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M.Blum and C.Hewitt first proposed two-dimensional automata as a computational model of two­
dimensional pattern processing, and investigated their pattern recognition abilities[1]. Since then, many
researchers have been investigating a lot of properties about automata on a two-dimensional tape. However,
there are a lot more open problems. For instance, it was unknown whether there exists a language accepted
by a two-way nondeterministic one counter automaton, but not accepted by any deterministic rebound au­
tomaton. In this paper, we try to solve this problem, and show that there exists such a language.
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1 Introduction and Preliminar-.les

Two-dimentional automata were first proposed and
investigated their pattern recognition abilities in
1967[1]. Since then, many researchers in this field
have been investigating a lot of properties about two­
dimensional automata[5]. In Ref.[6], a new type of
language acceptor, called the rebound automaton,
was proposed and its accepting power was investi­
ga~ed by Sugata, Umeo, and Morita. A rebound au­
tomaton has the same structure as a two-dimensional
finite automaton[l], but an input to it is a square
tape whose top row is a word to be recognized, and
whose other symbols are all blank.It is demonstrated
in Ref.[6] that rebound automata have some kind of
counting ability, and thus they can accept manynon­
regular languages. But it is unknown whether there
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exists a language accepted by a two-way nondeter­
ministic one counter automaton[3], but not accepted
by any nondeterministic rebound automaton. This
paper solves this problem, and shows that there exists
such a language. This result implies that the count­
ing ability of nondeterministic rebound automata are
not sufficient to simulate the counting ability of two­
way nondeterministic one counter automata.

Let r be a finite set of symbols. A two-dimensional
tape over r is a two-dimensional rectangular array of
elements of r .The set f all two-dimensional tapes over
r is denoted by r(2).

Given a tape z E r(2), we let 11 (z) be. the number
of rows of z, and l2(Z) be the number of columns of
z. If 1 ::; i ::; 11(z) and 1 ::; j .::; 12(z), we let z(i,j)
denote the symbol in z with coordinates (i, j).

Futhermore, we define z[(i,j), (i' ,j')], only when
1 ::; i ::; i' ::; 11 ( z) and 1 ::; j ::; j' ::; l2 (z), as the two­
dimensional tape z satisfying the following :

(i) 11(z)=i'-i+land 12(z)=j'-j+lj

(ii) for each k,r(1::;k::;lt(z),1::;r::;l2(z)), z(k,r)=



340

a:(k+i-l, 1'+ j -1).

A deterministic rebound automaton (DRA) is a
system M = (K,~,~,B,qo,.6.,b,F), where K is a fi­
nite set of state, ~ is a finite set of input symbols, ~ is
the blank symbol (not in ~), B is the boundary sym­
bol(not in ~), qo(E K) is the start states, F(~ K) is a
set of accepting states, b : K x (~U H, B}) -+ K x .6. .
is the control function, and .6. = {L, R, U, D} can
be thought of as a set of directions (left, right, up,
down).

An input tape for M is a two-dimentional square
tape over ~U{n surrounded by the boundary symbol
B, whose top row is a word a1a2'" an E ~+(n 2':
1), and whose other symbols are all ~'s (See Fig.1.).
J(q,a) :1 (p,d) means that if M reads the symbol a
in state q, it can enter state p and move in direction
d. Suppose that an input tape a: (as shown in Fig.1.)
whose top row is a word w = a1a2 •.• an E ~+(n 2': 1)
is presented to M. M starts in state qo on the upper
left-hand corner of a:. If M falls off the tape:c, M
can make no further move. We say that the word w
(which is the top row of :c) is accepted by M if M
eventually enters an accepting state somewhere on:c.
We denote the set of words accepted by M by T(M).

Fig. 1: An input tape to DRA.
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Here we give a preliminary result which is used to
prove our main theorem.

For each m 2': 2 and each 1 :::; n :::; m-I,
an (m,n)-chunk is a pattern (over {O,I,2,~,n) as
shown in Fig.2, where :Cl E {O,I,2,~}(2), :C2 E
{n(2),h(:cI) = 1, 12(:cd = m - n, h(:C2) = m-I,
and 12(:C2) = m.

Let M be a DRA whose input alphabet is
{O,1,2,~}, and ~ and B be the blank symbol and
the boundary symbol of M, respectively. For any
(m, n) - chunk :c, we denote by :c (B) the pat tern
(obtained from :c by surrounding :c with B's) shown
in Fig.3.

Below, we asume without loss of generality that
M enters or exits the pattern :c(B) only at the face
designated by the bold line in Fig.3.Thus, the number
of entrance points to :c(B) (or exit points from :c(B))
for M is n +3.

Fig. 2: An(m,n)-chunk.

We suppose that these entrance points (or exit
points) are numbered 1,2"" ,n+3 in an appropriate
way.

Let P = {I, 2, ... ,n + 3} be the set of these en­
trance points (or exit points).

For each i E P and each q E K (K is the set of
states of M), let M(i,q)(:c(B» be a subset of P x KU
{L} which is defined as follows (L is a new symbol) :

( i) (j,p) E M(i,q) (a:(B»{::::;>

when M enters the pattern :c(B) in state q and
at point i, it may eventually exit :c(B) in state
p and at point j.
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Fig. 3: x(B).

Note that the number of M-equivalence class of
(m,n)-chunks is independent of m.

when M enters the pattern x(B) in state q and
at point i, it may not exit x(B) at all.

[Lemma 1] There are at most «n + 3)k +
l)(nH)kM-equivalence classes of (m,n)-chunks,
where k is the number of state of M.
(Proof) The proof is similar to that of Lemma 4.3
in ltef.[4]. []

We are now ready to prove our main theorem.

[Theorem 1] There ezists a language accepted by
a two-way nondeterministic one counter automaton,
but not accepted by any DRA. L", is such a language.
(Proof)It is shown in ltef.[2] that L", is accepted by
a two-way nondeterministic one counter automaton.

Below we show that L", is not accepted by any
DRA.

Suppose that L", is accepted by some DRA M with
k states. We can assume without loss of generality
that when M accepts a word u in L"" it enters an
accepting state on the upper left-hand corner of the
input tape whose top row is u, and that M never falls
off an input tape out of the boundary symbol B.

For each n 2:: 1, let
V(n) = {XO~h(X1~X2~'" ~xf(n)lxo{O, l}n and

\7i(1 Si S f(n))[xi E {o,1}n]}, where f(n) = 2n j

V'(n) = {x E {O,I,2,~,~}(2)lh(x) = 12(x) =
n + (1 - ~n + ~n2)f(n) and x[(I,I),(1,12(z))](Le.,
the top row of X)E V(n) and x[(2, 1), (11(x), 12(x))] E
H}(2)}, where ~ is the blank symbol of Mj and
Y(n) = {O, l}n.

Clearly IY(n)1 = 2n = f(n) (where for any set A,
IAI denotes the number of elements of A), and so we
let Y(n) = {V1, V2,''', Vf(n)}'

For each n 2:: 1, let S(n) = {word(x)lx E V' (n)},
where word(x) = {Vj E Y(n)lvj = Vi for some
i(1 Si S f(n»)} for each x in V' (n) whose top row is
XO~h(X1~X2~"'~Xf("») for some XO,X1,:ll2,"',:llf(n)
in {o,l}n.

Clearly, IS(n)1 = e<;») + e~n») + ... + (~~:~) =
2f (n) -1.

Note that the set {pi for some x in V' (n), P is
the pattern obtained from x by cutting the part
:ll[(I,I),(I,n)] off} is the set of all (n + (1- (~)n +
(~)n2)f(n),n)-chunks. By Lemma 1, there are at
most t(n) = «n + 3)k + 1)(nH)kM-equivalence
classes of (n + (1- (~)n+ (~)n2)f(n),n)-chunks.

We denote these . M -equivalence .classes by
01,02,''', Ot(n)' For large n, IS(n)1 > t(n). For such
a large n, there must be some l,l' (11= 1') in S(n) and
some Oi(1 Si S t(n)) such that the following state­
ment holds:
"There exist two tapes x and y in Vi (n) such that

m
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1

BI ......... B

11 ·B n~ m-n --i ··- ·· ··· ·· X ··· ··· ·· ·• ·· ··
B ............,.. B

Let x,y be any two different(m,n)-chunks. We
say that x and y are M-equivalent iffor any (i,q) E
P x K,M(i,q)(x(B)) = M(i,q)(y(B)). Thus, M can­
not distinguish between two(m,n)-chunks which are
M -equivalent.

Clealy, M -equivalence is an equivalence relation
on (m,n)-chunks, and we get the following lemma.

Let E = {X1~X2~'" ~xklk 2:: 1 and there is 1 2:: °
such that Xi E {O, 1}1 for i = 1", . , k}.

Let s : {O,I}* --+ {O, 1,2}* be a function such that
s(a1" ·al) = a12IHa221+2 .. ·al_1221-1, where ai E
{O, I} for i = 1" .. , I.

Further, let h(X1~'" ~Xk) = s(xd~'" ~S(Xk) for
each X1~ ... ~Xk E E.

Then we define L'" = {XO~h(X1~" ,~xk)lk 2:: 1,
X1~'" ~Xk E E, and there is 1 S j S k such that
Xj = xo}.
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( i ) for some word v in 1 but not in z' ,
z[(l, 1), (1, n)] = y[(l, 1), (1, n)] = v,

(ii) word(z) = 1and word(y) = z', and

(ill) both PlC and Py are in Ci, where PlC (py) is the (n+
(1-( ~ )n+( ~ )n2 )f(n), n)-chunks obtained from
x (from y) by cutting the part z[(l,l),(l,n)]
(the part y[(l, 1), (l,n)]) off."

As is easily seen, the top row of z is in L h , and
so it is accepted by M. It follows that the top row
of y is also accepted by M, which is a contradiction.
(Note that the top row of y is not in Lh.)

This completes the proof of the theorem. D

3 Conclusion

We showed that there exists a language accepted
by a two-way nondeterministi~ one counter automa­
ton,· but not accepted by any deterministic re~ound

automaton. It is still unknown whether there exists
a language accepted by a two-way deterministic one
counter automaton, but not accepted by any deter­
ministic (or nodeterministic) rebound automaton.
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