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Prediction of Protein Secondary Structure Based on
a Multi-modal Neural Network:

with Modified Profiles of MSA and PSSM

Hanxi ZHU 1), Ikuo YOSHIHARA 2\ Kunihito YAMAMORI 3), Moritoshi YASUNAGA 4)

Abstract:

Prediction of protein secondary structure is considered as an important step towards elucidating

its three-dimensional structure, as well as its function. We have developed a multi-modal neural

network for predicting protein secondary structure. The prediction is based on the frequency profile of

multiple sequences alignment and the position specific scoring matrices (PSSM) generated by

BLOCK. The multi-modal neural network is composed of two steps: The first step is to develop three

neural networks to predict the secondary structure states of proteins: a -helix, p -sheet and

non-regular structure respectively. The single-state prediction neural networks use a local input

window of consecutive amino acids to predict the secondary structure state of the amino acid located

at the center of the input window; The second step is to develop a decision neural network to combine

all of the single-state predictions to obtain an overall prediction on three states. This method gives an

overall accuracy of 67.8% when using seven-fold cross-validation on a database of 126

non-homologous proteins. To improve the accuracy further, majority decision is introduced to each

network for single-state prediction in the first step. By using majority decision, the overall accuracy is

improved to 70.2% with corresponding Matthews' correlation coefficients Ca =0.61, Cp=0.48.
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1. Introduction

Pro~ein.:s.are polypeptide chains carrying out most of

the basic function of life at the cell molecular level. They

are large, complex molecules made up of long chains of

subunits called amino acids that are attached one by one

in a linear string. The amino acid sequence is called its

primary structure. The secondary structure is defined as a
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part of three-dimensional structure that is fold in regular

form: such as a -helices and f3 -strands. Since the

increasing of the number of sequences in public database

is much faster than our ability to solve their structures

experimentally, the prediction of protein secondary

structure from the primary amino acids sequence is

considered as a very challenging task. Over the last 10

years, the prediction methods have gradually improved in

accuracy. The improvement is partly due to the increased

number of reliable protein structures and partly due to the

improvement of prediction methods. Among these

methods, computational predictive tools have become

more and more refined. The problem has been

approached from several angles. Many different neural

networks have been applied to this task, such as

NNPREDICT 1>, PHD 2) and PSIPRED 3). The implicit
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hypothesis of the prediction is that the secondary

structure of a protein is uniquely determined by its

sequence of amino acids. The traditional prediction

method is based on a local input window of consecutive

amino acids. The window slides along the sequence and

the corresponding output is defined to be the secondary

structure of the center residue of the input window.

Alignment has been improved to be very important

and widely used means for sequence analysis. We make

profile matrices to represent amino acids by using

multiple sequence alignment and PSSM generated by

BLOCK.

One of the characteristics of our work is to predict

the three secondary structure states independently. The

results of them are input into a decision feed-forward

neural network to get an overall prediction. In order to

improve the prediction accuracy, majority decision is

introduced to the single state prediction, namely, several

neural networks are developed to predict the single state

in parallel and the final decisions are made by majority

rule. By using majority decision, the overall accuracy of

the multi-modal neural network is improved to 70.2%.

2. Genome data compiling for prediction

2.1 Data set

The information of the protein sequences, including

amino acid chains and reference secondary structures, are

taken from PDB (Protein Data Bank) 4). Usually, amino

acids are classified into about 20 kinds. Here, we adopt

the classification of 23 kinds, which are represented by

23 capital letters. Secondary structure is most often

assigned -based on the hydrogen bond pattern between the

backbone carbonyl and NH groups 5). By DSSP 6)

(Dictionary of Secondary Structure assignment of

Proteins), eight kinds of secondary structure classes are

distinguished. These eight classes are often grouped into

three states: H=helix, E=strand and L=non-regular

structure. Typically, H includes H (a -helix), G

(3 1O-helix) and I (Jl -helix). E includes"E (extended

strand) and B (residue in isolated b-bridge). L includes T

(turn), S (bend) and (blank=other).

When using neural networks to predict protein

secondary structures, the estimation of their performance

is significantly influenced by the choice of protein

sequences. To avoid the misleading prediction of

homologous proteins, protein sequences are usually

required to have a low pair-wise identity. We adopted a

database of the 126 non-homologous protein sequences

shown in Table 1., which are proposed by Rost and

Sander, 1993 2). In this set, for the chains with a length of

more than 80 residues (amino acids in a protein sequence

are also called residues), the mutual pair-wise similarity

is less than 25%. The total number of residues is 23942,

in which 31 % H, 22%E, 47%L are included.

Table 1. The database of non-homologous proteins

1 1aex 1azu 1bbp_A 1bds 1bmv_1
1bmv_2 1cyo 256b_A 2aat 2ak3_A
2a1p 3ait 3b1m 6aen 8abp
8adh 9api A 9api B

2 1ebh 1ee5 1edh 1edt_A 1ern
1cse_I 2eab 2cey_A 3c1a 3c1n
4bp2 4ems 4cpa_I 4epv 6epa
6epp 6ets 7eat A

3 1a45 1dur 1eea 1etu lfe2_C
lfd1_H 1tkf 1fnd 1fxi_A 196n_A
1iqz 2eyp 2fox 2gbp 3ebx5
5evt R 5er2 E 6dfr

4 19d1_0 19p1_A 1hip 1i18_A 1158
11ap 2g1s_A 2gn5 2hmz A 2i1b
3hmg_A 3hmg_B 3icb 4grl 5hvp_A
6hir 7icd 9ins B

5 19dj 11mb_3 1mep_L lovo_A 1paz
1pyp 21hb 2ltn A 2ltn B 2mev_4
2orl_L 2pey 2phh 3pgm 4ptk
51dh 51yz 9pap

6 1mrt 1ppt 1r09_2 1rbp 1rhd
ls01 lsh1 2mhu 2pab_A 2rsp_A
3rnt 3sdh_A 4rhv 1 4rhv_3 4rhv_4
4rxn 4sgb I 7rsa

7 1bks_A 1bks_B 1tgs_I 1tnCA "lubq
2sns 2sod_B 2stv 2tgp_I 2tmv_P
2tse_A 2utg_A 2wrp_R 3tim_A 4ts1_A
4xia A 6tmn E 9wga A

Furthermore, to exclude a potential dependency

of evaluated accuracy on the particular test set chosen,

we use seven-fold cross-validation testing to estimate

the prediction accuracy of the method. The 126 protein

sequences are randomized and separated into seven

groups. Six groups of them are used for training the

neural networks and the remaining group is used for

testing. The tests are repeated cyclically seven times

until each group of proteins is used once for testing.

The average value over all seven tests shows a
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reasonable estimation for prediction.

2.2 Generation of sequence profiles

In the conventional prediction method, the

orthogonal encoding is used to represent amino acids. But

the prediction is limited in precision. According to the

recent research, the alignment is very useful for

improving prediction accuracy. Therefore, we use the

multiple sequence alignment and position specific

scoring matrices (PSSM) generated by BLOCK to make

sequence profiles for amino acids substitution matrices.

For each of the 126 sequences, we first perform the

PSI-BLAST7
) with three iterations to search the

homology sequences, which is a very powerful program

for sequence searching. The sequences of the output,

those are shorter than half of the query, are rejected. Then,

for each query sequence and their homology sequences

fqund by PSI-BLAST, we apply CLUSTALW 8) (Version

1.8) to generate multiple sequence alignments (MSA)

with default parameters. CLUSTALW is a freely

available program for MSA. For one query sequence that

is of unknown structure and function, its alignments with

its homology sequences, which are well characterized in

both structure and function, reveal the structure and

function of the test sequence 9). Figure 1 gives a segment

of the result. The first line is the query sequence. All of

the sequences are arranged as a matrix. Each line means a

protein sequence and each column corresponds to a

position of the sequence. For each kind of amino acid, we

calculate its frequency of occurrence at each position,

A R N D C Q E G H

namely, each column of the alignment. Thus, 23 real

numbers in the range of 0-1 are generated, which are used

to represent each position of the sequence. We call these

numbers frequency-profile. The Figure 2 gIves an

example of the final sequence protile. The lines with

non-bold numbers means frequency-profile. For a protein

sequence with the length of N residues, the size of the

frequency-profile is 23*N.

Figure 1. A segment of result of MSA

Since the gaps in the query sequences are useless for

prediction, we remove the gaps in the first line and the

column below the gaps. For the remained part of MSA,

we perform Multiple Sequence Alignment Processor of

BLOCK 10) to generate position specific scoring matrices

(PSSM). BLOCK is also a freely available program,

which includes many sequence analysis methods. The

Multiple Sequence Alignment Processor of BLOCK

carves out one or several blocks from the MSA, which

are no gapped multiple sequence alignments representing

conserved protein regions, and generate PSSM.

L K M F P S T W Y V B Z X

o
1
2
3

•••

N

Figure 2. An example of the sequence profile
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For a block with n width, the size of PSSM is 23*n.

Usually, the value of PSSM is in the range of ±25. We

use a logistic function (shown as formula (1)) to scale

each value within the range 0-1:

The final sequence profile is generated by

embedding the PSSM of the blocks to the corresponding

position of frequency-profile. In Figure 2, each line

corresponds to a position of the sequence. The lines with

bold numbers are PSSM.

1
f(x) = 1+ e~O.5x (1 )

N

V

Y

H

N

Protein sequence: MVLSE NVXHD LIRLF

Assigned structure: *HHH* *H H* HH***

Figure 3. A neural network for single-state prediction

±

3. Neural networks for prediction

3.1 Neural networks for single-state prediction

The first step of our work is to develop three

single-state neural networks to predict three states of

secondary structure respectively.

The structure of the single-state neural network

(SNN) for H is a standard three-layer feed-forward neural

network, as shown in Figure 3. The networks for E and L

states are the same. The input layer is composed of a

string of local consecutive residues. The sequence profile

as shown in Figure 2 is used as amino acid substitution

matrices to represent each residue of the window. The

window width w is set to be 17 in our work (w is 5 in the

Figure 3). In Figure 3, each square of the input layer

represents one residue of the window, thus, it includes 23

numbers. Therefore, for w=17, the whole input pattern of

the first layer extends to 23 *17. The output layer includes

only one node, which is corresponded to the secondary

structure of the central residue of the window. In Figure 3,

the assigned structure is simplified to be only two

statuses: H and not H (* is not H), which are numerically

represented by 1 and O.

The window is shifted residue by residue along the

sequence. Since the target output of the network is

defined to be the central residue of the window, there will

be no sufficient residues in both terminuses of each

protein chain. In order to smooth over the default of the

insufficient part, in the part of extending over the

terminus, the 23 numbers to represent amino acids are set

tobe O.

3.2 Multi-model neural networks

To get the overall prediction, the second step of our

work is to construct a multi-modal neural network

(MNN).

The structure of the MNN is shown in Figure 4.

After the single-state neural networks predicting the three

states H, E and L independently, the results of them are

input to a decision neural network (DNN) to obtain

overall prediction.

The structure of the DNN is also a three-layer

forward neural network. The input layer is composed of a

segment of assigned secondary structure of proteins. The

window width w is also set to be 17. Three secondary

structure states are represented by three binary values as

following: H -7(1 0 0); E -7(0 1 0); L 7(0 0 1).

Therefore, the whole input pattern becomes 3*17. The

corresponding output of the neural network includes three

nodes, which are corresponded to the assigned structure

of the central position of the window.

The purpose of developing a DNN is to combine the

single-state predictions to obtain the overall accuracy, but

not to do the prediction itself. Because the assigned

structure of the test group is the predicted target, which

should be unknown, using the structure of the test group

as the input data is not reasonable. In the procedure of

combination, according to each position of the protein

chains, the prediction results from the SNN are arranged

in order of H-state, E-state and L-state to define the input

pattern of the test group, and the network will give the

overall prediction of the three states. According to our

work, the training of the DNN is very swift.
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Amino acid

sequence

Secondary
<==:J structure

(H, E, L)

Figure 4. The structure of multi-model neural network

4. Model validation

where, Pi is the number of the residues predicted correctly

in state i (i=H, E or L), and N is the total number of

residues in the database. Qi gives the percentage of

correctly predicted residues in state i:

where, Ni is the number of observation residues in state i.

Another complementary measure of prediction accuracy

is the Matthews' correlation coefficients for each type of

predicted secondary structure 2):

(3)Qi = Pi I Ni *100%

the final result is decided to be I, i.e., the state in the

position is predicted to be H. Otherwise the result is 0,

i.e., not H.

The majority decision has been proved to be an

effective tool to improve the prediction from the

viewpoint of probability. Moreover, since the initial

connection weights of the neural networks are taken

randomly, by doing the prediction several times

independently, the contingency of prediction can be

reduced significantly. Therefore, using majority decision

is also advantageous to improve the stability of

prediction.

4.1 Measure of accuracy for prediction

Several measures of prediction accuracy have been

proposed to estimate the performance of the prediction

methods. The most commonly used measure is the

overall accuracy on three states Q3 defined as the ratio of

the total number of correctly predicted residues to the

total number of residues in the database 2):

Q 3 = ~ I :=1 Pi * 100 % (2)

SNNI forH h\ Majority Decision

SNN2 forR ~o~
•

~l/
••

SNNn forH

Figure 5 gives a sketch map of majority decision for

H-state prediction. E-state and L-state predictions are the

same. SNN means a neural network for single-state

prediction. The total number of SNN n is set to be 5. The

outputs of SNNs are only two statuses: 1 and 0, namely,

H or not H. We add the results and judge whether the sum

is greater than (nI2) or not. If the sum is greater than (nI2),

3.3 Enhanced MNN with majority decision

In order to improve the single-state prediction,

majority decision is introduced. Here, the concept of

MNN is again applied to the part of single-state

prediction: several neural networks are used to predict the

single-state of proteins independently and the final

decision is made by majority decision. We call the MNN

with majority decision the enhanced MNN.

When the assigned structure of the protein sequences of

the test group is fed, which is not for prediction, but for

test, the network can give the corresponding structure

state with 100% accuracy. That means the higher the

prediction accuracy is, the better overall prediction the

network can give. Therefore, in order to improve the

prediction accuracy of protein secondary structure, we

should improve the single-state prediction accuracies as

high as possible.

Figure 5. Majority decision for single-state prediction
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where Pi is the number of correctly predicted residues in

assigned state i; ni is the number of those correctly

predicted residues in not assigned state i; Ui is the number

of underestimated residues and 0i is the number of

overestimated residues in state i. The closer this

coefficient is to a value of 1, the more successful the

method for predicting a residue in state i.

4.2 MNN without majority decision

In the experiment of predicting the data shown in

Table 1 by using MNN without majority decision: the

window width of the single-state prediction neural

networks is set to be 17 and the neuron numbers in three

layers are set to be 391 (23*17), 60 and 1; the window

width of DNN is also 17 and the neuron numbers are 51

(3*17),20 and 3.

Figure 6 gives the prediction accuracies by the

MNN without majority decision. According to

cross-validation testing, the predictions are repeated 7

times and the average values are shown in the last group.

Figure 7. Prediction accuracy of enhanced MNN
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4.3 Enhanced MNN with majority decision

In the enhanced MNN, the majority decision is

added to improve the single-state prediction.

Figure 7 gives the prediction accuracies by the

enhanced MNN with majority decision. The neuron

numbers in the enhanced MNN are the same with the

MNN. Table 3 gives the detailed values of the experiment.

By adding majority decision to the single-state prediction,

the averages of Q3, QH, and QE are improved to 70.2%,

71.1 % and 57.3% respectively. Furthermore, we notice

that the variance of Q3 in cross-validation testing is from

68.5% to 71.4%. The deviation value to the average

accuracy is about ± 1.5% , which shows that according to

different data, prediction by the enhanced MNN is very

stable.

Table 2 gives the detailed values of the experiment.

The averages of Q3, QH, and QE are 67.8%, 67.3% and

51.6%. The average correlation coefficients are also

calculated: C,rF0.58, Cr 0.43.

0.9

0.8

0.7

~ 0.6

>- 0.5o
~ 0.4

g 0.3
<ll

0.2

0.1

aver

Figure 6. Prediction accuracy of MNN

Table 2. The prediction accuracy of MNN

Q3 (%) QH(%) QE(%)

1 66.8 65.5 50.2

2 68.8 66.8 46.6

3 69.0 67.9 54.1

4 65.9 73.1 47.7

5 68.4 76.9 53.8

6 68.8 57.6 48.0

7 66.9 63.9 60.5

Average 67.8 67.4 51.6

Table 3. The prediction accuracy of enhanced MNN

Q3 (%) QH(%) QE(%)

1 69.2 70.0 54.5

2 71.4 67.3 52.8

3 70.2 72.4 61.3

4 68.5 73.4 51.3

5 70.7 79.6 60.0

6 70.5 64.5 51.1

7 70.9 70.7 70.6

Average 70.2 71.1 57.4

We compare the averages of Q3, QH, QE, QL, CH, and

CE with the two methods in Table 4. Obviously, all of the
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accuracies of the enhanced MNN are better than those of

theMNN.

Table 4. Comparison of the enhanced MNN with the MNN

Q3 QH QE CH CE

MNN 67.8% 67.4% 51.6% 0.58 0.43

Enhanced
70.2% 71.1% 57.4% 0.61 0.48

MNN

Difference +2.4% +3.7% +5.8% +0.03 +0.05

(ratio) (+3.5%) (+5.5%) (+11.2%) (+5.2%) (+11.6%)

4.4 Comparison with other methods

Moreover, we compare the accuracies of our

methods with the claimed accuracies of conventional

prediction methods.

03
80%"

70%

60%

50%

40%

30%

20%

10%

0%
GORI GOR3 NNPREDICT SIMPA MNN DSC ENHANCED

MNN

Figure 6. Comparison with other methods

Table 5. The detailed values of comparison

Method Q3 (%)

GORl 57%

GOR3 63%

NNPREDIC 64%

SIMPA 63%

MNN 68%

DSC 70%

Enhanced MNN 70.2%

The accuracies of our methods: the MNN and the

enhanced MNN are better than GORl Il), GOR3 12),

NNPREDICT 1) and SIMPA 13), where, GORl and GOR3

are based on Bayesian Statistics, NNPREDICT is based

on neural networks and SIMPA is based on nearest

neighbor. The Q3 of the enhanced MNN is a little better

than DSC 14), which is also based on Bayesian Statistics.

Table 5 gives the detailed values of comparison.

5. Conclusions

We developed a multi-modal neural network to

predict protein secondary structure. There are two steps

in our work: the first is using several neural networks to

predict single-state of proteins: a -helices, fJ ~sheets or

non-regular structure respectively; the second is to

develop a multi-modal neural network to obtain the

overall prediction. A special sequence profile is used to

represent amino acid sequence instead of orthogonal

encoding. To enhance the prediction ability of MNN,

majority decision is introduced to the single-state

prediction. The overall accuracy of the enhanced

MNN is improved to 70.2%, which is 2.4% higher

than that of MNN without majority decision.

Predicting the state of secondary structure by

separate neural networks is easier than by the

conventional neural network because the separate

prediction decreases the complexity of the problem.

Comparing our method to several conventional

methods, such as GORI, GOR3, NNPREDICT and

SIMPA, the results showed our method is superiority

to them, but stil1lower than PSIPRED and PHD.

The neural networks show a great potential to

predict the secondary structure of proteins. As we

believe the MNN involves strong possibilities for

better prediction, we continue to work to achieve

better accuracy.
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