電子衝突によるルビジウムイオンの励起断面積

加藤修平1),柏原広道2),中崎忍3)

Electron-Impact Excitation of Rb⁺

Shuhei KATO, Hiromichi KASHIWABARA and Shinobu NAKAZAKI

Abstract

We carry out R-matrix calculations for excitations of $4p^55s \ {}^{1}P_{1}^{o}$, ${}^{3}P_{1}^{o}$ states and $4p^54d \ {}^{1}P_{1}^{o}$, ${}^{3}P_{1}^{o}$, ${}^{3}D_{1}^{o}$ states from the ground $4p^6 \ {}^{1}S_{0}^{e}$ state of Rb⁺. The R-matrix method with 35, 61 and 73 target state is used for these transitions in the low incident energy. We compare our results with experimental measurements. The energy dependence of present cross sections for the $4p^6 \ {}^{1}S_{0}^{e} \rightarrow 4p^55s \ {}^{1}P_{1}^{o}$ and ${}^{3}P_{1}^{o}$ transitions are in agreement with the experimental results.

Key Words : Excitation, Electron impact, R-matrix method, Rubidium ion, Cross section

1. 序論

電子衝突におけるイオンの励起過程は、主に核融合 プラズマや天体プラズマ中で起こる現象である。近年 の実験技術、実験装置の進歩によって、電子ビームを気 体の原子又はイオンに衝突させてかなり正確な励起断 面積の実験値を得ることができるようになった。一方、 理論的研究も計算機の進歩によって、これら実験値の信 頼性の確認および実験の困難な励起過程に対してより 精度の良い計算結果を得ることが出来るようになった。

電子とイオンの衝突における理論的計算の方法とし ては、入射波を Coulomb 波として近似する Coulomb-Born(CB) 近似法、CB 近似法において入射電子が標的 イオンの束縛電子と入れ替わり散乱されるという電子 交換を考慮した Coulomb-Born-Oppenheimer(CBO) 近 似法がある。また、入射・散乱波を標的イオンのポテン シャルによって歪められた波として考える歪曲波 (DW) 近似法がある。更に、標的の状態が互いに緊密に結合し あう過程を含めた有限個の連立微積分方程式を解く緊 密結合法 (CC)、そして標的の電子と入射電子を区別で きる領域とできない領域に分けて計算を行う R 行列法 などが挙げられる。本研究では、電子衝突による Rb⁺ の励起断面積について、R 行列法を用いて理論的研究 を行った。

- 1) 宮崎大学大学院 工学研究科 博士前期課程 応用物理学専攻
- 2) 宮崎大学 工学部 技術専門職員
- 3) 宮崎大学 材料物理工学科 教授

R行列法は、1947年に原子核物理学の分野で複合核 モデルとしてWigner ら¹⁾によって提唱され、1970年 代にBurke ら²⁾によって電子・原子衝突の分野に拡張 されたものである。この近似法の特徴は、衝突過程を内 部領域と外部領域の2つの系に分けて計算を行う点に ある。内部領域では入射電子が標的の束縛電子と混在 している領域で入射電子と標的内電子の電子交換や電 子相関を考慮する。そこで、入射電子と標的内電子(*N* 個とする)からなる*N*+1電子系について配置間相互作 用法を用いて全系の波動関数を求める。一方、外部領 域では、電子交換散乱が無視できる領域で、通常の緊 密結合法により散乱電子の波動関数を決定する。これ らの領域で求めた波動関数を境界で滑らかに結合する ことで散乱電子の波動関数を決定し、散乱断面積を得 ることができる。

R行列法は低エネルギー領域の計算に適している。その理由としては、R行列法は散乱振幅を求める際に入 射電子のエネルギーに依存しない部分を先に計算し、そ の後に、エネルギーに依存する部分の計算を行ってそ れぞれを結合して求めるため、全領域の計算をエネル ギーごとに行う緊密結合法に比べて、たくさんのエネ ルギーポイントでの計算を行いやすい。励起しきい値 付近の低エネルギー領域では、共鳴構造による励起断 面積の急激な変化が多く見られるため、入射電子のエ ネルギーのきざみを細かく計算することが重要になる。 また、内部領域の計算に含めるN電子系、N+1電子 系の状態を変えることにより、その状態により起こる 共鳴現象の変化を調べたり、特定のエネルギーで起き る共鳴現象にどの状態が寄与しているかを調べること が可能である。

これまで、電子衝突によるアルカリ金属イオン (Na⁺、 K⁺、Rb⁺、Cs⁺、Fr⁺)の励起過程について、Na⁺で は多くの研究がなされてきているが、原子番号の大き なイオンについては理論的計算例は2005年までなく、 K⁺、Rb⁺及び Cs⁺ について Zapesochnyi ら⁶⁾の実験 が唯一報告されている。K⁺ については、Berrington ら⁷⁾が2006年に理論的計算を行い実験結果との大き な差異を報告している。しかし、 Rb^+ の $4p^{6}$ $^1S_0^e \rightarrow$ $4p^{5}5s^{1}P_{1}^{o}, {}^{3}P_{1}^{o}$ 遷移、及び $4p^{6} {}^{1}S_{0}^{e} \rightarrow 4p^{5}4d {}^{1}P_{1}^{o}, {}^{3}P_{1}^{o},$ ³D^o 遷移の励起断面積について理論的研究はない。Rb⁺ (基底状態、4s²4p⁶¹S) についての実験報告によると K+(基底状態、3s²3p⁶1S)に比べて明確な共鳴構造が 得られている。そこで、本研究では、相対論的な効果 を取り入れた Briet-Pauli R 行列法⁵⁾を用いて電子衝 突による Rb^+ の $4p^6 {}^{1}S_0^{e} \rightarrow 4p^5 5s {}^{1}P_1^{o}, {}^{3}P_1^{o}$ 遷移、及 び $4p^{6} {}^{1}S_{0}^{e} \rightarrow 4p^{5}4d {}^{1}P_{1}^{o}, {}^{3}P_{1}^{o}, {}^{3}D_{1}^{o}$ 遷移の励起断面積 を理論的に求め、その入射電子のエネルギー依存性や 共鳴構造の影響を調べ、実験との比較を行った。

本論文では、まず2章で計算に用いた理論を述べる。 また、3章で結果を示して考察を行い、4章で結論を述 べる。本研究では、特にことわらない限り、原子単位 (a.u.)を用いる。

2. 理論

2.1 標的イオン Rb⁺の束縛状態

はじめに、N個の電子を持つ標的イオンである Rb⁺(原 子番号 Z が 37)の束縛状態の波動関数について考える。 この標的はクリプトン様イオンで束縛電子の数は N=36であり、その基底状態は $1s^2s^22p^63s^23p^63d^{10}4s^24p^{6-1}S$ である。標的イオンの状態を次のように反対称化した 波動関数 ϕ_i で表現する。

$$\phi_{j}(\alpha_{j}L_{j}S_{j}M_{Lj}M_{Sj}|x_{1},...,x_{N})$$

$$\equiv \phi_{j}(1s^{m_{1j}}2s^{m_{2j}}2p^{m_{3j}}...$$

$$...\alpha_{i}L_{i}S_{i}M_{Li}M_{Si}|x_{1},...,x_{N}).$$
(1)

標的イオンの束縛状態は、(1) 式の波動関数を用いて、 同じ $L_i \ge S_i$ をもった状態を重ね合わせた配置間相互 作用法により次のように表すことができる。

$$\Phi_j(L_j S_j M_{Li} M_{Si} | x_1, ..., x_N)$$

$$\equiv \sum_{k} b_{ik} \phi_k(\alpha_j L_k S_j M_{Lj} M_{Sj} | x_1, ..., x_N).$$
(2)

ここで、 x_i は i 番目の電子の空間座標とスピン座標を 含めた表示であり、 L_j , S_j は標的イオンの軌道角運動 量、スピン角運動量、 M_{Lj} , M_{Sj} はそれらの Z 成分を 表している。 b_{ij} は展開係数であり、(3)式で表されるよ うに標的イオンのハミルトニアンを対角化することに より決定される。

$$\langle \Phi_i | H_N | \Phi_k \rangle = E_i^N \delta_{ik}, \qquad (3)$$

2.2 R 行列法による内部領域

R 行列法は電子と標的の衝突過程を内部領域と外部 領域に分けて取り扱い、最終的には 2 つの領域の波動 関数を境界上で滑らかに接続して散乱断面積を求める 方法である。この節では内部領域についての理論的取り 扱いを述べ、次節 2.3 で外部領域の取り扱いを述べる。 内部領域では、入射電子と束縛電子との電子交換や電 子相関効果を考慮しなければならない。そこで、標的 内電子と入射電子からなる N+1 電子系の状態を考え、 配置間相互作用法を用いて N+1 電子系の波動関数を 決定する。まず、内部領域における N+1 電子系の波 動関数を (4) 式の形で表現する。

$$\Psi_k(x_1...x_{N+1})$$

$$= A \sum_{ij} c_{ijk} \Phi_i(x_1 \dots x_{N+1}, \hat{\boldsymbol{r}}_{N+1} \sigma_{N+1})$$
$$\times \frac{1}{r_{N+1}} u_{ij} r_{N+1} + \sum_j d_{jk} \phi_j(x_1 \dots x_{N+1}). \quad (4)$$

(4) 式の第1項目の関数 Φ は (2) 式の Φ に対応し、標 的イオンの束縛状態の波動関数に散乱電子の角度部分 \hat{r}_{N+1} とスピン座標 σ_{N+1} を含ませたものを表している。 Aは、標的イオンと散乱電子の波動関数を反対称化させ る演算子である。第2項の ϕ_j は標的イオンの束縛状態 における個々の電子の軌道関数を用いて表現した N+1電子系の波動関数である。 u_{ij} は散乱電子の波動関数の 動径部分であり、(6)式の境界条件を満足する (5)式の 微分方程式の解である。

$$\left(\frac{d^2}{dr^2} - \frac{l_i(l_i+1)}{r^2} + V(r) + k_{ij}^2\right) u_{ij}(r)$$
$$= \sum_{n=l_i+1}^{n_{max}(l_i)} \lambda_{ij} P_{nl_i}(r), \tag{5}$$

$$u_{ij}(0) = 0, \quad \frac{a}{u_{ij}(a)} \frac{du_{ij}}{dr}\Big|_{r=a} = b.$$
 (6)

ここで、(6) 式の a は内部領域の境界半径であり、b は 任意定数である。(5) 式の右辺の和については、標的イ オンの状態を記述する際に用いたそれぞれの軌道角運 動量 l_i に対する全ての主量子数を持つ $P_{nl_i}(r)$ を考慮に 入れる。 λ_{ij} は標的イオンと散乱電子の動径関数が直交 するように決めるラグランジェの未定乗数である。

$$\langle u_{ij}|P_{nl_i}(r)\rangle = \int_0^a u_{ij}(r)P_{nl_i}(r)dr = 0,$$
 (7)

$$\langle u_{ij}(r)|u_{ij'}(r)\rangle = \delta_{jj'}.$$
(8)

(5) 式を用いて求めた散乱電子の波動関数 *u_{ij}* は、(8) 式 においてそれぞれの軌道角運動量 *l_i* について規格直交 系を満足するように決定する。(7) 式と(8) 式から、0 から *a* までの範囲で軌道関数は完全系を構成している ことがわかる。次に、*N*+1 電子系のハミルトニアンを (9) 式で表現する。

$$H_{N+1} = \sum_{i}^{N+1} \left(-\frac{1}{2} \bigtriangledown_{i}^{2} - \frac{Z}{r_{i}} \right) + \sum_{i>j=1}^{N+1} \frac{1}{r_{ij}}.$$
 (9)

(4) 式における係数である $c_{ijk} \ge d_{jk}$ は、(3) 式で a_{ij} を 求めたように (9) 式のハミルトニアン行列を対角化し決 定される。

R 行列法を用いて散乱問題を解く際に、励起は様々な 状態を経て起こると考えられるので、状態間で強く結 びつく状態を(4)式の第1項の展開の中に含める必要が ある。そのため、励起状態にどのような状態をいくつ 含めるかということが重要となる。

2.3 R 行列法による外部領域

外部領域では入射電子と標的の束縛電子が区別でき、 内部領域で考慮したような電子交換や電子相関の効果 が働かないものとして計算を行うため、通常の緊密結 合法における電子交換効果を無視した連立微積分方程 式は、2階の連立微分方程式になる。次式の連立微分方 程式を解くことで散乱電子の波動関数 $\omega_i(r)$ を決定する ことができる。

$$\left(\frac{d^2}{dr^2} - \frac{l_i(l_i+1)}{r^2} + \frac{2(Z-N)}{r} + k_i^2\right)\omega_i(r) = 2\sum_{\lambda=0}^{\infty}\sum_{j=1}^n a_{ij}^{\lambda}r^{-\lambda-1}\omega_j(r),$$
(10)

ただし、 a_{ij}^{λ} は次式である。

$$a_{ij}^{\lambda} = \left\langle \left. \bar{\varPhi}_i \left| \sum_{k=1}^N r_k^{\lambda} P_{\lambda}(\cos \theta_{kN+1}) \right| \left. \bar{\varPhi}_j \right\rangle.$$
(11)

(10) 式の微分方程式の漸近解は、散乱行列 **K** を用いて 次式で表現できる。

$$\begin{cases} \omega_{ij} \underset{r \to \infty}{\sim} k_i^{-1/2} (\sin \theta_i \delta_{ij} + \cos \theta_i K_{ij}) & k_i^2 > 0, \\ \omega_{ij} \underset{r \to \infty}{\sim} 0 & k_i^2 < 0. \end{cases}$$
(12)

ここで θ_i はクーロンの位相をも含むものである。内部 領域と外部領域それぞれの波動関数を境界で滑らかにつ なぐことにより、K行列要素を得ることができる。K行列よりT行列が以下の式により求められる。

$$T = \frac{-2iK}{1 - iK}.$$
(13)

2.4 Breit-Pauli R 行列法による電子衝突理論

Breit-Pauli R 行列法は Berrington ら⁵⁾ によりその 詳細が述べられている。Breit-Pauli R 行列法はディラッ クの相対論による方程式において後に述べる近似を用 いた半相対論的なハミルトニアンを用いている。この ため、標的及び全系の電子状態は、非相対論的な取り 扱いの LS 結合ではなく、JJ 結合により表記される。

N 個の電子を持つ原子番号 Z の原子またはイオンの 場合を考える。このとき、Breit-Pauli ハミルトニアン は次のように非相対論のハミルトニアン H_{NR}^{N} に相対論 的な項 H_{REL}^{N} を付け加えた形で表される。

$$H_{BP}^{N} = H_{NR}^{N} + H_{REL}^{N}.$$
 (14)

 H_{REL}^{N} はスピン・軌道相互作用 H_{SO}^{N} 、質量補正 H_{mass}^{N} 及びダーウィン項 $H_{D_1}^{N}$ により次のように表される。

$$H_{REL}^{N} = H_{SO}^{N} + H_{mass}^{N} + H_{D_{1}}^{N}.$$
 (15)

非相対論的な取り扱いを行う R 行列法と同様に、内 部領域における N + 1 電子系の波動関数は以下のよう に展開される。

$$\begin{split} \Psi_k(\Delta_i J_i M_{J_i} \Pi | \boldsymbol{x}_1 ... \boldsymbol{x}_{N+1}) \\ &= \mathcal{A} \sum_{ij} c_{ijk} \, \bar{\varPhi}_i(\Delta_i J_i M_{J_i} J \Pi | \boldsymbol{x}_1 ... \boldsymbol{x}_N, \hat{\mathbf{r}}_{N+1} \sigma_{N+1}) \\ &\times \frac{1}{r_{N+1}} u_{ij}(r_{N+1}) \end{split}$$

+
$$\sum_{j} d_{jk} \phi_j (\Delta_i J_i M_{J_i} J \Pi | x_1 ... x_{N+1}).$$
 (16)

 Π は全系のパリティーである。また、展開係数 c_{ijk} と d_{jk} はN+1電子系のハミルトニアン H_{BP}^{N+1} を対角化することにより求められる。

$$\left\langle \Psi_k \left| H_{BP}^{N+1} \right| \Psi_{k'} \right\rangle = \delta_{kk'} E_k^{N+1}. \tag{17}$$

ここで、*JIK* 結合表示を導入する。この表示では次の関係がある。

$$J_i + l = K, \ K + \frac{1}{2} = J.$$
 (18)

ここで、 J_i は標的の全角運動量、lは入射電子の角運 動量、JはN+1電子系の全角運動量である。非相対 論的なR行列法と同様に、内部領域の波動関数と外部 領域の波動関数を境界半径上で滑らかにつなぐことで JlK結合表示のK行列が求まり、JlK結合表示の散乱 行列Tが求められる。

2.5 励起断面積

T行列を用いると部分衝突強度は次のようになる。

$$\Omega_{ij}^{LS\pi} = \frac{(2J+1)}{2} \sum_{l_i l_f} \left| T_{l_i l_f}^{LS\pi} \right|.$$
(19)

衝突強度は部分衝突強度の各 LSπ の和で表されるので 次のようになる。

$$\Omega_{ij} = \sum_{LS\pi} \Omega_{ij}^{LS\pi}.$$
 (20)

また次の関係式を用いて積分断面積は求められる。

$$Q_{ij} = \frac{\pi a_0^2}{k_i^2 (2J_i + 1)} \Omega_{ij}.$$
 (21)

3. 結果と考察

3.1 標的の波動関数

本研究では、基底状態及び励起状態を表す電子の軌 道関数について、1s、2s、2p、3s、3p、3d、4s、4pは Clementiと Roetti³⁾によって求められている Hartree-Fock 法による Slater 型軌道関数を使用し、その他の軌 道関数は Hibbert⁴⁾によって発表された配置間相互作用 法によるプログラムパッケージ CIV3 を用いて変分的に 決定した。これらの軌道の最適化の方法を表1に示し、 表2に最適化した軌道関数のパラメータを示す。これ 表 1. Rb⁺ のスレーター型軌道関数の最適化の方法

軌道関数	最適化を行ったエネルギー準位
4d	$4p^{5}4d(^{3}P + {}^{1}P)$
4f	$4p^54f^{-3}D$
5s	$4p^55s$ ³ P
5p	$4p^55p^{-3}S$
5d	$4p^55d^{-3}P$
6s	$4p^56s^{-3}P$
6p	$4 \mathrm{p}^5 \mathrm{6p}^{-3} \mathrm{S}$

らを用い、表3に示した電子配置によって標的イオン の波動関数を記述することにより、波動関数を求めた。 表3で示される73状態のエネルギー準位を求めた。本 研究で試みる励起断面積は基底状態 $4p^{6}$ $^{1}S_{0}^{e}$ から励起 状態 $4p^{5}5s$ $^{1}P_{1}^{o}$, $^{3}P_{1}^{o}$ 及び $4p^{5}4d$ $^{1}P_{1}^{o}$, $^{3}P_{1}^{o}$, $^{3}D_{1}^{o}$ への励 起であることから、この励起エネルギーを表4に、振 動子強度を表5に示す。

表4に示すように、本研究で求めた励起エネルギー は実験値よりも大きい。また、表5に示す振動子強度の LENGTHとVELOCITYの値を比べると、5s¹P₁, ³P₁ 遷移ではLENGTHとVELOCITYが近い値である。 4d¹P₁, ³P₁, ³D₁ 遷移ではLENGTHとVELOCITY に差がある。表4の結果と波動関数が正確であれば振 動子強度のLENGTH成分とVELOCITY成分が同じ 値をとるという一般論を考えると、今回求めた波動関 数は精度が高いとは言い難いがある程度信頼おけるも のと考える。

3.2 励起断面積

本研究では、R行列法の計算に Berrington ら⁵⁾ によっ て発表されたプログラムパッケージを用いて、4p^{6 1}S₀⁶ \rightarrow 4p⁵5s¹P₁, ³P₁ 及び 4p⁵4d¹P₁, ³P₁, ³D₁ 遷移におけ る 35 状態、61 状態、73 状態の励起断面積を求め、その 収束について調べた。これらの計算に含めた励起状態 を表6に示す。結果をそれぞれ図1~図15に示す。こ こで、Zapesochnyi ら⁶⁾の実験値は高エネルギー部で CB 近似法に規格化していることが彼らの論文で述べら れている。彼らの結果は本研究の結果と比べて全体的に 大きな値である。そこで、エネルギー依存性について本 研究結果と比較しやすいように、 $4p^{6} {}^{1}S_{0}^{e} \rightarrow 4p^{5}5s {}^{1}P_{1}^{o}$ 遷移の 25 eV で本研究結果と一致するように実験結果 を1/9倍した。他の遷移についても実験値を1/9倍し てある。また、実験で共鳴が現れているエネルギーが 本研究と一致するように実験の入射エネルギーを1 eV 少なくして図に示している。

Orbital	I_{ij}	ξ_{ij}	C_{ij}
4d	3	8.8286100	38.5914642
	4	1.1402911	-0.2033229
4f	4	0.5201859	0.0059510
5s	1	23.7992727	7.0810204
	2	15.0707366	-89.4113552
	3	7.2104429	80.7226469
	4	3.7182456	-15.4170163
	5	1.3418243	0.1204514
5p	2	16.5391070	65.0082981
	3	7.2917119	-62.8373243
	4	3.1927449	7.4805983
	5	1.1499595	-0.0512844
5d	3	8.4690097	96.0298616
	4	2.0085600	-1.7536809
	5	0.7067648	0.0029754
6s	1	23.1956670	3.5379070
	2	15.3326501	-46.7487835
	3	7.2888076	40.2700840
	4	3.6015148	-6.9939313
	5	1.4922829	0.1076364
	6	0.7624519	-0.0007563
6p	2	16.3849076	33.2113703
	3	7.4273725	-33.9139551
	4	3.1182250	3.6288373
	5	1.2701785	-0.0475768
	6	0.6750837	0.0003480

表 2. Rb⁺ のスレーター型軌道関数のパラメータ

表 3. Rb⁺の波動関数の決定に用いた状態

J	π	State
0	even	$4p^{6} {}^{1}S; 4p^{5}5p {}^{1}S, {}^{3}P; 4p^{5}6p {}^{1}S,$
		$^{3}P; 4p^{4}4d^{\cdot} {}^{1}S; 4p^{4}5p^{\cdot} {}^{3}S$
1	even	$4p^55p^{3}S$, ^{1}P , ^{3}P , ^{3}D ; $4p^56p^{3}S$,
		${}^{1}P, {}^{3}P, {}^{3}D; {}^{4}p^{5}4f {}^{3}D; {}^{4}p^{4}5p^{\cdot} {}^{3}S$
2	even	$4p^{5}5p^{-3}P$, ¹ D, ³ D; $4p^{5}6p^{-3}P$, ¹ D,
		³ D; ⁴ p ⁵ 4f ¹ D, ³ D, ³ F
3	even	$4p^{5}5p^{-3}D; 4p^{5}6p^{-3}D; 4p^{5}4f^{-3}D,$
		${}^{1}F, {}^{3}F, {}^{3}G; 4p^{4}5p^{\cdot} {}^{3}D$
4	even	$4p^{5}4f^{-3}F$, ${}^{1}G$, ${}^{3}G$
5	even	$4p^{5}4f^{-3}G$
0	odd	$4p^55s {}^{3}P; 4p^56s {}^{3}P;$
		$4p^{5}4d^{3}P; 4p^{5}5d^{3}P; 4p^{4}5s5p^{3}P$
1	odd	$4p^55s {}^{1}P, {}^{3}P; 4p^56s {}^{1}P, {}^{3}P;$
		$4p^{5}4d^{1}P, {}^{3}P, {}^{3}D;$
		$4p^{5}5d^{-1}P, {}^{3}P, {}^{3}D$
2	odd	$4p^55s {}^{3}P; 4p^56s {}^{3}P; 4p^54d {}^{3}P,$
		¹ P, ³ D, ³ F; ⁴ p ⁵ 5d ³ P, ¹ D, ³ D, ³ F
3	odd	$4p^{5}4d^{3}D, {}^{1}F, {}^{3}F;$
		$4p^{5}5d^{3}D, {}^{1}F, {}^{3}F$
4	odd	$4p^{5}4d^{3}F; 4p^{5}5d^{3}F$

表 4.73 状態における Rb⁺ の励起エネルギー

Level		Energy (Ryd)	
		Present	$Experiment^{10}$
$4p^6$	$^{1}S_{0}$	0	0
$4\mathrm{p}^{5}\mathrm{5s}$	$^{3}\mathrm{P}_{1}^{\mathrm{o}}$	1.2877592	1.22902360
$4\mathrm{p}^{5}\mathrm{5s}$	$^{1}\mathrm{P}_{1}^{\mathrm{o}}$	1.3466826	1.28133303
$4p^{5}4d$	$^{3}\mathrm{P}_{1}^{\mathrm{o}}$	1.4245069	1.30732173
$4p^{5}4d$	$^{3}\mathrm{D_{1}^{o}}$	1.5415397	1.41527810
$4p^{5}4d$	$^{1}\mathrm{P_{1}^{o}}$	1.6608235	1.54604234

表 5. Rb⁺ の基底状態 (4p^{6 1}S₀) からの遷移における振 動子強度

State	Present		Others ⁹⁾
	LENGTH	VELOCITY	
$4p^{5}5s {}^{3}P_{1}^{o}$	0.174927	0.153401	0.25
$4p^{5}5s {}^{1}P_{1}^{o}$	0.345711	0.324591	0.26
$4p^{5}4d {}^{3}P_{1}^{o}$	0.181382e-4	0.168461e-3	
$4p^{5}4d {}^{1}P_{1}^{0}$	0.111576	0.0659088	
$4p^{5}4d^{-3}D_{1}^{0}$	2.06812	1.119998	

まず、 $4p^{6} {}^{1}S_{0}^{e} \rightarrow 4p^{5}5s {}^{1}P_{1}^{o}$ 遷移について、35 状態 の図1では実験値同様に20eV付近での共鳴のピーク を見ることができるが、21 eV以上の領域において複雑 な共鳴状態が現れず、23 eV での共鳴のピークも現れて いない。この領域での振舞いを見るために状態数を 61 状態に増やした結果が図2である。状態数を増やすこ とで 35 状態では見られなかった 23 eV 付近での共鳴状 態を表すことができた。このため、23 eV 付近での共鳴 状態には新たに追加した 6s、6p、5d 軌道に関する状態 が深く寄与しているものと考えられる。更に状態数を 73 状態に増やした結果が図3である。24 eV 以上の領 域において実験値では励起断面積が減少する傾向にあ るのに対して 73 状態では増加しているという違いがあ るものの、20 eV 付近、23 eV 付近に実験値同様の共鳴 のピークが見られ、励起断面積のエネルギー依存性に ついて実験値と良く一致しているといえる。R 行列法 の計算を行う際に、更に2電子励起状態等の状態を追 加することで、24 eV 以降での実験値との不一致は解決 できるのではないかと思われる。

次に、 $4p^{6}$ ¹S^e₀ → $4p^{5}5s$ ³P^o₁ 遷移について述べる。実 験値では 17 eV、19 eV、23 eV に大きく 3 つの共鳴の ピークを見ることができるが、図 4 の 35 状態では 23 eV でのピークが全く現れていない。¹P^o₁ の場合と同様 に 6s、6p、5d 軌道に関する状態が深く寄与しているも のと考えられ、状態数を 61 状態に増やしたところ、3 つのピークが現れた (図 5)。しかし、23 eV ではなく 22 eV にピークが現れている。これは、更に状態数を増や

表 6. R 行列法に用いた状態数及びその電子配置

State	Configuration
35	$4p^{6}(^{1}S); 4p^{5}5s(^{1}P, ^{3}P);$
	$4p^{5}5p(^{1}S, ^{3}S, ^{1}P, ^{3}P, ^{1}D, ^{3}D);$
	$4p^{5}4d(^{1}P, ^{3}P, ^{1}D, ^{3}D, ^{1}F, ^{3}F)$
	$4p^45s^{\bullet}(^{3}S); 4p^45p^{\bullet}(^{3}S, ^{3}D);$
	$4p^44d^{(1S)}; 4p^45s5p(^{3}P)$
61	35state + 4p ⁵ 6s(¹ P, ³ P);
	$4p^{5}6p(^{1}S, ^{3}S, ^{1}P, ^{3}P, ^{1}D, ^{3}D);$
	4p ⁵ 5d(¹ P, ³ P, ¹ D, ³ D, ¹ F, ³ F)
73	61state + 4p ⁵ 4f(¹ D, ³ D, ¹ F, ³ F, ¹ G, ³ G)

した図6の73状態でも同様の傾向が見られた。21 eV 以下の領域に関しては実験値と励起断面積のエネルギー 依存性が良く一致していると言える。21 eV 以降の領域 については、2 電子励起状態や6d 軌道等の更に上の軌 道を含んだ状態を考慮することで改善が期待できる。

 $4p^{6} {}^{1}S_{0}^{e} \rightarrow 4p^{5}4d {}^{1}P_{1}^{o}, {}^{3}P_{1}^{o}, {}^{3}D_{1}^{o}$ 遷移については、実 験値とあまり良い一致を示していない (図 7~15)。表5 に示すように、これらの遷移では振動子強度の LENGTH と VELOCITY に大きな差があるため、波動関数の精 度が良くない。このことが実験値との差に影響を与え たと考えられる。これを改善するためには、より精度 の良い波動関数を用いることや、他の遷移同様に更に 状態数を増やすことが考えられる。

4. 結論

本研究では、精度が高く低エネルギー領域の計算に適 した R 行列法を用いて、電子衝突による Rb⁺の基底状態 4p^{6 1}S₀^oから励起状態 4p⁵5s¹P₁, ³P₁^o及び 4p⁵4d¹P₁, ³P₁, ³D₁^oへの励起断面積について計算を行った。標的 イオンの束縛電子の波動関数には、配置間相互作用法 を用いて波動関数を決定した。R 行列法に含める標的 イオンの状態数について、35 状態、61 状態、73 状態を 考慮し、それぞれの励起断面積を求め、実験値とエネ ルギー依存性について比較、検討した。

 $4p^{6} {}^{1}S_{0}^{e} \rightarrow 4p^{5}5s {}^{1}P_{1}^{o}$ 遷移における励起断面積のエ ネルギー依存性は、73 状態で実験値と同様の共鳴の ピークを得た。しかし実験では現れていない多くの共 鳴が本計算では得られた。 $4p^{6} {}^{1}S_{0}^{e} \rightarrow 4p^{5}5s {}^{3}P_{1}^{o}$ 遷移 における励起断面積のエネルギー依存性は、73 状態で 実験値と同様に3つの大きなピークを見ることができ るが、21 eV で不一致が見られた。また、 $4p^{6} {}^{1}S_{0}^{e} \rightarrow$ $4p^{5}4d 1P_{1}^{o}, {}^{3}P_{1}^{o}$ 及び ${}^{3}D_{1}^{o}$ 遷移における励起断面積のエ ネルギー依存性は、本研究結果は実験値との一致を得

図 1. 電子衝突による Rb^+ の励起断面積 ($4p^6 \ ^{1}S_0^{e} \rightarrow 4p^55s \ ^{1}P_1^{o}$). —, 35states; o, Zapesochnyi $\delta^{(6)}$

図 3. 電子衝突による Rb^+ の励起断面積 ($4p^6 \ ^{1}S_{0}^{e} \rightarrow 4p^55s \ ^{1}P_{1}^{o}$). ——, 73 states; o, Zapesochnyi ら ⁶⁾

図 4. 電子衝突による Rb^+ の励起断面積 $(4p^{6\ 1}S_0^e)$ → $4p^55s\ ^3P_1^o)$. ——, 35states; \circ , Zapesochnyĭ $ら\ ^{6)}$

図 5. 電子衝突による Rb^+ の励起断面積 $(4p^{6\ 1}S_0^e)$ $\rightarrow 4p^55s\ ^{3}P_1^{o}$). —, 61states; \circ , Zapesochnyi $\delta^{(6)}$

図 6. 電子衝突による $Rb^+ の励起断面積 (4p^{6-1}S_0^e) \rightarrow 4p^55s {}^{3}P_1^o)$. ----, 73states; \circ , Zapesochnyǐ δ^{-6})

図 7. 電子衝突による $Rb^+ の励起断面積 (4p^{6\ 1}S_0^e) \rightarrow 4p^5 4d\ ^1P_1^o)$. ——, 35states; o, Zapesochnyi ら $^{6)}$

図 8. 電子衝突による Rb^+ の励起断面積 $(4p^{6\ 1}S_0^e) \rightarrow 4p^54d\ ^1P_1^o)$. ——, 61states; o, Zapesochnyi $\delta^{(6)}$

図 9. 電子衝突による $Rb^+ の励起断面積 (4p^{6\ 1}S_0^e) \rightarrow 4p^54d {}^1P_1^o)$. ——, 73states; o, Zapesochnyi $\delta^{(6)}$

図 10. 電子衝突による Rb⁺ の励起断面積 (4p^{6 1}S^e₀ → 4p⁵4d ³P^o₁) . —, 35states; o, Zapesochnyǐ ら ⁶⁾

図 11. 電子衝突による Rb⁺ の励起断面積 $(4p^{6} {}^{1}S_{0}^{e}) \rightarrow 4p^{5}4d {}^{3}P_{1}^{o})$. ——, 61states; o, Zapesochnyi $\delta^{(6)}$

図 12. 電子衝突による Rb⁺ の励起断面積 $(4p^{6} {}^{1}S_{0}^{e}) \rightarrow 4p^{5}4d {}^{3}P_{1}^{o})$. ——, 73states; o, Zapesochnyǐ ら ⁶⁾

図 13. 電子衝突による Rb^+ の励起断面積 $(4p^6 \ ^1S_0^e) \rightarrow 4p^54d \ ^3D_1^o)$. ——, 35states; o, Zapesochnyi $\delta^{(6)}$

図 14. 電子衝突による Rb⁺ の励起断面積 $(4p^{6} {}^{1}S_{0}^{e}) \rightarrow 4p^{5}4d {}^{3}D_{1}^{o})$. ——, 61states; o, Zapesochnyi $\delta^{(6)}$

図 15. 電子衝突による Rb^+ の励起断面積 $(4p^6 \ {}^{1}S_0^e) \rightarrow 4p^54d \ {}^{3}D_1^o)$. ——, 73states; o, Zapesochnyi δ^{-6}

ることができなかった。

今後、より精度の良い波動関数を求めるために連続 状態を考慮した疑状態を用いることや、R行列法に含め る状態に2電子励起状態を更に含める計算が望まれる。

参考文献

- E. P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947).
- P. G. Burke, A. Hibbert and W. D. Robb, J. Phys.
 B: Atom. Molec. Phys. 4, 153 (1971).
- E. Clementi and C. Roetti, *AtomicDataTables*, 14, Nos. 3-4 (1974).
- A. Hibbert, Comp. Phys. Commun. 9, 141 (1975).
- K. A. Berrington, W. B. Eissner and P. H. Norrington, Comp. Phys. Commun. 92, 290 (1995).
- A. I. Zapesochnyi, A. I. Imre, I. S. Aleksakhin, I. P. Zapesochnyi and O. I. Zatsarinnyi, Sov. Phys. JETP 63, 1155 (1986).
- K. A. Berrington, S. Nakazaki and Y. Murakami, J. Phys. B: At. Mol. Opt. Phys. **39**, 1-13 (2006).
- K. Bartschat and N. S. Scott, Comp. Phys. Commun. **30**, 369 (1983).
- P. F. Gruzdev, Opt. Spectrosc. (USSR) 22, 170 (1967).
- 10. Nasional Institute of Standards and Technology (http://physics.nist.gov).