# ホットプレス法による AgInSe2 バルク結晶の結晶成長

木下 綾<sup>1)</sup>·白幡 泰浩<sup>2)</sup>·吉野 賢二<sup>3)</sup>·碇 哲雄<sup>4)</sup>

## Crystal growth of AgInSe<sub>2</sub> bulk crystals grown by Hot-Press Method

Aya Kinoshita, Yasuhiro Shirahata, Kenji Yoshino, Tetsuo Ikari

#### Abstract

Undoped polycrystalline AgInSe<sub>2</sub> bulk crystals were successfully grown at low temperature (700 °C) using Hot-Press Method. The starting materials were stoichiometrically mixed Ag<sub>2</sub>Se and In<sub>2</sub>Se<sub>3</sub> powders. The size of all samples was 2 cm in diameter. The samples were evaluated X-ray diffraction, SEM, EPMA, Density measurement, Hall measurement and optical transmittance measurement. We obtained AgInSe<sub>2</sub> single phase at 700 °C. The grain size was approximately 80 nm and the presence of lattice defects such as Se atom in the Ag site and/or Se atom in the In site might lead to an enhancement in n-type electrical conductivity at 700 °C. The crystal at 700 °C had a resistivity of 0.16  $\Omega$ cm, a carrier concentration of 7.6×10<sup>16</sup> cm<sup>-3</sup> and a mobility of 73 cm<sup>2</sup>V<sup>-1</sup>s<sup>-1</sup> obtained by Hall measurement at RT. From optical transmittance measurement, the bandgap was estimated to be 1.204 eV at RT.

Key Words: Chalcopyrite, AgInSe<sub>2</sub>, Hot-Press, bulk crystal

1. はじめに

I-III-VI<sub>2</sub> 族カルコパイライト型化合物半導体は直接遷移型のバンド構造を持ち,禁制帯幅付近で大きな吸収係数をもつ。禁制帯幅は CuAlS<sub>2</sub> の 3.5 eV からCuInTe<sub>2</sub>の 0.8 eV と広い波長域をカバーしている<sup>1)</sup>。また,カルコパイライト型化合物半導体は太陽電池としての期待が高く,中でも,Cu(InGa)Se<sub>2</sub>多結晶薄膜をベースとした太陽電池では,19.5 %の変換効率が得られている<sup>2)</sup>。

一方,Ag-III-VI2族カルコパイライト型化合物半導体

- 1) 電気電子工学専攻大学院生
- 2) 電気電子工学科学部生
- 3) 電気電子工学科准教授
- 4) 電気電子工学科教授

の中でも、AgInSe<sub>2</sub>は禁制帯幅 1.2 eV を持ち、光吸収係 数は禁制帯幅付近で 10<sup>5</sup> cm<sup>-1</sup>程度と高く、太陽電池の吸 収層として期待されている。現在のところ、AgInSe<sub>2</sub> と AgGaSe<sub>2</sub>の混晶である Ag(InGa)Se<sub>2</sub> 太陽電池の変換 効率が 7.3 %という報告がある <sup>3)</sup>。AgInSe<sub>2</sub>の作成法に は、薄膜では、MBE 法 <sup>3)</sup>やフラッシュ蒸着法 <sup>4,5)</sup>、パル スレーザー堆積法 <sup>6)</sup>などが報告されている。当研究室 でも Matsuo らによって真空蒸着法による AgInSe<sub>2</sub> 薄膜 の研究を行ってきた <sup>7)</sup>。しかし、バルク結晶ではブリ ッジマン法<sup>8,9)</sup>や VGF 法 <sup>10,11)</sup>による作成法が報告され ているものの、バルク結晶に関する報告例は少ない。 そこで本研究では、ホットプレス法により AgInSe<sub>2</sub> バ ルク結晶の結晶成長を行った。ホットプレス法は低温、 短時間で結晶成長が可能で、真空を必要としないなど の利点がある。これまでに、AgGaSe<sub>2</sub>、AgInS<sub>2</sub>、CuInS<sub>2</sub> バルク結晶をホットプレス法で作成し, 良質なバルク 結晶が得られている<sup>12-14</sup>。

本研究では、太陽電池作製のための基礎物性を得る ために、成長温度400 ℃から700 ℃と変化させAgInSe<sub>2</sub> バルク結晶を作成し、評価した。結晶の評価として、X 線回折(XRD)によって格子定数と粒径サイズを求め、 電子プローブマイクロ分析(EPMA)より定量分析を 行った。また、比重測定から密度を求めた。ホール測 定、サーモプローブ分析より、伝導型、抵抗率、キャ リア濃度、移動度を評価し、透過率測定より禁制帯幅 を見積もった。

## 2. 実験方法

本研究では,粉末二元系材料の Ag<sub>2</sub>Se (99.99 %,高 純度化学株式会社), In<sub>2</sub>Se<sub>3</sub> (99.99 %,高純度化学株式 会社)を用いて,化学量論的組成比になるように混合 した (式(1))。これを原料としてホットプレス法を用い て AgInSe<sub>2</sub>バルク結晶を作成した。

 $Ag_2Se + In_2Se_3 \rightarrow 2AgInSe_2$  (1) 本研究では、直径 20 mm のカーボンダイスを用いて成 長温度 400 °C から 700 °C, 圧力 25 MPa, 成長時間 1 時間で AgInSe<sub>2</sub> バルク結晶を作成した。作成した AgInSe<sub>2</sub> バルク結晶はカーボン紙で包まれているため、 研磨をした後に評価を行った。

XRD 測定では、加速電圧 40 kV, 管電流 40 mA で、 Cu ターゲットに衝突させて得られる K $\alpha_1$ 線( $\lambda$ =1.5406 Å)を用いた。強度の強い K $\alpha_1$ 線を光源とし、K $\alpha_2$ 線は 後に解析処理にて除去を行った。カルコパイライト型 化合物半導体 AgInSe<sub>2</sub>は正方晶系であるので、面間隔*d*、 面指数(*h k l*)、格子定数*a*,*c* は式(2)を満たす。

$$\frac{1}{d} = \frac{h^2 + k^2}{a^2} + \frac{l^2}{c^2}$$
(2)

粉末回折線の解析から粉末試料を構成する結晶のサ イズを測定することができる。結晶が理想的な格子を 形成していると仮定して,粒界の大きさ*t*をX線回折 測定から,式(3)のSherrerの実験式を用いて求めた。

$$t = \frac{0.9 \cdot \lambda}{B \cdot \cos \theta_{\mathbf{R}}} \tag{3}$$

ここで, *B* はピークの半値幅[rad], λは入射 X 線の波長 [Å], *θ*<sub>B</sub>は回折角[rad]である。

EPMA 分析では、作成した結晶の組成比を求めた。 試料を 1.3×10<sup>3</sup> Pa 以上の高真空な試料室にセットし、 電子銃から 20 kV で加速された電子ビームを電子レン ズで絞って試料に照射し、試料から X 線、反射電子、 透過電子、二次電子を発生させる。これらの内、二次 電子により SEM にて CRT 上に写し出された試料像を 拡大し、約1 mm<sup>2</sup>部分に加速電子を当て、そこから発 生する X 線を Ag、In、Se は L 殻で測定し、装置内部 の標準資料で補正した。これにより Ag、In、Se の組成 分布の測定を行った。

比重測定では,作成した AgInSe<sub>2</sub> バルク結晶の結晶 度合いを調べた。焼結が十分に行われていれば,試料 中の成長時に形成された気孔が原子の拡散と共に減少 し,試料の比重は単結晶の値とほぼ等しくなると考え られる。

簡易的に伝導型を知るために,サーモプローブ分析 を行った。作成した試料にテスタを押し当て,そのテ スタの片方の電極を温め,そのときの電圧を測定する。 測定した 2 つの電圧が反転していることを確認する。 ここで,陽極を温めてプラス,陰極を温めてマイナス が出れば n型,陽極を温めてマイナス,陰極を温めて プラスが出れば p型と判定した。

作成した AgInSe<sub>2</sub> バルク結晶の電気的特性を調べる ために室温でホール測定を行った。ホール測定には, Van der Pauw 法を用いた。Van der Pauw 法は 4 個のオー ミック電極を設けて,抵抗率,キャリア濃度,移動度 の測定ができる。本研究では真空蒸着法を用いて, In をオーミック電極として作成した。

光が物質中を通過する割合は,反射と物質内での吸 収に依存する。ある波長に対して吸収率 *A*,反射率 *R*, 透過率 *T* とすると,

#### $A + R + T = 1 \tag{4}$

という関係式が成り立つ。透過率Tは、試料厚さをx、 吸収係数を $\alpha$ とすると、

(6)

$$\alpha = -\frac{\ln\left\{\frac{T}{(1-R)^2}\right\}}{r}$$

さらに, 禁制帯幅  $E_g$ は光速 c, プランク定数 h (h=6.626 ×10<sup>-34</sup> J·s=4.136×10<sup>-15</sup> eV·s) として以下のように表される。

$$c(hv - E_g) = (\alpha hv)^2 = \left(\frac{hv}{x} \ln\left\{\frac{T}{(1-R)^2}\right\}\right)^2 \quad (7)$$

以上のように透過率と反射率を求めることによって 禁制帯幅と吸収係数を算出する。

## 3. 実験結果

## 3.1 結晶成長

成長温度 400 ℃ から 700 ℃, 圧力 25 MPa、成長時 間 1 時間で AgInSe<sub>2</sub>バルク結晶を作成した。作成した 試料は,カーボンダイスの形状により直径 20 mm,厚 さ約 2 mm の円柱形である。Fig. 1 は,作成した試料を 表面研磨したものである。成長温度 400,500 ℃ の試料 では,表面が粗く,光沢が見られなかった。試料内部 は加圧焼結の際にできる小さな気孔が肉眼で観察でき る程度の大きさで観察できた。成長温度 600,700 ℃ と高温になるにつれて表面は滑らかになり,光沢が見 られた。また,試料内部の気孔は肉眼では観察できな いくらい小さくなった。



Fig. 1 Sample photographs (400~700 °C).

#### 3.2 X 線回折

Fig. 2に XRD スペクトルを示す。参考として ICDD カードの AgInSe<sub>2</sub><sup>15)</sup>, Ag<sub>2</sub>Se<sup>16)</sup>, In<sub>2</sub>Se<sub>3</sub><sup>17)</sup>, AgIn<sub>5</sub>Se<sub>8</sub><sup>18)</sup>も同 時に示す。評価した試料はすべて多結晶であった。成 長温度 400 ℃ では AgInSe2 のピークが小さく観察され たが, 粉末二元系材料である Ag2Se の(112), (121)面の ピークや In<sub>2</sub>Se<sub>3</sub>の(006)面のピークが観察された。また, AgIn<sub>5</sub>Se<sub>8</sub>の(112), (202), (204)面のピークも観察された。 二元系材料のピークが観察された理由として、Ag<sub>2</sub>Se の融点は 880°C, In<sub>2</sub>Se<sub>3</sub>の融点が 890 °C であることか ら<sup>19)</sup>,未反応な原料が残留したと考えられる。また AgIn<sub>5</sub>Se<sub>8</sub>が観察された理由として、In の融点が 156.61 °C, Se の融点が 220.2 °C なので<sup>20)</sup>, 二元系材料 から分解し、AgInSe2ができるよりも先に AgIn5Se8がで きたと考えられる。成長温度が増加すると、二元系材 料のピーク強度が減少し, AgInSe2の(112)面のピーク強 度が増加した。粉末二元系材料のピークは成長温度 600 °C で観察されなくなり, また AgIn<sub>5</sub>Se<sub>8</sub> の(112), (202), (204)面のピークは成長温度 650°C で観察されな くなった。成長温度 650, 700 ℃ で ICDD の AgInSe<sub>2</sub> のピークと一致した。



Fig. 2 XRD spectra of AgInSe<sub>2</sub> bulk crystals.



Fig. 3 Relationship between growth temperature and lattice constants.

Fig. 3に XRD スペクトルの回折位置より式 (3) を用 いて求めた格子定数を示す。ICDD カードより, AgInSe2 の格子定数は a=6.104 Å, c=11.714 Å である<sup>15)</sup>。成長 温度 400~550 °C で得られた値と ICDD の値と比較し て,多少のバラつきが見られた。これは XRD の結果よ り、二元系材料のピークや AgIn<sub>5</sub>Se<sub>8</sub>の異相のピークが 観察されたことから, AgInSe2結晶の格子間に異相が存 在していることにより、格子が大きくなったと考えら れる。成長温度 600~700 ℃ で ICDD カードの a 軸, c 軸の値に近づいた。XRD の結果より, 異相の減少によ り ICDD の値に近づいたと考えられる。同じカルコパ イライト型構造を持つ CuInSe2 の格子定数 c/a 比は c/a>2 であるが, AgInSe2の c/a 比は c/a<2 となること が shay らの論文<sup>21)</sup>より報告されている。今回作成した すべての試料で c/a<2 となり、文献と一致した。XRD の結果より, ICDD のピークと一致した成長温度 650, 700 ℃の c/a 比は 1.91 となり,水平ブリッジマン法で 作成された AgInSe<sub>2</sub>と同じ値を得た<sup>9</sup>。

Fig. 4 に格子定数と同様に XRD スペクトルの回折位 置より,式(4)を用いて粒径サイズを求めた。今回の 計算では最も強度の強い(112)面を用いた。XRD スペク トルより,成長温度が増加するにしたがって,(112)面 のピークの半値幅が狭くなっていることから,粒径は 増大していることが分かる。成長温度 400 ℃ での粒



Fig. 4 Relationship between growth temperature and grain size.

径サイズは,最小の65 nmで,成長温度650 ℃で最大の87 nmという結果になった。これは,焼結における 緻密化機構において,出発粉体粒子の粒径を小さくす ること,および焼結温度を増すことは焼結を促進する 上で非常に有効であるので,本実験でも成長温度が増 加するにしたがって,粒径サイズが増大したと考えら れる<sup>22)</sup>。

## 3.3 電子プローブマイクロ分析 (EPMA)

Fig. 5 に EPMA の結果を示す。図中の実線は化学量 論的組成比の値を示す。成長温度増加にしたがって、 Ag, In, Se の組成比は化学量論的組成比に近づいてい った。成長温度 400 ℃ から 600 ℃ で Ag と In の割合が [Ag]<[In]であった。これは、In の割合が Ag の割合に 対してあまりにも多いときに、AgIn<sub>5</sub>Se<sub>8</sub>のような OVC

(Ordered Vacancy Compounds) が生成されやすいと考 えられる。成長温度 700 °C で最も化学量論的組成の値 に近づいた。このとき Ag-poor, In-poor, Se-rich であ った。欠陥としては, Ag 空孔( $V_{Ag}$ ), In 空孔( $V_{In}$ ), 格子 間 Se(Se<sub>i</sub>), Ag サイトの Se(Se<sub>Ag</sub>), In サイトの Se(Se<sub>In</sub>) などが考えられるが,サーモプローブ測定,ホール測 定の結果より,試料は n 型の伝導型を示したことから, ドナー性欠陥の Se<sub>Ag</sub>や Se<sub>In</sub>がアクセプター欠陥よりも 多いと考えられる。



Fig. 5 Relationship between growth temperature and EPMA results.

## 3.4 比重測定

Fig. 6 に比重測定の結果を示す。文献によると、 AgInSe<sub>2</sub>の密度は5.792 g/cm<sup>3</sup>である<sup>15)</sup>。成長温度400 °C から 600 ℃ では文献値より小さな値を示した。これは Fig. 15 で示したように粉末二元系材料の Ag<sub>2</sub>Se, In<sub>2</sub>Se<sub>3</sub> のピーク, さらには AgIn<sub>5</sub>Se<sub>8</sub>のピークが観察されたこ とから、結晶内に異相の存在が考えられる。成長温度 650°C での密度は 5.48 g/cm<sup>3</sup>であり, AgInSe<sub>2</sub>の文献値 より小さな値を示した。しかし、この試料の XRD スペ クトルでは異相が観察されなかった。同様にホットプ レス法を用いて Ag<sub>2</sub>Se と In<sub>2</sub>Se<sub>3</sub>のバルク結晶を作成し たところ, Ag<sub>2</sub>Se が 8.1 g/cm<sup>3</sup>, In<sub>2</sub>Se<sub>3</sub> が 5.5 g/cm<sup>3</sup> であっ たので,比重測定の結果より,異相の存在が考えられ る。成長温度 700 °C での密度は 5.80 g/cm<sup>3</sup> であった。 これは文献値とほぼ同じ値であった。Fig. 2の XRD ス ペクトルからも異相のピークが観察されなかったので, 成長温度 700 °C で AgInSe<sub>2</sub>の単相が得られたと考えら れる。

#### 3.5 ホール測定

Fig. 7 にホール測定における抵抗率の結果を示す。試 料表面にオーミック電極として In を蒸着法で作成した。 全ての試料でオーミック特性が得られた。抵抗率は成 長温度増加にしたがって増加傾向を示した。これは



Fig. 6 Relationship between growth temperature and density of AgInSe<sub>2</sub> bulk crystals.

XRD の結果より, 成長温度 400 ℃ での XRD スペクト ルで粉末二元系材料のピークや異相のピークが他の試 料の XRD スペクトルに比べて多く観察されたことか ら,結晶中の異相が電気伝導のパスとなり,反映され たと考えられる。成長温度上昇にしたがって、異相が 減少したことで抵抗率が増加したと考えられる。XRD, EPMA, 比重測定より, AgInSe2の単相が確認された成 長温度 700 °C での抵抗率は 0.16 Ωcm であった。本実 験で得られた値は、抵抗率は VGF 法で作成された AgInSe<sub>2</sub>バルク結晶<sup>10)</sup>や蒸着法で作成された AgInSe<sub>2</sub>薄 膜<sup>7)</sup>と近い値を得た。しかし同じAgInSe<sub>2</sub>薄膜でもMBE 法で作成された AgInSe<sub>2</sub> 薄膜と比べ、大きく値が異な った。これは、MBE 法は超高真空下で薄膜作成を行う ため不純物の取り込みが極めて少なく、高品質のもの が得られることから, MBE 法で作成された AgInSe<sub>2</sub>薄 膜は抵抗率が大きいと考えられる<sup>23)</sup>。

Fig.8にキャリア濃度と移動度の結果を示す。キャリ ア濃度は成長温度増加にしたがって減少傾向を示した。 キャリア濃度が減少した原因として,結晶中の異相に よって生じたドナー性欠陥が減少したと考えられる。 また,移動度は増加傾向を示した。移動度が増加した 原因として,成長温度が上昇するにしたがって結晶性 が良くなったことが原因だと考えられる。抵抗率のと きと同様,成長温度700 ℃でのキャリア濃度は7.6×10<sup>16</sup>



Fig. 7 Resistivity of AgInSe<sub>2</sub> bulk crystals.

cm<sup>-3</sup>,移動度は73 cm<sup>2</sup>/Vsであった。これらの値は, VGF 法で作成されたAgInSe2バルク結晶<sup>10)</sup>と近い値であった。 蒸着法で作成されたAgInSe2薄膜では、キャリア濃度は  $2.5 \times 10^{18}$  cm<sup>-3</sup>,移動度は18 cm<sup>2</sup>/Vsと報告されている<sup>7</sup>。 本実験で得られた値に比べ、キャリア濃度が高く、移 動度が低い。これは、バルク結晶のダイス内部での拡 散過程と薄膜の基板への堆積過程が異なるためと考え られる。また、ホール測定の結果、ホール係数は全て の試料で負の値を示したので、本実験で作成した試料 は全てn型であった。サーモプローブ分析の結果でも, 全ての試料でn型の伝導型を示した。ドナー性欠陥がア クセプター性欠陥よりも多く存在しているためn型の 伝導型を示したと考えられる。AgInSe<sub>2</sub>に関する論文<sup>3,7,</sup> <sup>8,24)</sup> によると, サーモプローブ分析でn型を示したとい う報告があるが、本研究で作成した試料においても同 様の結果が得られた。

#### 3.6 透過率測定

Fig. 9 に式(7)を用いて, XRD の結果より AgInSe2 の 単相が得られた成長温度 700 °C における, 横軸をエネ ルギー, 縦軸を(*ahv*)<sup>2</sup>として禁制帯幅を算出したグラフ を示す。この結果から室温での禁制帯幅は 1.204 eV を 得た。文献と比較して, バルク結晶の文献では 1.216 eV<sup>8</sup>, 1.225 eV<sup>26</sup>, 薄膜の文献では 1.21 eV<sup>27</sup>, 1.25 eV<sup>28</sup> と報告されている。本実験で得られた値は文献値と比 ベ, 若干低い値となった。これはキャリア濃度や



of AgInSe<sub>2</sub> bulk crystals.



 $(h\upsilon)$  and  $(\alpha h\upsilon)^2$ .

組成比の相違により、禁制帯幅が文献値よりも低い値 となったと考えられる。

## 4. 結論

粉末二元系材料Ag<sub>2</sub>Se, In<sub>2</sub>Se<sub>3</sub>を用いて, ホットプレ ス法により, AgInSe<sub>2</sub>バルク結晶の作成を試みた。圧力 25 MPa, 成長温度1時間で, 成長温度400 ℃から700 ℃ と変化させた。

X線回折の結果より、全ての試料で多結晶であった。 成長温度400 ℃では、AgInSe<sub>2</sub>のピークがわずかに観察 されたが、粉末二元系材料のピークやAgIn<sub>5</sub>Se<sub>8</sub>のピーク が顕著に観察された。成長温度増加にしたがって、粉 末二元系材料のピークは600 °Cで消え, AgIn<sub>5</sub>Se<sub>8</sub>のピー クは650 °Cで消えた。成長温度650,700 °CでICDDカー ドのAgInSe<sub>2</sub>のピークと一致した。格子定数は,成長温 度400~550 °Cで多少のバラつきが見られたが,成長温 度600~700 °CでICDDカードのa軸, c軸の値に近づいた。 粒径サイズは成長温度増加にしたがって増大し,成長 温度700 °Cで80 nmが得られた。

電子プローブマイクロ分析の結果より,成長温度増加にしたがって,Ag,In,Seの組成比は化学量論的組成比に近づき,成長温度700 °Cのとき,最も近づいた。 このとき,わずかにAg-poor,In-poor,Se-richであった。 ホール測定,サーモプローブ分析の結果より,n型の伝 導型を示したことから,Se<sub>Ag</sub>やSe<sub>In</sub>のドナー性欠陥が考 えられる。

比重測定の結果より,成長温度400~650 ℃では ICDDカードの値よりも小さい値となった。650 ℃の XRDスペクトルでは異相が観察されなかったが,比重 測定の結果より,異相の存在が考えられる。成長温度 700 ℃のとき,ICDDカードの値に最も近い5.80 g/cm<sup>2</sup> となり,X線回折の結果を含め,成長温度700 ℃で AgInSe<sub>2</sub>の単相が得られた。

ホール測定の結果より,成長温度増加にしたがって, 抵抗率は増加,キャリア濃度は減少,移動度は増加傾 向を示した。X線回折スペクトルより成長温度増加に したがって,異相が減少していることから,欠陥が減 少し,結晶性が良くなったことが考えられる。XRDの 結果より単相が得られた成長温度 700 °C のとき,抵抗 率は 0.16 Ωcm,キャリア濃度は 7.6×10<sup>16</sup> cm<sup>-3</sup>,移動度 は 73 cm<sup>2</sup>/Vs を得た。

透過率測定の結果より,XRDの結果から単相が得ら れた成長温度700 ℃の試料における禁制帯幅を見積も った結果,禁制帯幅は1.204 eVを得た。

## 参考文献

 山本 信行:新しい機能性半導体材料をめざして (アイビーシー出版部, 1989).

- M. A. Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D. L. Young, B. Egaas and R. Noufi, Prog. Photovolt. Res. Appl. 13 (2005) 209.
- K. Yamada, N. Hoshino and T. Nakada, Sci. Technol. Advanced. Mater. 7 (2006) 42.
- 4) S. M. Patel and A. D. Patel, Matter. Lett. 2 (1983) 127.
- P. Paul Ramesh, O. Md. Hussain, S. Uthanna, B. S. Naida and P. J. Reddy, Mater. Lett. 34 (1998) 217.
- H. Mustafa, D. Hunter, A. K. Pradham, U. N. Roy, Y. Cui and A. Burger, Thin Solid Films 515 (2007) 7001.
- H. Matsuo, K. Yoshino and T. Ikari, Phys. Stat. Sol. (c) 3 (2006) 2644.
- S. Ozaki and S. Adachi, J. Appl. Phys. 100 (2006) 113526.
- 9) I. V. Bodnar', Inorg. Mater. 40 (2004) 914.
- K. Yoshino, N. Mitani, M. Sugiyama, S. F. Chichibu, H. Komaki and T. Ikari, Physica B **302-303** (2001) 349.
- K. Yoshino, H. Komaki, K. Itani, S. F. Chichibu, Y. Akaki and T. Ikari, J. Cryst. Growth 236 (2002) 257.
- A. Kinoshita, H. Matsuo, K. Yoshino, T. Ikari and K. Kakimoto, Phys. Stat. Sol. (c) 3 (2006) 2093.
- K. Yoshino, H. Komaki, T. Kakeno, Y. Akaki and T. Ikari, J. Phys. Chem. Solid. 64 (2003) 1839.
- 14) H. Komaki, K. Yoshino, S. Seto, M. Yoneta, Y. Akaki and T. Ikari, J. Cryst. Growth 236 (2002) 253.
- 15) ICDD No. 00-035-1099.
- 16) ICDD No. 00-024-1041.
- 17) ICDD No. 00-034-0455.
- 18) ICDD No. 00-036-1397.
- 19) Otfried Madelung 編: Semiconductors-Basic Data (Springer).
- 20) 国立天文台 編:理科年表 (丸善, 1999).
- J. L. Shay, B. Tell, H. M. Kasper and L. M. Schiavone, Phys. Rev. B 7 (1973) 4485.
- 22) 粉体工学会 編:粉体工学便覧 第2版 (日刊工業新 聞,1998).
- 23) 権田俊一:分子線エピタキシー p. p. 15-16 (培風 館, 1994).

- M. C. S. Kumar and B. Pradeep, Vacuum 72 (2004) 369.
- 25) 権田俊一監修:薄膜作製応用ハンドブック (株式会社エヌ・ティー・エス, 2003).
- 26) J. G. Albornoz, R. Sena and M. León, J. Appl. Phys. 97 (2005) 103515.
- A. El-Korashy, M. A. Abdel-Rahim and H. El-Zahed, Thin Solid Films 338 (1999) 207.
- 28) A. H. Ammar, A. M. Farid and M. A. M. Seyam, Vacuum 66 (2002) 27.