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Abstract

M.Blum and C.Hewitt first proposed two-dimensional automata as a computational model of two-
dimensional pattern processing, and investigated their pattern recognition abilities[1]. Since then, many
researchers have been investigating a lot of properties about automata on a two-dimensional tape. However,
there are a lot more open problems. For instance, it was unknown whether there exists a language accepted
by a two-way nondeterministic one counter automaton, but not accepted by any deterministic rebound au-
tomaton. In this paper, we try to solve this problem, and show that there exists such a language.
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1 Introduction and Preliminar-
ies

Two-dimentional automata were first proposed and
investigated their pattern recognition abilities in
1967[1]. Since then, many researchers in this field
have been investigating a lot of properties about two-
dimensional automata[5]. In Ref.[6], a new type of
language acceptor, called the rebound automaton,
was proposed and its accepting power was investi-
gated by Sugata, Umeo, and Morita. A rebound au-
tomaton has the same structure as a two-dimensional
finite automaton[1], but an input to it is a square
tape whose top row is a word to be recognized, and
whose other symbols are all blank.It is demonstrated
in Ref.[6] that rebound automata have some kind of
counting ability, and thus they can accept many non-
regular languages. But it is unknown whether there
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exists a language accepted by a two-way nondeter-
ministic one counter automaton[3], but not accepted
by any nondeterministic rebound automaton. This
paper solves this problem, and shows that there exists
such a language. This result implies that the count-
ing ability of nondeterministic rebound automata are
not sufficient to simulate the counting ability of two-
way nondeterministic one counter automata.

Let T" be a finite set of symbols. A two-dimensional
tape over I' is a two-dimensional rectangular array of
elements of I'.The set f all two-dimensional tapes over
I' is denoted by I'®),

Given a tape ¢ € I'®), we let /;(z) be the number
of rows of z, and ly(z) be the number of columns of
z. H1<i<l(z) and 1 <j<Ily(z), we let z(i,5)
denote the symbol in z with coordinates (i,7).

Futhermore, we define :c[(i,j),(i’,j')], only when
1<i<i < li(z) and 1 <j<j < l5(z), as the two-
dimensional tape z satisfying the following :

(i) L(z)=i'—i+1 and ly(2) =5'—j+1;
(i) for each k,r(1<k<lL(z),1<r<ly(2)), z(k,r)=
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z(k+i—-1,r+5—1).

A deterministic rebound automaton (DRA) is a
system M = (K,X,4,B,qo,A,$, F), where K is a fi-
nite set of state, ¥ is a finite set of input symbols, { is
the blank symbol (not in X), B is the boundary sym-
bol(not in X), go(€ K) is the start states, F(C K)isa

set of accepting states, § : K x (RU{§,B}) - K x A .

is the control function, and A = {L,R,U,D} can
be thought of as a set of directions (left, right, up,
down).

An input tape for M is a two-dimentional square
tape over XU {}|} surrounded by the boundary symbol
B, whose top row is a word ajaz---a, € TT(n >
1), and whose other symbols are all |'s (See Fig.1.).
d(g,a) 3 (p,d) means that if M reads the symbol a
in state g, it can enter state p and move in direction
d. Suppose that an input tape z (as shown in Fig.1.)
whose top row is a word w = a1ay -+ an, € 3T (n > 1)
is presented to M. Mstarts in state gp on the upper
left-hand corner of z. If M falls off the tape z, M
can make no further move. We say that the word w
(which is the top row of z) is accepted by M if M
eventually enters an accepting state somewhere on .
We denote the set of words accepted by M by T'(M).

2 Results

Here we give a preliminary result which is used to
prove our main theorem.

For each m > 2 and each 1 < n < m — 1,
an (m,n)—chunk is a pattern (over {0,1,2,b,}) as
shown in Fig.2, where z; € {0,1,2,b}®, 2z, ¢
M ®h(z1) = 1, b(z1) = m —n, hz) =m -1,
and Iy(z3) = m.

Let M be a DRA whose input alphabet is
{0,1,2,b}, and § and B be the blank symbol and
the boundary symbol of M, respectively. For any
(m,n) — chunk z, we denote by z(B) the pattern
(obtained from z by surrounding z with B's) shown
in Fig.3.

Below, we asume without loss of generality that
M enters or exits the pattern z(B) only at the face
designated by the bold line in Fig.3.Thus, the number
of entrance points to z(B) (or exit points from z(B))
for M is n + 3.
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Fig. 1: An input tape to DRA.
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Fig. 2: An(m,n)—chunk.

We suppose that these entrance points (or exit
points) are nurmnbered 1,2, -,n+3 in an appropriate
way. '

Let P = {1,2,---,n + 3} be the set of these en-
trance points (or exit points).

For each 7 € P and each ¢ € K (K is the set of
states of M), let M(; ;)(z(B)) be a subset of P x KU
{L} which is defined as follows (L is a new symbol) :

( i ) (j,p) € M(i.q)(z(B))@
when M enters the pattern z(B) in state g and
at point i, it may eventually exit z(B) in state
p and at point j. '

(ll) Le M(,"q)(:c(B))(:r
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Fig. 3: =(B).

when M enters the pattern z(B) in state ¢ and
at point 1, it may not exit z(B) at all.

Let z,y be any two different(m,n)—chunks. We
say that ¢ and y are M —equivalent if for any (i,q) €
P x K,M; (2(B)) = M(; o (y(B)). Thus, M can-
not distinguish between two(m,n)—chunks which are
M —equivalent.

Clealy, M —equivalence is an equivalence relation
on (m,n)—chunks, and we get the following lemma.

[Lemma 1]There are at most ((n + 3)k +
1)(n+3)k M _equivalence classes of (m,n)—chunks,
where k is the number of state of M.

(Proof) The proof is similar to that of Lemma 4.3
in Ref.[4]. O

Note that the number of M-equivalence class of
(m,n)—chunks is independent of m.

Let E = {zibzsb - -bzglk > 1 and thereis I > 0
such that ; € {0,1} for i = 1,---,k}.

Let s : {0,1}* — {0,1,2}* be a function such that
s(ay - a)) = a12"2a2M%2 ... 01 2%, where a; €
{0,1} fori=1,---,lL

Further, let A{zib---bzi) =
each 2,0 ---bz; € E.

Then we define L* = {zobh(zib---bzi)lk > 1,
zib---bzp € E, and there is 1 < 7 < k such that
z; =29}

s(z1)b---bs(zi) for

We are now ready to prove our main theorem.

[Theorem 1]There ezists a language accepted by
a two-way nondeterministic one counter automaton,
but not accepted by any DRA. Ly, is such a language.
(Proof)It is shown in Ref.[2] that L is accepted by
a two-way nondeterministic one counter automaton.

Below we show that L; is not accepted by any
DRA.

Suppose that Ly is accepted by some DRA M with
k states. We can assume without loss of generality
that when M accepts a word u in Lj, it enters an
accepting state on the upper left-hand corner of the
input tape whose top row is u, and that M never falls
off an input tape out of the boundary symbol B.

For each n > 1, let

Vin) = {zobh(zibzsb - bz gn)lzo{0,1}" and
Vi(1 < ¢ < f(n))[z; € {0,1}"]}, where f(n) =2

Vin) = {2 € {0,1,2,§,b}P)li(z) = (=) =
n+ (1~ 3n+ 2n?)f(n) and 2[(1,1),(1,L2(x))](ie.,
the top row of z)€ V(n) and 2[(2,1), (li{z), (z))] €
{§}®}, where { is the blank symbol of M; and
Y(n) ={0,1}".

Clearly |Y(n)| = 2® = f(n) (where for any set A,
|A| denotes the number of elements of A), and so we
let Y(n) = {v1,v3, -+, v5(n) }-

For each n > 1, let §(n) = {word(z)|z € V'(n)},
where word(z) = {v; € Y(n)lv; = v; for some
i(1 < i < f(n))} for each « in V' (n) whose top row is
wobh(z1be2b - bz g(n)) for some zo,21,22, -, Zf(n)
in {0,1}™.

Cleatly, [S(n)| = ("{) + (') + -+ () =
2f(n) _1,

Note that the set {p| for some = in V’(n), p is
the pattern obtained from z by cutting the part
z[(1,1),(1,n)] off} is the set of all (n + (1 — (3)n +
(2)n?)f(n),n)—chunks. By Lemma 1, there are at
most #(n) = ((n + 3)k + 1)»+3)* M —equivalence
classes of (n + (1 — (3)n + (3)n?)f(n),n)~chunks.

We denote these ' M—equivalence -classes by
C1,02,: -, Cyn)-. For large n, |S(n)| > ¢(n). For such
a large n, there must be some [, (I # I') in §(n) and
some C;(1 < ¢ < ¢(n)) such that the following state-
ment holds:

" There exist two tapes z and y in V'(n) such that
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(i) for some word v in ! but not in [,

z[(1,1),(1,n)] = y[(1,1), (1,m)] = v,

(i) word(z) = ! and word(y) =, and
(

iii) both p, and p, arein C;, where p.(py) is the (n+
(1—(3)n+(2)n?) f(n),n)—chunks obtained from
z (from y) by cutting the part z[(1,1),(1,n)]
(the part y[(1,1),(1,n)]) off.”

As is easily seen, the top row of = is in L*, and
so it is accepted by M. It follows that the top row
of y is also accepted by M, which is a contradiction.
(Note that the top row of y is not in L*.)

This completes the proof of the theorem. O

3 Conclusion

We showed that there exists a language accepted
by a two-way nondeterministic one counter automa-
ton, but not accepted by any deterministic rebound
automaton. It is still unknown whether there exists
a language accepted by a two-way deterministic one
counter automaton, but not accepted by any deter-
ministic (or nodeterministic) rebound automaton.
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