スプレー熱分解法による酸化亜鉛薄膜の低温大気作製

井手 亜貴子¹⁾・小嶋 稔²⁾・吉野 賢二³⁾

Non-vacuum Process of ZnO Films by Spray Method

Akiko IDE, Minoru OSHIMA, and Kenji YOSHINO

Abstract

Growth of ZnO films using diethylzinc (DEZ) was carried out by spray pyrolysis method at room temperature (RT) \sim 300°C. ZnO films were successfully grown at RT and indicated polycrystalline and hexagonal wurtzite structure. Additionally, a sample grown above 100 °C was obtained ZnO film with high density from FT-IR and optical transmittance.

Keywords: ZnO, TCO, diethyl zinc(DEZ)

1. はじめに

1.1 酸化亜鉛

透明導電膜は、透明性と導電性を併せ持つ膜である。透 明導電膜は情報化社会が進んでいる昨今、ディスプレイの 進化にともない研究がさかんになった。また、クリーンエ ネルギーの一つとして注目されている太陽電池にも欠か せないものである。太陽電池は p型と n型の半導体薄膜を 積層したものであり、表側の電極に透明導電膜が使われて いる。ほかにも、プラスチックにコートしてタッチパネル、 窓ガラスに透明導電膜をコートして通電加熱すると、曇り 止めや凍結防止になるので、乗り物の操縦席に使われるな ど、幅広い用途がある¹⁾。

透明電極は太陽電池の光入射側に設置し、光の当たらな い側には金属電極をコーティングし、これらの電極を介し て負荷としてつなぐと電流を取り出せる。取り出す導線の 系統に抵抗があるのは好ましくないので、できるだけ低抵 抗な透明電極が必要である。また、導電膜の表面凹凸が大 きいほど、入射光はこの界面で散乱され、太陽電池内部を 斜めに進み pn 接合付近で吸収され易くなる²⁾。

代表的な透明導電膜材料として Indium-Tin Oxide(ITO)、 SnO₂、ZnO などがある。ITO 膜は、 $10^4 \ \Omega \cdot cm$ 台の比抵 抗が容易に得られることから、液晶ディスプレイをはじめ とする FPD 用透明電極では、ITO が全面的に使用されて いる。しかし、ITO の主材料である In は希少金属であり、 価格が高いという難点がある。また、原料の In や Sn に加

1) 電気電子工学専攻大学院生

- 2) 農学工学総合研究科大学院生
- 3) 電気電子工学科准教授

えて ITO 粉末の毒性が懸念されている。加えて近年、FPD や太陽電池などの透明電極用途での ITO 需要の恒常的な 増大と相まって、接合材、CIGS (CuInGaSe₂) などの太陽 電池や InP 系半導体デバイスなどにおいても In 需要の増 大が指摘されており、ITO 透明導電膜における省 In や脱 In 透明導電膜材料が注目されている³⁾。SnO₂ 膜は、比較 的安価な材料であるが、低比抵抗膜が得にくい。また、エ ッチング加工と低温成長に難があり、用途が大幅に限定さ れる。これに対して、ZnO は安価で豊富、毒性に問題のな い材料である。このことから、ZnO は ITO にかわる透明 導電膜の材料として注目されている^{2,3)}。

ZnO は、室温で約 3.3 eV のバンドギャップを持つ直接 遷移半導体であり、結晶構造は六方晶系のウルツ鉱構造に 属している。キャリア電子はZnOの非化学量論性により、 次式のいずれかにしたがって得られる。

$$ZnO \longleftrightarrow Zn^{\bullet}_{i} + e + \frac{1}{2}O_{2} \uparrow$$
$$ZnO \longleftrightarrow Zn + V_{o}^{\bullet} + e + \frac{1}{2}O_{2} \uparrow$$

ここに Zn_i[•]は1個の電子を解離した格子間亜鉛イオン、 V_o[•]は1個の電子を解離した酸素空孔、e は電子である。 ドーパントとして主に3価金属(B、Ga、In、Al)の原子 が使われているが、そのほかに Si、Ge、Ti、Zr、Hf の4 価金属の報告例がある。表面にテクスチャ構造をもつ膜が 安易に形成でき、それは成膜技術および成膜条件により制 御できることより、太陽電池、特に CIS 系の透明電極とし て注目されており、そのほかフラットパネル・ディスプレ イ等の安価な透明電極や窓用コーディング材としても期 待されている材料である^{1,2,4}。

1.2 成膜プロセス

薄膜成膜方法としては、マグネトロンスパッタリング法 ⁵⁾、レーザー分子線エピタキシー(MBE)⁶⁾、イオンビーム スパッタリング法⁷⁾、イオンプレーティング法^{8,9)}、有機 金属化学成長(MOCVD)法¹⁰⁻¹³⁾、ゾル・ゲル法^{14,15)}、ミ スト CVD 法¹⁶⁾、スプレー熱分解法^{17,18)}等の各技術が用い られている。その中でも、近年では工業的プロセスとして はスパッタ法が主流となっている。しかし、プロセスコス トのさらなる削減が目標とされており、そのために真空装 置を使用するスパッタ成膜から真空装置を必要としない 成膜方法の確立が急務となっている。そこで、真空装置を 必要とせず大気中において成膜が可能なスプレー熱分解 法に注目した。しかし、スプレー熱分解法の問題点として 成膜温度が挙げられ、ほとんどの報告が成膜温度300℃以 上である 19-23)。そこで、樹脂基板にも成膜可能である温度 である 200℃以下での低温での成膜を目標としスプレー 熱分解法を用いて酸化亜鉛膜の成膜を行った。

1.3 スプレー塗布用原料

低温での成膜を行うために、スプレー塗布用原料を検討 し、ジエチル亜鉛を用いたスプレー塗布用原料を使用した。 ジエチル亜鉛は分解温度が低く²⁴⁾、さらに水と反応する ことにより分解温度は低くなる。ジエチル亜鉛は一般的に は MO-CVD の原料として使用される。ジエチル亜鉛自体 は有機金属であり自然発火物であるため非常にハンドリ ングが難しい。ゆえに、MO-CVD は低真空化で成膜して おりハンドリングが難しいとされている¹³⁾。そこで、今 回はこのジエチル亜鉛を溶媒で希釈することにより、大気 中でも安全に使用できるよう改良を加え安全性の確認を したうえでスプレー熱分解法により成膜実験を行った。

2. 実験方法

スプレー熱分解法は、化学的薄膜形成法の一つであり、 加熱基板上で液相から固相が析出し、薄膜として堆積する プロセスである。原料となる溶液を加熱された基板に向け て噴霧すると、溶媒の蒸発と洋室の熱分解及び化学反応が おこり、薄膜形成される。この方法は前述のとおり真空装 置を用いないため非常に簡便な装置であり、大気中での大 面積へのコーティングが可能という特徴がある^{18,25)}。

今回用いたスプレー装置のパラメータとしては、基板温 度(成膜温度)、基板距離、吐出液速度、キャリアガス流 量などがある。

X 線回折は、ディフラクトメータ (PANalytical X'Pert PRO Diffractometer)を用いて測定を行った。X間線管電 流は 40 mA,加速電圧は 45 KV,測定範囲は 20~90°、測定 間隔は 0.05°、測定速度は 3.5°/min に設定した。次にモノ クロメータで K_B 線を除去に単色化された X 線を受光スリ ットで集光し、計数管にて測定する。得られたピークデー タをパーソナルコンピュータによって平滑化、バックグラ ウンド除去、K_{α2}の解析処理を行い、JCPDS (Joint Committee Powder Diffraction Standards) との比較検討を行った。

3. 実験結果および考察

3.1 X 線回折法

X線回折により、ジエチル亜鉛を用いた塗布原料を使用 し、成膜した ZnO 薄膜の結晶構造を求めた。Fig.1に核成 膜温度 RT~200℃のサンプルの ZnO 薄膜の X線回折スペ クトルを示す。すべてのサンプルにおいて JCPDS(361451)²⁶⁾カードの、(1010)、(0002)、(1011)、(1012)、 (1120)のピークを確認した。このことより、ジエチル亜鉛 を用いた塗布原料を使用したすべてのサンプルは六方晶 系のウルツ鉱構造の多結晶の ZnO と同定した。成膜温度 を増加させることで *c*軸に配向していく傾向がみられる。 一般的に高温で作製した ZnO 薄膜は *c*軸に配向すること が報告されている^{18, 27, 28)。}

これらのことより、ジエチル亜鉛を用いた塗布原料を使 用し、スプレー熱分解法によって成膜する場合、X線回折 の結果より六方晶系のウルツ鉱構造の多結晶の ZnO は室 温においても得られることが示唆された。

Fig.1 各成膜温度における XRD スペクトル.

3.2 SEM, AFM

Fig. 2にジエチル亜鉛を用いた塗布原料を使用した各成 膜温度ごとのサンプル写真を示す。成膜温度RTのサンプ ルにおいては白濁した膜になっている。これは成膜温度 RTと低温のために分解しきれないまま残留したジエチル 亜鉛などの未分解物であると考えられる。一方、成膜温度 100℃以上のサンプルにおいてはきれいな干渉した膜が得 られている。X線回折の結果においては、成膜温度RTから すべてのサンプルにおいて六方晶系のウルツ鉱講ずおの 多結晶のZnOが確認されたが、後にFT-IR測定の結果を示 すが、サンプル写真からも未分解物のない膜が作製できる 成膜温度は100℃以上であることを確認した。

Fig. 3に各成膜温度ごとのSEM表面画像を示す。SEM表 面画像から成膜温度RTのサンプルにおいては粒子のよう なものが堆積している。これは、成膜温度RTのサンプル 写真において白濁した膜が確認されたことからも、ジエチ ル亜鉛などの未分解物が残っていると考えられる。さらに、 成膜温度を増加させるとより密度の高い緻密な膜になる 傾向を示している。

Fig. 4に各成膜温度におけるサンプルのAFM像を、Fig. 5 に各成膜温度におけるRMS値を示す。成膜温度RTのサン プルは未分解物の残留が示唆されるように、丸みを帯びた 凹凸のある表面形状となっている。一方、成膜温度100 ℃、 150 ℃のサンプルにおいては平坦な膜になっている。これ は、塗布原料に含まれるジエチル亜鉛や有機物などが熱に より除去されてきれいな膜が成膜されていると考えられ る。成膜温度200 ℃のサンプルにおいては凹凸が増加して いる。これはX線回折の結果と同様に、成膜温度を増加さ せるとともにc軸に配向することにより、凹凸が増加した と考えられる。また、RMS値からも同様のことがわかる。 成膜温度150 ℃まではRMS値は減少傾向を示し、成膜温 度200℃において増加傾向がみられる。

これらのことより、ジエチル亜鉛を用いた塗布原料を使 用し、スプレー熱分解法で成膜を行うと、成膜温度100 ℃ においても緻密な膜が得られ、成膜温度を200 ℃にすると c軸に配向する膜が得られた。

Fig.2 各成膜温度におけるサンプル写真.

RT

成膜温度

成膜温度 150°C

成膜温度 200℃

Fig.3 各成膜温度におけるSEM表面画像.

成膜温度 100 ℃

成膜温度 150 ℃

成膜温度 200 ℃ Fig.4 各成膜温度におけるAFM画像.

3.3 透過測定

Fig. 6に各成膜温度ごとの透過スペクトルを示す。可視 光透過の短波長側の閾値は物質固有のエネルギーギャッ プによって定められ、長波長側の閾値はキャリア濃度の関 数であるプラズマ周波数によって決まる。本実験において は不純物を添加しておらず、キャリア濃度が少ないため、 プラズマ吸収はみられない。すべてのサンプルにおいて ZnOの吸収端である330 nm付近で吸収がみられる。ZnOの バンドギャップは3.3 eVであることから、ZnOが成長して いると考えられる。

次に可視光領域400~800 nm波長での平均透過率をFig. 7に示す。成膜温度RTのサンプルでは82.9%、成膜温度 100℃以上のサンプルでは85%以上の高い透過率を有して おり、透過性に優れたZnO膜が作製された。

3.4 FT-IR 測定

Fig. 8に各成膜温度ごとのFT-IRスペクトルを示す。3000 cm⁻¹付近のピークがCH₃の信号、1000~1500 cm⁻¹付近のピ ークがCH₃、CO、CCの信号、500 cm⁻¹付近のピークがZnO の信号と言われている^{29,30)}。1000~3000 cm⁻¹付近のピーク はジエチル亜鉛の未分解物や塗布原料の一部の有機物の 未分解物であると考えられる。FT-IRスペクトルから、成 膜温度を増加させると、未分解物が減少し、それに伴い ZnOのピークが増加する傾向を示している。成膜温度RT のサンプルにおいてはZnO信号も確認することができる が、ジエチル亜鉛の未分解物や塗布原料の一部の有機物の 未分解物が多く残留していることも確認できる。SEM画像 などで確認された粒子が堆積したような形状になってい たのは、これらの未分解物が要因になっていると示唆され る。成膜温度100 ℃以上のサンプルにおいてはほとんど未 分解物が残っていないことが確認された。このことより、 ジエチル亜鉛を用いた塗布原料を使用し成膜することに より成膜温度100 ℃の低温においてもZnO膜が得られた。

3.5 考察

ジエチル亜鉛を用いた塗布原料を使用し、スプレー熱分 解法により成膜温度をRTから200 ℃まで変化させ成膜を 行った。その結果、XRDの結果からはすべてのサンプル において六方晶系のウルツ鉱構造の多結晶ZnOの成長を 確認した。しかし、サンプル写真、SEM画像、透過率測定、 FT-IR測定により成膜温度RTのサンプルにおいては未分 解物が残っている膜であることが確認された。そのため、 Fig. 2に示したように白濁した膜になっていると考えられ る。成膜温度100℃以上のサンプルにおいてはFT-IR測定の 結果より、未分解物がほとんど残っていないZnO膜が成膜 されている。

このように、ジエチル亜鉛を用いた塗布原料がスプレー 熱分解法において、より低温でZnO膜を作製できる要因は、 ジエチル亜鉛の分解温度の低さと分解過程にある。なぜな ら、ジエチル亜鉛は水と反応することにより低温で分解す ることが知られているからである^{11,12)}。

本実験は大気中において成膜を行っているため、ジエチ ル亜鉛の分解物に酸素と水蒸気が挙げられる。しかし、酸 素との分解反応には熱エネルギーが必要であるため、今回 の分解反応は水蒸気との加水分解であると推測される。今 回の大気中においてのスプレー熱分解法の際のジェチル 亜鉛の反応過程の中でも最も優先的に起こっていると推 測している水蒸気との反応式を下記に記す。

$(C_2H_5)_2Zn+2H_2O \rightarrow Zn(OH)_2+4CO_2+2C_2H_6$

$Zn(OH)_2 \rightarrow ZnO+H_2O$

これらのことより、ジエチル亜鉛を用いた塗布原料を使用 し成膜した場合、より低温でZnO膜を成膜できたと考えら れる。

4. 結論

ジエチル亜鉛を用いた塗布原料を使用し、スプレー熱分 解法によって酸化亜鉛膜の成膜を行った。成膜温度をRT から200 ℃まで変化させた結果、XRDの結果からはすべ てのサンプルにおいて六方晶系のウルツ鉱構造の多結晶 ZnOの成長を確認した。しかし、サンプル写真、SEM画像、 透過率測定、FT-IR測定により、成膜温度RTのサンプルに おいては未分解物が残っている膜であることが確認され た。そのために、サンプル写真に示したように白濁した膜 になっていると考えられる。成膜温度100 ℃以上のサンプ ルにおいてはFT-IR測定の結果より未分解物がほとんど残 っていないZnO膜が成膜されている。このように低温で ZnO膜を作製できる要因として、ジエチル亜鉛の分解温度 の低さと分解過程が挙げられる。ジエチル亜鉛の未分解物 と水蒸気が反応し、加水分解が起こったため、低温にて ZnO膜を成膜できたと考える。

謝辞

本研究におきまして原料を提供して頂きました、東ソ ー・ファインケム株式会社に心から感謝致します。

参考文献

- 1) 監修/澤田豊, 透明導電膜, (シーエムシー出版, 2006).
- 2) 日本学術振興会 透明酸化物光・電子材料第 166 委員 会,透明導電膜の技術,(オーム社, 2006).
- 3) 社会法人日本金属学会,結晶成長,(丸善,1975).
- U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, H. Morkoc, J. Appl. Phys. 98 (2005) 041301.
- J. Yoo, J. Lee, S. Kim, K. Yoon, I. J. Park, S. k. Dhungel, B. Karunagaran, D. Mangalaraj, J. Yi, Thin Solid Films, 480 (2005) 213.
- K. Sakurai, D. Iwata, S. Fujita, Jpn. J. Appl. Phys. 38 (1999) 2602.
- T. Tsurumi, S. Nishizawa, N. Ohashi, T. Ohgaki, Jpn. J. Appl. Phys. 38 (1999) 3682.
- T. Yamamoto, T. sakemi, K. Awai, S. Shirakata, Thin Solid Films 452 (2007) 439.
- 9) S. Shirakata, T. Sakemi, K. Awai, T. Yamamoto, Superlattices and Micro Structures **39** (2006) 218
- J. F. Chang, W. C. Lin, M. H. Hon, Appl. Surf. Sci., 183 (2001) 18.
- C. K. Lau, S. K. Tiku, K. M. Lakin, J. Electrochem. Soc. 127 (1980) 1843.
- 12) S. K. Ghandhi and R. J. Field: Appl. Phys. Lett. **37** (1980) 449.
- 13) 化学工学会, CVD ハンドブック, (朝倉書店, 1991)
- 14) D. Bao, H. Gu, A. Kuang, Thin Solid Films, **312**, (1998), 37.
- R. Ghosh, G. K. Paul, D. Basak, Mater. Res. Bull., 40, (2005), 1905.
- 16) J. G. Lu, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Oshima, S. Fujita. J. Cryst. Growth. 299 (2007) 1.
- G. Goncalves, E. Elangovan, P. Barquinha, L. Pereira, R. Martins, E. Fortunato, Thin Solid Films 515 (2007) 8562
- 18) K. Yoshino, S. Oyama, M. Oshima, T. Ikari and M. Yoneta, Jpn. J. Appl. Phys. 47 (2008) 8170.
- H. Nishinaka, T. Kawaharamura, S. Fujita, Jpn. J. Appl. Phys. 46 (2007) 6811
- S. Gledhill, A. Grimm, N. Allsop, T. Koehler, C. Camus, M. L. Steiner, C. H. Fischer, Thin Solid Films 517 (2009) 2309
- T. P. Rao, M. C. Santhoshkumar, Appl. Surf. Scie. 255 (2009) 7212
- 22) I. Kortidis, K. Moschovis, F. A. Mahmoud, G. Kiriakidis, Thin Solid Films 518 (2009) 1208
- J. Garnier, A. Bouteville, J. Hamilton, M. E. Pemble, I. M. Povey, Thin Solid Films 518 (2009) 1129
- 24) A. C. Jones, P. O'Brien, CBD of Compound Semiconductors, (WILEY-VCH)

- 25) 権田俊一, 薄膜作製応用ハンドブック, (エヌ・ティ ー・エス, 2003)
- 26) JCPDS カード, 361451
- 27) J. H. Lee, B. W. Yeo, Mater. Sci. Eng. B, 106 (2004) 242.
- 28) P. Nunes, A. Malika, B. Fernandes, E. Fortunato, P. Vilarinho, R. Martin, Vacuum. 52 (1999) 3682
- 29) 庄野利之, 脇田久伸, 入門機器分析化学, (三共出版, 1988)
- 30) 澤田豊, 透明導電膜 II, (シーエムシー出版, 2002)