N= 106
, and N= 106

.
5

•

(2) Random clustered Euclidean group: This group

includes 23 problems, ranging in size from 103 to 105.5

cities. The numbers of problems for each size are the same

with those in the first group (for sizes from 103 to 105.5).

(3) Random matrix group: This group includes 7

problems, ranging in size from 103 to 104 cities. There are 4
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probably depend greatly on machines.

The second observation is that 2LT wins SPT for all but

the two biggest cases (N = 106 and N = 106
.
5) of random

uniform Euclidean problems. Fredman et al. 10) reported

slightly different results for their LK implementation, with

2LT still wins SPT for the case N = 106 of uniform

problems.

The third observation is the good performance of the 3LT

representation. To our surprise, it starts to win 2LT by the

time N= 104 for uniform problems, N =104
.
5 for clustered

and TSPLIB problems, and N = 103
.
5 for matrix problems.

3LT is nearly 1.6 times faster than 2LT when solving the

106
.
5-city uniform problem. (Throughout this paper,

speedups for the LK heuristic are calculated without

including the preprocessing times.) The Ultra machine also

gave similar results, although the crossover points are

slightly different. 3LT wins 2LT by the time N = 103
.
5 for

uniform problems, N = 103 for matrix problems, and N =
105for TSPLIB problems.

Since 3LT has slower Next, Prev, and Between operations

compared to 2LT, its Flip operation must be faster. This

supports our hypothesis that 3LT has better amortized

average-case time for doing the Flip operation than 2LT.

problems with N= 103,2 problems with size N= 103
.
5, and

one problem with N= 104
•

(4) TSPLIB group: This group includes 11 symmetric

problems from the TSPLIB. For the entry N = 103
, four

problems prl002, pcb1173, rl1304, and nrw1379 are used.

For the entry N = 103
.
5, three problems pr2392, pcb3038,

and fnl4461 are used. For the entry N= 104
, two problems

pla7397 and brd14051 are used. The problems pla33810

and pla85900 are used for entries N = 104
.
5 and N = 105,

respectively.

Since the performance of the LK algorithm for various

tour representations depends on machines, we used two

machines for our experiments. The first machine is a 1.6

GHz Pentium IV (Pentium hereafter) and the second one is

a Sun Ultra 80 (Ultra hereafter). Both machines have 1 GB

of main memory. The Pentium is running under Windows

2000 and the Ultra is running under Solaris 2.6. We

compiled our codes using the MSC++ 6.0 on the Pentium

and the GNU gee version 2.95.2 with its '-03' optimization

option on the Ultra.

Experimental results on the Pentium and Ultra machines

are given in Table 1 and Table 2, respectively.

In these tables, ARY, 2LT, SPT, and 3LT denote the array,

two-level tree, splay tree, and three-level tree

representations, respectively. Since the preprocessing time

dominates a large portion of the total running time, we

measured it and the running time of the LK optimization

part separately to see more clearly the differences.

The first thing that can be said from the table is that ARY

is the worst tour representation in the range being

investigated. On the Pentium machine, ARY wins SPT only

for the 103-city clustered problems. It should be note,

however, that the ARY representation suffers from a

phenomenon, which has already been observed by

Fredman et al. 10), that on certain types of machine, their

performance for the Flip operation degrades rapidly as N

gets large. This phenomenon appears more effectively on

the Pentium machine than on the Ultra machine. For

example, the Pentium is approximately two times faster

than the Ultra when solving 103-city uniform problems.

However, it is only 1.3 times faster when N = 105 and by

the time N = 105.5, the Ultra is even slightly faster than the

Pentium. Therefore, the results of the ARY representation

4

3

2

o

-1

-2

I I

: !:
: I:

- ... - ARY ~ _ -, ~ • _

- - ._ - '2LT I I I I

: I
-...- -SPT : I

~--+--~==~3~L~T~ .. ~ ~~ _
/ I I

/ : :

/ I

I

I

--------~--------
I

I

I

log(N)

Fig. 1: Time growth rates of various tour representations

on random uniform Euclidean problems (Pentium).
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Table 1: LK Time (Seconds) on a Pentium IV 1.6 GHz for Various Tour Representations

N= 103 103.5 104 104.5 105 105.5 106 106
.5

Random Uniform Euclidean Problems

Preprocessing 0.04 0.12 0.43 1.75 8.06 30.40 102.52 359.28
ARY 0.06 0.31 2.26 14.25 123.96 5252.92
2LT 0.04 0.13 0.64 2.92 12.85 50.84 203.45 876.53
SPT 0.06 0.21 0.96 3.69 14.53 51.50 177.53 640.86
3LT 0.04 0.14 0.63 2.71 11.17 40.84 144.36 556.14

Random Clustered Euclidean Problems
Preprocessing 0.04 0.13 0.47 2.05 10.02 37.24
ARY 0.18 0.70 2.47 10.51 54.22 577.61
2LT 0.14 0.41 1.56 6.04 24.40 96.36
SPT 0.21 0.64 2.37 8.09 29.61 105.67
3LT 0.15 0.43 1.60 5.91 22.93 85.38

Random Matrix Problems
Preprocessing 0.32 3.25 44.72
ARY 0.32 3.60 42.86
2LT 0.07 0.40 3.09
SPT 0.12 0.52 4.13
3LT 0.07 0.36 2.55

TSPLIB Problems
Preprocessing 0.04 0.11 0.41 1.63 4.17
ARY 0.07 0.34 3.11 10.83 44.38
2LT 0.05 0.16 0.78 3.42 8.50
SPT 0.07 0.22 1.03 4.05 9.94
3LT 0.06 0.16 0.78 3.37 8.31

Table 2: LK Time (Seconds) on a SUN Ultra 80 for Various Tour Representations

N= 103 103.5 104 104.5 105 105.5 106 106.5

Random Uniform Euclidean Problems
Preprocessing 0.07 0.24 0.83 2.97 13.74 56.91 205.20 764.58
ARY 0.13 0.54 3.32 21.54 166.44 4772.22
2LT 0.11 0.38 1.35 6.16 27.49 118.02 482.10 2031.78
SPT 0.16 0.49 1.97 8.50 34.41 126.25 450.92 1597.59
3LT 0.12 0.36 1.33 5.71 24.58 93.18 347.42 1312.02

Random Clustered Euclidean Problems
Preprocessing 0.07 0.27 1.01 3.47 16.72 70.26
ARY 0.45 1.50 4.76 19.54 100.89 814.56
2LT 0.40 1.20 3.83 15.76 69.16 278.75
SPT 0.55 1.72 5.39 21.54 83.84 289.61
3LT 0.43 1.25 3.92 15.06 64.21 243.16

Random Matrix Problems
Preprocessing 1.08 11.57 125.36
ARY 0.47 4.91 59.94
2LT 0.18 0.84 5.56
SPT 0.26 1.19 6.81
3LT 0.17 0.81 4.34

TSPLIB Problems
Preprocessing 0.08 0.24 0.85 2.56 6.94
ARY 0.17 0.71 4.27 23.47 94.01
2LT 0.14 0.42 1.67 7.34 16.30
SPT 0.19 0.56 2.13 8.59 18.71
3LT 0.15 0.44 1.69 7.41 16.26
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On both machines, 3LT is always faster than SPT in the

size range covered by this study. Although appearing to

have slightly worse observed growth rate than SPT (Fig. 1),

3LT is still approximately 1.2 times faster than SPT when

solving the 106
.
5-city uniform problem. Thus, 3LT is likely

comparable with SPT by the time N = 107
•

4. Conclusions

In this paper, three-level trees have been proposed as a

new data structure for representing tour used in the LK

heuristic. Benchmarks ranging in sizes from 103 to 106
.5

cities were used to validate the new data structure.

Although the new data structure is asymptotically not

better than the conventional ones, it is empirically superior

to the conventional ones in the size range covered in this

study. Furthermore, the splay tree data structure, which is

asymptotically the best tour representation, seems unlikely

to beat the three-level tree data structure even when the

number of cities is 107
• It is also worthy of noting that

some other local search heuristics such as 2-0pt and 3-0pt

can get benefits from using the new data structure.
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