フォトルミネッセンス法による高濃度 Si ドープ GaAs の バンドギャップとフェルミエネルギーの決定

> 安田 慎太郎¹⁾・大村 拓泰¹⁾・黒川 英太郎¹⁾・ ・尾関 雅志²⁾・碇 哲雄³⁾・前田 幸治⁴⁾

Determination of band gap and Fermi energy in heavily Si doped GaAs by photoluminescence

Shintaro YASUDA, Hiroyasu OMURA, Eitaro KUROKAWA, Masashi OZEKI, Tetsuo IKARI, Kouji MAEDA

Abstract

Photoluminescence(PL) spectra were measured on Si-doped GaAs grown by molecular beam epitaxy at 77K and room temperature. The electron concentration of the samples are ranged from 4.1×10^{16} cm⁻³ to 4.7×10^{18} cm⁻³. Band-gap, tailing of the conduction band and Fermi energy were calculated from the line-shape analysis of PL spectra using the model of Kane. We observed Burstein Moss shift and determined band-gap narrowing as a function of the electron concentration. These results are agreed with previous results. The methods are useful to analyze heavy doped GaAs for other kind of impurities.

Key ward: Photoluminescence, GaAs, molecular beam epitaxy, conduction band tailing, Fermi energy, line-shape analysis

1. はじめに

GaAs はⅢ族 Ga とV族 As の化合物から成る化合物 半導体であり,直接遷移型であるため再結合発光の効 率が高いことや,電子移動度が速いことから高速・高 周波の電子デバイスとして応用されている。

半導体デバイス作製のプロセス技術において,アク セプタ,ドナー準位を形成する不純物原子のドーピン グは最も基本的な技術の一つであり,目的によって低 濃度から高濃度まで不純物のドーピングが行われてい る。

1)電気電子工学専攻大学院生
 2)電気電子工学科教授
 3)宮崎大学理事
 4) 電気電子工学科助教授

ドーピングによる半導体のバンド構造の変化を解析 することは、基礎物性を知るという観点から非常に重 要である。SiやGeのような単元素半導体とは異なり、 GaAsをはじめとするIII-V族化合物半導体では、不純 物原子が結晶格子内で占有する位置により不純物準位 の性質が決定される。Siは熱的安定性に優れており、 表面蓄積等の問題がないためGaAsにおける優れたド ナー不純物として考えられている。GaAsにSiを低濃 度ドープするとGaと置換し、浅いドナー準位を形成す る¹⁾。

高濃度のドナーのドーピングは半導体のバンド構造 においていくつかの変化を起こすことが知られている。 変化の一つとしては、伝導帯端部におけるテイリング の形成によるバンドギャップの減少があり²⁾、不均一 な不純物の分布が原因といわれている。また、高濃度 ドープによりフェルミエネルギーがバンド内に侵入し、 いわゆる縮退が生じる。それによって、光吸収測定や フォトルミネッセンス測定においてバーンスタイン-モスシフトと呼ばれる吸収端のブルーシフトがおこる ことが知られている³⁾⁴⁾。今回我々はフォトルミネッセ ンス (PL) 法を用いて、Si を高濃度ドープした GaAs のバンドギャップおよびフェルミエネルギーの変化を 解析した。今後 GaAs に他の不純物を高濃度ドープし た時のキャリア濃度の決定などに応用することを考え ている。

2. 実験

2.1 測定試料

測定試料は宮崎大学工学部電気電子工学科機能物性 研究室が分子線エピタキシー(MBE)法により作製し たものを用いた。GaAs 基板上に Si ドープ GaAs 層を $0.97 \sim 2.0 \mu m$ の膜厚で成長させてある。キャリア濃度は van der pauw 法により求め, $n=4.1 \times 10^{16} \sim$ $4.7 \times 10^{18} \text{ cm}^3$ であった。

2.2 フォトルミネッセンス (PL) 測定

PL 測定は試料を室温,および液体窒素温度(77K) に冷却して行った。励起光は Ar⁺レーザ(波長 488nm) を用い, PL 光はシングルモノクロメータで分光し、検 出器として InGaAs-pin ダイオード検出器,およびフォ トマルチプライヤーを用いた。

3. 実験結果

図1に77Kでの、図2に室温でのフォトルミネッセンス測定結果を示す。キャリア濃度が高くなるにつれてスペクトルはブロードになり、ピーク位置は高エネルギー側にシフトしていることがわかる。高濃度に不純物をドープした場合は不純物による準位が伝導帯とオーバーラップすることにより、バンドテイルが生じる。キャリア濃度が高くなるにつれてスペクトルの低エネルギー側がブロードになるのはこのためである。また、室温と77KのPLスペクトルを比較すると、室温のPLスペクトルは77Kと比べてピークの半値幅が広がっており、ピークのエネルギーも低くなっている。さらに、室温では観測されたスペクトルはピークが1つであることに対し、77Kではキャリア濃度が10¹⁸ cm⁻³以上の試料においていくつかのサブピークが見られた。

図 2 室温における PL 実験スペクトル

スペクトル形状がブロードなため正確な同定は困難で あるが, Si がアクセプタとして働いた準位からの信号 と思われる。

4. 考察

4.1 Kane モデルによる PL スペクトル 5)6)

77K や室温での PL 測定ではバンド間遷移またはド ナーーバンド間遷移が支配的である。Kane のモデルに よると, PL 発光強度 *I(E)*は以下のように表される。

$$I(E) \sim E^2 \rho_C(E) f_C(E) \tag{1}$$

$$f_C(E) = \frac{1}{1 + \exp[E - E_f / kT]}$$
(2)

$$\rho_{C}(E) \sim \int_{-\infty}^{E-E_{C}/\eta_{C}} \left(\frac{E-E_{C}}{\eta_{C}} - z\right)^{\frac{1}{2}} \exp((-z^{2})) dz \qquad (3)$$

E:光子エネルギー E_c : 放物線的状態密度の伝導帯端 η_c :伝導帯端のテイリングパラメータ z: 無次元パラメータ

 $f_c(E)$ はフェルミ・ディラック分布関数, $\rho_c(E)$ は Thomas-Fermi 近似を用いた伝導帯の状態密度である。 E_c は放物線的状態密度と仮定したときの伝導帯端で あり、テイリングによる伝導帯の形状変化は含まれな い。式(1)を用いることにより得られた PL スペクトル モデルに対してフィッティングを行い、放物線的状態 密度の伝導帯端およびフェルミエネルギー、テイリン グパラメーターの3つを求めた。図3に PL 測定値と Kaneモデル計算値のフィッティング結果の一例を示す。 キャリア濃度が 4.0×10¹⁷ cm⁻³以下ではこのように良い フィッティングができた。しかし、キャリア濃度が 4.0 ×10¹⁷ cm⁻³以上になると、低エネルギー側の発光や、Si アクセプタと思われる発光が現れ、77K では特にフィ ッティングとの一致が悪くなった。

4.2 バンドギャップおよびフェルミエネルギー の変化

Kane モデルを用いたフィッティングにより求めた E_c , E_f および PL 実験スペクトルのピーク位置を図 4 (77K), 図 5 (室温) に示す。

まず, Ef についてはどちらの温度でもキャリア濃度が 10¹⁶cm⁻³から 10¹⁷cm⁻³の間にかけてゆっくりと増加し, 10^{18} cm⁻³ を超えたあたりから大きく増加した。 E_f の増 加の原因として,不純物イオンの軌道の重なり合いに より電子が伝導帯端より上を占有する伝導帯フィリン グ効果が考えられる⁷⁾。キャリア濃度の増加に対する フェルミエネルギーの変化 ΔE_f はキャリア濃度 nの関 数で表されることが知られており, 放物線的な伝導帯 を考えた場合は $\Delta E_f(n) \sim n^{2/3}$ で表される⁸⁾。また,バ ンドのテイリング部分を考慮した場合,キャリア濃度 の増加に対するフェルミエネルギーの変化は ΔE_f(n) ~ $n^{1/3}$ で表すことができる 699 。我々の結果では ΔE_f $(n) \sim n^{1/3}$ とすると、求めた E_f と大きな違いが出たため、 $\Delta E_{f} \sim n^{2/3}$ の関数形を用いて曲線を引いた(図 4, 5 の 実線)。このことから、伝導帯端のテイリング部分にお ける電子の占有は、放物線的なバンドの部分に比べて 十分小さいと考えられる。具体的には、キャリア濃度 nの増加に伴う Ef の変化は 77K の時,

図4 77K における E_C , E_f および PL ピークエネルギ

図 5 室温における E_c , E_f およびピーク位置の変化

$$\Delta E_f(n) = 4.5 \times 10^{-14} n^{2/3} \tag{4}$$

300K の時,

$$\Delta E_f(n) = 3.7 \times 10^{-14} n^{2/3} \tag{5}$$

となった。

また,不純物を多く添加すると縮退によりスペクト ルにはバーンスタイン-モスシフト効果が発現するこ とが良く知られており,今回のPLスペクトルのピーク 位置の変化はこの効果を強く反映していると考えられ る。PLスペクトルのピーク位置 E^{Peak}の変化はキャリ ア濃度 nの関数で表すことができ,77K,および 300K の時,

$$E^{Peak}(n) = E_0^{Peak} + 2.0 \times 10^{-14} n^{2/3}$$
(6)

となった。 E_0^{Peak} はノンドープ GaAs における PL スペ クトルのピーク位置であり、77K で $E_0 = 1.508$ eV、300K で $E_0 = 1.422$ eV である。この関係を図4、図5に点線 で示した。Lee らの結果(300K)は、

$$E^{Peak}(n) = E_0^{Peak} + 2.4 \times 10^{-14} n^{2/3}$$
(7)

となっており、ほぼ一致した。

 E_c はテイリングの効果の寄与を含まないので、キャ リア濃度には依存しないはずである。我々の結果では、 それぞれの結果を平均すると 77K の時 E_c =1.496eV、 300K の時 E_c =1.409eV となり、ノンドープにおける GaAs バンドギャップ(77K の時 E_g =1.508eV、300K の 時 E_g =1.422eV)と比べると約 0.01eV 小さい値となった。 この理由は、キャリア濃度が小さい時は、Kane のモデ ルによるフィッティングでは η_c が非常に小さくなら なければならないはずだが、測定された PL スペクトル では低エネルギー側に裾をひいたため、 η_c の決定で差 が生じたと思われる。

次に図 6 にキャリア濃度の増加にともなうテイリン グパラメータ η_c の変化を示す。高濃度にドナーをドー プした場合 Si がアクセプタとして働く。その準位が価 電子帯のテイリングを引き起こすと考えると、PL で測 定されるテイリングパラメータ η_c は $n^{5/12}$ に比例する と推定されている¹⁰⁾¹¹。しかし,我々の結果では近似 曲線は 77K の時,

 $\eta_C(n) = 2.4 \times 10^{-8} n^{1/3} \tag{8}$

300K の時,

Electron Concentration(cm⁻³)

図 7 キャリア濃度の変化にともなう バンドギャップエネルギーの変化

$$\eta_C(n) = 3.7 \times 10^{-8} n^{1/3} \tag{9}$$

となった。Lee らが経験的に求めた η_c (n) =2.0×10⁻⁸ n^{1/3}に近い結果が得られた。 η_c (n) は温度に 依存しないはずだが,我々が求めた η_c (n) において 77K と 300K の間に違いが生じたのは,77K の場合に特 に他の不純物準位などの影響で,低エネルギー側のフ ィッティングがよくなかった事が原因であり,そのた め Lee らの結果より大きい値となったと思われる。

次に,バンドギャップのキャリア濃度依存性につい て考察する。キャリア濃度が高い場合のバンドギャッ プは,バンドテイリングの影響を考慮しなければなら ないので, 放物線的状態密度の伝導帯端 Ecからテイリ ングパラメータηcを引いた値とした。図7にキャリア 濃度の変化にともなうバンドギャップエネルギーの変 化を示す。キャリア濃度の増加にともないバンドギャ ップが徐々に減少していることがわかる。これは, 高 キャリア濃度により自由キャリアが多く存在するため, 電子間反発力などが弱まり, 不純物準位から不純物帯 と呼べるようなエネルギー幅の広がりをもち, それが 伝導帯と一体となって, バンドギャップの減少が起こ ったと考えられる¹²⁾。高濃度に不純物をドープした半 導体のバンドギャップは

$$E_{\sigma}(n) = E_0 - \Delta E_{BGN}(n) \tag{10}$$

で表される。 E_0 はノンドープにおけるバンドギャップ であり、バンドギャップの減少(Band Gap Narrowing) を表す $\Delta E_{BGN}(n)$ は、キャリア濃度 n の関数で表すこと ができる。Band Gap Narrowing については Jain らが詳 しい解析を行っており、

$$\Delta E_{BGN}(n) = an^{1/3} + bn^{1/4} + cn^{1/2}$$
(11)

としている。n 型 GaAs では $a = 16.5 \times 10^{-9}$, $b = 2.39 \times 10^{-7}$, $c = 91.4 \times 10^{-12}$ である¹³⁾。しかし、式(11)を用いて我々 の結果を表そうとすると大きな差が生じた。我々の $E_g(n)$ の変化の実験式は、77K の時、

$$\Delta E_{RGN}(n) = 2.8 \times 10^{-8} n^{1/3} \tag{12}$$

300K の時,

$$\Delta E_{BGN}(n) = 7.3 \times 10^{-8} n^{1/3} \tag{13}$$

となった。77K と 300K の間に違いが生じたのは,本来 温度依存性の無いと思われる $\eta_c(n)$ が測定では温度に よって異なったためである。式(12)及び(13)は Hudait ら¹⁴⁾, Borgths ら⁹⁾および Bennett ら¹⁵⁾が経験的に求め たものと一致した。これまでの結果もこの程度の係数 のばらつきはある。GaAs にドナー不純物を添加した場 合,ドナーレベルは添加元素にそれほど依存しないた め,PL 測定を行い, E_f または E_g を決定することによ り,逆にキャリア濃度を求めることができると思われ る。

5. まとめ

Si ドープした GaAs のフォトルミネッセンスを測定し,

77Kおよび室温での測定スペクトルにKaneモデルの理 論スペクトルをフィッティングさせることができた。 また、伝導帯フィリングによるフェルミエネルギーの 増加やバーンスタイン-モスシフト効果、およびテイリ ング形成によるバンドギャップの減少を確認すること ができた。それらの値はこれまでに報告されている値 とほぼ一致したことから、我々のPL 測定や解析が正確 であることがいえる。今回の解析は今後 GaAs に他の 不純物をドープした時のキャリア濃度の決定などに応 用できると考えられる。

参考文献

- 1)赤崎 勇:Ⅲ-V族化合物半導体 (培風館:1994)
- 2)御子柴 宣夫:半導体の物理(培風館:1991)
- 3)E.Burstein : Phys.Rev. 83, 632 (1954)
- 4)T.S.Moss: Proc.Phys.Soc.London. B67, 775 (1954)
- 5)E.O.Kane : Phys.Rev. 131, 79 (1963)
- N.Y.Lee, K.J.Lee, C.Lee, J.E. Kim, H. Y. Park, D.H. Kwak, H.C. Lee, H.Lim : J.Appl.Phys.78, 3367 (1995)
- 7) J.I.Pankove : Optical Processes In Semiconductors (Dover Pub.Inc. : 1974)
- 8)H.Kim, C.M.Gilmore, A.Piqué, J.S.Horwitz, H. Mattoussi,
 H. Murata, Z. H. Kafafi, D. B. Chrisey : J.Appl.Phys. 86,
 6451 (1999)
- 9) G.Borgths, K.Bhattacharyya, K.Deneffe P. V. Mieghem,R. Mertens : J.Appl.Phys. 66, 4381 (1989)
- 10)J.D.Sheng, Y.Makita, K.Ploog, H. J. Queisser : J.Appl.Phys. **53**, 999 (1982)
- 11) B.G. Arnaudor, V.A. Vilkotskii, D.S. Domanerskii : Sov. Phys. Semicond. 11, 1054 (1977)
- 12) T. Vazifehshenas : Physica E15, 53 (2002)
- 13)S.C.Jain, J.M.McGregor, D.J.Roulston : J.Appl.Phys. 68, 3747 (1990)
- 14)M.K.Hudait, P.Modak, S.B.Krupanidhi : Mater.Sci.Eng. B56, 1 (1999)

15)H.S.Bennett, J.R.Lowney : J.Appl.Phys. 62, 521 (1987)16)E.W.Williams : Phys.Rev. 168, 922 (1968)