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A Note on Almost Dedekind Domains

Hirohumi Uda

Throughout this discussion, R will be an integral domain. A. K. Tiwary showed in

[3J that, if Rp is PID for a maximal ideal P of R, the injective hull E=E(RIP) of RIP

is isomorphic to any of non-zero homomorphic images of E. We shall show in this paper

that a local domain with this property is PID. Moreover, we shall show that a locally

noetherian domain with the property mentioned above must be an almost Dedekind domain.

We denote by E(M) the injective hull of an R-module M. Let E be an injective R

module, N be a submodule of E and A be an ideal of R; we put A*={xEElax=O for

every aEA} and N*= {rERI rx=O for every xEN}. If R is a local ring, R denotes the

completion of R. When R is a quasi-local domain with the maximal ideal P and E=E

(RI P), we define a homomorphism (j>A: E~?BE by (j>A(X) = (alx, ... , anx) for an ideal

A = (a 1> ••• , an) of R. (EBE denotes a direct sum of n copies of E.) We denotes Im(j>A by

EA.' Since Ker (j>A=A*, EA is independent of the choice of the ideal basis of A up to

isomorphisms.

Lemma. Let R be a local domain with the maximal ideal P, and set E=E(RIP).

Then for every ideal A of R, we have

(1) A**=A.

(2) A*=(AR)* as an R-module.

Proof. (1) This property is well-known. (cf. DJ, [2J) (2) By Corollary of Proposit

ion 2 of [4J, A * has the structure of an R-module. The result (2) follows immediately.

With this preparation, we have

Theorem 1. Let R be a local domain with the maximal ideal P and set E=E(RI P).

Then R is PID if and only if E is isomorphic to any of non-zero homomorphic images

of E.

Proof. =?This follows from [3J.

<:=Suppose that A is non-zero ideal of R. Then EA is isomorphic to EIA*. If E=A*, by

Lemma, E= (AR)* as an R-module. Then by Theorem 4.2 of [2J and the above Lemma,

AR = (AR.) ** = E* = 0; 1. e. A = O. This is a contradiction. Hence, EA*O. From the ass

umption and Corollary of Proposition 5 of [4J, it follows that A is principal. Thus, the

proof is complete.

A. K. Tiwary remarked in [3J that the indecomposable torsion modules over a Dedekind

domain all have the property that they are isomorphic to any their non-zero homorphic

images. The following result contains this fact.
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Theorem 2. Let R be a locally noetherian domain. Then R is an almost Dedekind

domain if and only if, for each prime ideal P of R, E(Rj P) is isomorphic to any of
non-zero homomorphic images of E(Rj P).

Proof. =>This follows from Proposition 2 of [4J and Theorem 1.

{=Let P be an arbitrary maximal ideal of R and set E=E(Rj P). Then E is an injective

hull of RpjPRp as an Rp-module by Theorem 3.6 of [2J (cf. [3J). For each non-zero

Rp-submodule N of E, it follows from the assumption that E is isomorphic to E jN as an

R-module. Also, HomR(E, EjN) = HomRp(E, EjN), since E and N have the structures

of R-and Rp-modules. Therefore, E is isomorphic to E j N as an Rp-module. From The

orem 1, Rp is PID; i.e. R is an almost Dedekind domain. Thus, the proof is complete.
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