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§1. Introduction

Let t be a positive integer and let O, be the group of order 4t given by

O =lxy:x=9y>xyx=yh

the group generated by two elements x and y with the relations x'=y? and xyx =y,
that is, Q, is the subgroup of the unit sphere S* in the quaternion field H generated by
the two elements

X = exp(}ti/t) and y = j;

and O, =Z, and Q, for t =2™"'(m = 2) is the generalized quaternion group which is de-
noted by H, in [6] and [7].

Then, Q, acts on the unit sphere S*? in the quaternion (n+1)—space H*' by
the diagonal action, and we have the quotient manifold

S"%/Q, of dimension 4n+3.

Some partial results on the reduced KO-ring I?\O(S‘"'S/Q,) of this manifold are obtained
by [7], D.Pitt [17], H, Oshima [16],[15] and T.Kobayashi [13] Recently, T. Kobayashi
has determined the additive structure of KO(S**¥Q,) in [14]. In this paper, we shall de-
termine completely the additive structure of KO(S*%/Q,).

Throughout this paper, we identify the orthogonal representation ring RO(Q,) with
the subring ¢(RO(Q,)) of the unitary representation ring R(Q,) through the complexifica-
tion ¢: RO(Q,)——R(Q,), since ¢ is a ring monomorphism (cf. (2.1)).

Consider the complex representations @, @,, @, and b, of Q, given by

ao(l') =1, a,-(x) = -1, bl(.’L‘) — (g g_l)
(—1)F if tis odd, Ty
a(y) =—1, | aly) = b(y) = ((1) O1 >

(—1)* if t 1s even,
Then
a,—1,2b,—2),(b—2)? € R(Q,) (cf Prop.2.7),

where IQU(Q,) 1s the reduced orthogonal representation ring.
Consider the elements

(1.1) a, = £(a,—1), 28, = £(2b,—4), B} = £((b,—2)")

in I?OYS‘""‘/Q,) (cf. (3.3)), where 5:@(Q,) —»fé(S‘"‘s/Qt) is the natural ring homo-



2 Kensd Fujin

morphism (cf. (3.1)).  Furthermore, consider the folllowing subgroups of Q,:
(1.2) G, = Q, generated by x? and y, G = Z  generated by x*,

where t =rg, r=2™"', m =1 and ¢ is odd. Then, we have the ring homomorphisms

i¥: KO(S*3/Q,) ——KO(S*/Q,),
(1.3) i%: KO(S™3/Q,) ——KO(L™" () (L™ (q)=S"*/Z,),

i* . K(L™(q)) — KO(L>* (q)),

induced from the natural projections ,:5**/G,—=S**/Q, and the inclusion i:L2"(q)
— L (q), where L3*"(q) is the (4n+2)—skeleton of L***(q) the standard lens space
modulo q.

Then, we have the following

THEOREM 1.4. (i) The ring IE'E(S‘"*/Q,) is generated by the elements a,, a -+ a, if
t=1, ay a +a, 28, and B if 1 23 is odd, e, e, 26, and B? if I is even, respec-
tively, where a;, 28 and B! are the elements in (1.1).

(i) Put t=1rq where r=2™", m=1 and q is odd Then, we have the ring isomorphism
r= 0¥ @ *i* KOS*™*/Q,) = KO(S*™*/Q,) & KAL™ (),

where ¥, i¥ and i* are the omes in (1.3). Further, there hold the equalities

n(e,) = a, m{e,+a,) = o, +a,
m(28)) = 2a, + 2a,+ 27, if tis odd,
x(f) = —4a}—10a} —12a, + 3,

n(a,) =@ (=01, 2),

n(28,) = 28, + 25, if 1 is even,

(B =pi+7

where @ is the real restriction of the stable class n—1 of the canonical complex line bundle

n over L*(q) and it generates the ring KO(L¥(q)) (cf. [11, Prop. 2.11)), and the ad-
ditive structure of KO(L¥™"(q)) is given in [9, Th.1.10 and (6.1)].

Consider the following integers %(Z) and the elements §, and a, in @(S‘"’a/Q,)
with 7 =2™"'(m = 2), where «, and 28, are the ones in (1.1) for t=17 and

26(0) = 26, and B(s) = B(s =1+ 4B8(s—1) (s =l
For i=24+d £ N =minlr, n! with 0 =s<m and 0 =d < 2% put
n'=2n+1 i nis odd, = 2n if n is even,
n'=2%;+b, 0<b,<2%

(1.5) a(l) = 2m*e, 5 =28 i i =1
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| 2m3+% (n:odd),
a(2) =
2™°*%  (n:even),
=2
B(l)—2v g(0)—R,(1, 0; a, +1) (n:odd),
g, =
’ B) (n:even),

ﬁ(l) — 2m—s—2m's’
[ Tl (=12 (s —t) — R(s, 0; a,+1)  (n:odd),
5 =

i

237,20 e B(s—¢) (n:even),
if 1=2° 2<ssm—1)

(i) = gn-s-swa,
28 B TL S22+ B (1) + 18 (—1)* 22 ve gag(s—¢) (d:odd),
5 =1{ BB 2+B() + R(s, d; a(i)) (n:0dd, d:even),
BRI (24 B (1) + T, (— )20 22 e gag(g—p)
(n:even, d:even),
a, +1 for 2d<b).,
a(i) = ‘
a,., for 2d > b’ |,
if i =2°+d=23,d=1;
B Q, (n:even or m=2),
" Z{ ¢, £ 2" "8 (n:odd and m =3),

where R (s, d, a,+1) and R(s, d; a(i)) are the ones in Propositions 7.1 and 7.2, re-
spectively.

Then, the additive structure of @(S‘”'a/Q,) is given by the following theorem,
where Z,(x) denotes the cyclic group of order k generated by x:

THEOREM 1.6. Let r=2™" m =22 and N' = min|r, n}.
Then, we have

N Zpoi(a,) ® Zy (G,) & 1, Z5,(8,) (n: 0dd),
RO(S*+3/Q,) = ~
Zg"” <ao> @ Zz"“ <a,> @ Zf’:x Zi(ij<5i> (n: even).

We notice that the additive structure of @(S‘"’S/Q,) = @(L”“(él)) is determined
in [12, Th.B].

We prepare some results on the complex and orthogonal representation rings R(Q,),
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RO(Q,), R(Gx) and RO(Gy) for Q, and the subgroups G, given in (1.2), and the
symplectic representation group RSp(Q,) (r=2""') in §2.

In §3, we define the elements «, (i =0, 1, 2), 2,8214 and B, of KO(S"'”/Q) and
study the homomorphisms ¢, : KO(S**2/Q,) —>KO(S‘"*3/Gk) and ¢* KO(L"”‘"(q))
— L KO(L™(q)) of (1.3) in Lemma 3.6, Propositions 3.8 and 3.12. Also, the funda-
mental relations in @(S"‘*’/Q,) (r=2™1) are given in Lemma 3.14, which play the
important parts in the subsequent sections.

In §4, we first estimate an upper bound of the order of IZT)(S"“S/Q,) by using
the Atiyah—Hirzebruch spectral sequence, and especially we determine the order of kO
(S**+%/Q,) (r=2™") in Proposition 4.13. Furthermore, we prove Theorem 1.4 in Theo-
rem 4.15 and Remark 4.16 by using the known results about the order of K?O'(Lﬁ"“(q))
given in [11, Prop.2.11], the order of KB(S"'“/Q,) (r=2™") given in Proposition 4.13
and the results obtained in §3. '

In §5 (resp. §8), we give some relations in @(S‘"'a/Q,) (r=2™" for odd n
(resp. even n), which are useful in the next section.

In §6 (resp. §9), we prove some basic relations concerned with an additive base
of K~O(S‘"‘3/Q,) (r=2"") for odd n (resp. even n) by making use of the relations giv-
en in §5 (resp. §8)

In §7 (resp. §10), Theorem 1.6 for odd n (resp. even n) is proved by combin-
ing the results given in the previous sections. Also, as the corollary of Theorem 1.6, we
have the order of &, in IZZ)(S‘”‘a/Q,) (r=2™"), which is already proved in [13, Cor.
1.7].

§2. The representation rings of Q.

We denote the unitary (resp. orthogonal) representation ring of the group G by
R(G) (resp. RO(G)) and the symplectic representation group by RSp(G). By the natural
inclusion

On) C Umn), Un) CcO@2n), Sp(n) CU2n) and U(n) C Sp(n),

the following group homomorphisms are defined:

RO(G) — R(G) ‘_C— RSp(G).
c h

The following facts (2.1) are well known (cf. eg. [2]).
(2.1) These representation groups are free, and ¢ is a ring homomorphism. Also
rc=2 hc =2 cr=1+t=ch,
(t denotes the conjugation), and ¢ and ¢’ are monomorphic.
Hence throughout this paper, we identify
RO(G) with ¢(RO(G)), and RSp(G) with ¢ (RSp(G)).

Let ¢ be a positive integer and let Q, be the subgroup of order 4t of the unit
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sphere S® in the quaternion field H generated by the two elements
x = exp(ri/t) and y = j.

Consider the complex representations a, ({ =0, 1, 2) and b;(j € Z) of Q, given

by
a@w=1 (e =-1, b= (5 %)
(2.2) ' (1) if ¢ is odd, 0
a,(y) = —1, b;(y) = (1 (_0) )

a;(y) = ’

(=1)* 1if t is even,
Then, we see easily the following

ProPOSITION 2.3. (cf. [4, §47.15, Example 2]). The complex representation ring
R(Q.) is a free Z—module with basis 1, a, (i =0,1,2) and b; (1= j <t) and multipli-

cative structure is given as follows:

ati=1, at = a, = a,q,, by=1+4+a, b, = q, + a,,

la,, if t is odd

1 if t is even,
b = bey, by = by, bib; =biy+ by, anb, = b, ab = by,
Let
(2.4) =0-1(1=0/1,2) and £ =b6,—-2(j € Z)
be the elements in the reduced representation ring ﬁ(Q,). Then, we have

PROPOSITION 2.5. (cf. [6, Prop.3.3]) The reduced representation ring R(Q,) is a
Sfree Z—module with basis a; (1 =0, 1, 2) and 8; (1 £ j < t), and multiplicative structure
is given as follows:
ay—2a, if t is odd,
af = —2a, af = @ = a0 + a+ a, By = a,
—2a, if t is even,
b=+, Bu=P0 b.=245,
BBy = By + By — 2B+ 6;), a = —2a, affy =B, — B —2a,.

These show that the ring R(Q,) is generated by o, if t=1,a, and B, if t 23 is odd, and
a,, a, and B, if 1 is even.

Regarding RO(Q,) as the subring of R(Q,) under c¢: RO(Q,) — R(Q,) in (2.1),
we have

PRropPosSITION 2.6 (cf. [5, (3.5) and (12.3)]). RO(Q,) is a free Z—module with
basis 1, @, @, + @, by; and 2by;., (1=2j, 2j+ 1< t)if t is odd, and 1,a:(i =0, 1, 2),
by and 2by;., (1 = 2], 2j+1 < t) if t is even
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From (2.4), Propositions 2.5 and 2.6, we have

PROPOSITION 2.7. The reduced representation ring R-b(Q,) is a free Z—module with
basis ay, @, + @y, Boy and 284, (1 < 2j, 2j+1 < t) if t is odd, and o, (i=0, 1, 2), B,
and 282, (1 < 2j, 2j+1 < t) if t is even. These show that the ring R-b(Q,) is gener-
ated by oy, a, + a, if t =1, a, a, + a,, 28, and B? if t =3 is odd, a, o, 28, and B} if
t is even.

Regarding RSp(Q,) (r = 2™ ') as the subgroup under ¢': RSp(Q,) ——R(Q,) in
(2.1), we have

ProOPOSITION 2.8. (cf. [17, Prop.1.6]). RSp(Q,) (r=2™") is a free Z—module
with basis 2, 2a, (i =0, 1, 2), 2b,; and by,,, (1<2j, 2j+1< 7).

The following lemmas are well known:
LEMMA 2.9 (cf. [1, §8]). R(Z,) is the truncated polynomial ring Z[u]/{u*—1),

where 1 1s given by z —exp(2ri/k) for the generator z of Z, and {(u* —1) means the
ideal of Z|11] generated by p*—1.

LEMMA 2.10 (cf. [5, (3.5) and (12.3)]). The ring RO(Z,) is generated by r(u—1)
if k isodd p—1 and r(u—1) if k is even, where 1 is the real restriction and p is a
real representation given by z —— —1 for the generator z of Z,.

Consider the following subgroup G, of Q,, where t=rq, r=2""' m=1 and
g 1s odd:

(2.11) G, = O, generated by x? and y, G, = Z, generated by x*"
Then the inclusion i, : G, C Q, induces the ring homomorphism
(2.12) i ¥: RO(Q,) ——RO(Gy)

by the restriction of representations of Q, to G..
By [9, Prop. 2.9], Proposition 2.7 and Lemma 2.10, we. see easily the following

LEMMA 2.13. (1) (Y is an epimorphism and

io*(ao) = Qg l.:(al + ) = o + a,

if t is odd

i:(ﬂz ) = Q, [:(2/921.1) = 2(‘71 + az)’

isla)) = (i=0,1,2),
’ if t is even.

i:(/gzz) = £, l':(zﬁzid) = 203,
(i1) iY(a) =i (a,+aq) =0,
< if t is odd

[5By) = (28~ 1), [} (2By) = 27 (™ = 1),
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ifa) =0  (i=0,1,2)
if t is even.

lr(ﬂz.) = 7(#—1), i:(zﬂziq) = 27r(u*'—1),
Let m =2, and define B(s) in R(Q,) (r =2"") inductively as follows:
(2.14) BO)=48, B(s)=B(s—1F+48(s—1) (s=1).

Then, we have the following lemmas.

© LEMMA 2115 B(k+1) =235 A(8) T, (2+ A1) =B1) 1L (2+A(2)) in
R(Q,).

PrROOF. By the induction on k, we can easily verify the equality. g.e.d.
LEMMA 2.16. Pn,=8(s) M4 Q+8(t)=0 (1< s=m) holds in R(Q,).

PrROOF. In the similar way to the proof of [9,Lemmas 5.3—4], we have 8, — 8,

=23 C+B)B(s) IR (2+A8(1)) and (2 +8)B(m—1)=2(8,..—F,). Hence,by Lemma
2.15, P, ,=0 follows. For the case s=2, the equalities

FPos=Pn,I113(2+8(1))
and F,,=0 imply F.,=0, q.e.d.
By the definitions of £(s), Pn,, Lemma 2.16 and Proposition 2.7, we have
LEMMA2.17. 2P,,=0, f,Pn,=0 and Pr,=0 (2<s<m) hold in RO(Q,).

§3. Some elements in I?B(S"’S/Qz)

Assume that a topological group G acts freely on a topological space X Then,

the natural projection
p:X X/G

define the ring homomorphism (cf. [10, Ch. 12, 5.4})

(3.1) £:R(G) — K(X/G), & ROG) — KO(X/G)

Furthermore, if H is the subgroup of G, then the inclusion {: HC G and the projec-
tions p : X —— X/H, i : X/H —— X/G induce the commutative diagram

RG) : , R(X/G)
AN\ L
R0(G) 3 , E(X/G)
(32) L* L*l ll* i*
RO(H) s KO(X/H)
v ‘ N
R(H) » K(X/H),
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cé=Ec, ré=¢&r, (YE=E", ci¥=1%c, ri*=1i"r,
where ¢ 1s the complexification and r 1s the real restriction.
Now, (), acts on the unit sphere S***? in the quaternion (n4 1)—space H"** by
the diagonal action
2(qu. o Qua )=(qq1 .. qqa.y) for g€ Qi g€ H
Then the natural projection defines the ring homomorphism
£: RO(Qy) —— KO(S*""%/Qy)

of (3.1), and by using the same letter, we define the elements

(3.3) o= §(a) (1=0, 1, 2), B2y = &(B2s) and 22501 = £(2B25.1)

in @(S"“a/Q,), where a;, B,;.,and 2/?2,‘,ER~O'(Q,) are the ones in Proposition 2.7.

Consider the orbit manifold S****/G, obtained by the restricted action of Q, to
Gi=2Z,. As is easily verified, S**3/G, 1s homeomorphic to the standard lens space
L7 Y g)=8*""%/Z, modulo ¢g. Also, S**3/(Q, is homeomorphic to L2"*'(4).

For &: RO(Z,) —— KO(L**'(k)) of (3.1), we have

LEMMA 3.4. &(r(u=1)=7r(n—1), and £(p—1) is the stable class of the non trivi-
al real line bundle if k is even, where p and p are the elements of Lemmas 2.9, 2.10 and
n is the canonical complex line bundle over L*"*'(k).

ProOF. For ¢é:R(Z,) —— K(L**'(k)), we have é(u—1)=79—1 by [9, Lemma
3.8].  Thus, the first equality follows from the commutativity ré=£r in (3.2). Let k&
=2/ and consider the element c&(p) in K(L*>*'(2])). Then we see that c&(p) = &c (0)
=&(u)=7n" by (3.2) and the definitions of o and u« Since the first Chern class ¢,(7')
=1c,(7)*0, &(p) is the non trivial real line bundle. g.e.d.

REMARK 3.5, We notice that
@y = p—1 and o+ a,=r(u—1)
in RO(Q,). and so
ap=E6(p—1) and o+ a,=1r(n—1)
in KO(S**%/Qy) = KO(L™-1(4))

Let L2*'(qg) be the (4n + 2)—skeleton of L' (q), and (: L@ (q)—— L*™!q)
be the inclusion. Then we have

LEMMA 3.6. (*&(r(u—1))= r(n—1), and i*g:]?égq)_) KO(L21(q)) is an
epimorphism, where we denote the element (*(r(n—1)) in KO(LZ*'(q)) by r(n—1) for
simplicity.

PrROOF. The equality i*é(r(u—1))= r(n—1) is obtained by Lemma 3.4. Since
KO(L#*1(q)) is generated by r(n—1) (cf. [11, Prop.2.11]), {* ¢ is an epimorphism.

g.ed
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Let
(3.7) = i*if: KOS/ Q,) —— KO(L3*(q))
be the composition of i : KO(S*"+%/Q,) —— KO(S**%/G,) = KO(L™*(q)) and i*:
KO(L*™'(q)) —— KO(L%*'(q)). Then, we have

PROPOSITION 3.8. m is an epimorphism and

m(ay) = m(ey+a;) =0,
{ if t is odd
m(26,) =2r(n—1), (B} =(r(n—1)),

m(a) =0 (:=0,1, 2),
‘ if t is even.

m(26,) =2r(n—1), m(B}) =(r(n—1)),

PrROOF. The equalities except for = (82)= (r(n—1))? follow from the definition
of m, (3.2), (3.3), Lemmas 2.13, 3.4 and 3.6. By Propositions 2.5, 2.7, the equality 82
=B, + a,—48, holds in RO(Q,). Since i*(8,) = r(n*—1), i*(e,) =0 and i*(28,) =
2r(n—1) in @(Gl) by Lemma 2.13, there holds the equality i} (82 = r(n*—1)—
4r(p—1) in RO(G,). On the other hand, c((r(n— 1))*) = (p4+n" =22 =c(r(n*—1))
—c(4r(n—1)), and the complexification ¢ is monomorphic (cf. (2.1)). Hence
r(*—1) —4r(n—1)=(r(7—1)}* in RO(G,).

Therefore, the desired equality m(82) = (r(n—1))? follows from (3.2), (3.3), Lemmas 3.4
and 36. Also, m is an epimorphism, since KO(L2**'(q)) is an odd torsion group gen-
erated by r(n—1) =(1/2)m(26,) (cf. [11, Prop.2.11)). q.e.d.

For the ring homomorphism
€: RO(Q,) ——KO(S*"*%/Q,) (r= 2m"22),
(3.9) (cf. [17, Th,2.5], [7, Th.1.1 and Cor.1.2]) &is an epimorphism, and

BIROQ.))  if n is odd,
Ker £ = l
(BT RSp(Qr)) if n is even,

where (S) means the ideal generated by the set S.
By Propositions 2.5—8, we see easily the following
LEMMA 3.10. Ker € in (3.9) is given as follows:
i) if n is odd,
Ker § = {
(2B71,0817%) if n is even.

For the homomorphism

(3.11) (¥ KOS*3/Q,) ——KO(S*3/G,),
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we have
PROPOSITION 3.12. i) is an epimorphism and

ll:(ao) = Qo, i:(al +a;) = a; + ay,

if t is odd
iy (28) = 2 ey + a,), 5 (B?) = —4a}—10a?— 120,
ig(a) =@ (i=0,1,2),

if t is even.

ls (28,) = 2B, ig(BY) =81,

PrROOF. By making use of the relations in Proposition 2.5, these equalities fol-
low from Lemma 2.13, (3.2) and (3.3). By Proposition 2.7, Remark 3.5, [12, Th.B]and
(3.9), mS‘”*a/GD) is generated by @y, o, +a, if m=1, a, a, 26, and BZ if m=2.
Therefore, iy is an epimorphism. q.ed.

For any integer n 20 and m 22, we define the elements 2£(0) and A(s) (s=1)
in KO(S**3/Q,) (r=2™") as follows:

(3.13) 28(0)=2B, and B(s)=FB(s—1)*+4B8(s—1).

Then, by (2.14), (3.3), Lemmas 2.15 and 2.16, we have
LEMMA 3.14. (1) Ak +1)—=2238,B(8) IIE,0(2+B(1) = A1) IIE(2+8()).
(ii) 2Pn1=0, B Pn,=0 and Pn,=0 (2<s=m),

where Prs=8(s) [I754 (2 +B(2)).

§4. Proof of Theorem 1.4

The cohomology group of the guotient manifold X=S5**3/(Q, is given as follows:
(4.1) (cf. [3, Ch. XII, §7)) H“X; Z)=2Z, if 0<i=n,

H¥X, Z)=2, (t:0dd),=2Z,8Z, (t:even) if 0=i=n,

H¥Y(X, Z)=0 if 0=i<2n, HY X, Z)=H"3¥X; Z2)=2,

HYX, Z,) = H"¥X, Z,)=2, if 0<i%n,

He WX, Z,)=H%"*X, Z,)=2Z,(t :0dd),=Z,® Z, (t:even) if 0<i{<n.

By (4.1) and the Atiyah—Hirzebruch spectral sequence for KO(X), we have

LEMMA 4.2

gameremin if t s odd,
FKOS*™/Q) =

24nra-ze(m)pn if t is even,

where %A denotes the order of a group A and e(n)=0 if n is even,= 1 if n is odd
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REMARK 4.3. For the case t=1, the additive structure of @(S‘"‘a/Ql)z
KO(L***(4)) is determined in [12, Th.B] and #KO(S**3/Q,)=23"*2-¢" holds.

First, we study the order of @(S‘"‘S/Q,) (r=2™").

Let N* be the k—skeleton of the CW—complex S***3/Q, in [6, Lemma 2.1], and
J: Nk CS*3/Q, be the inclusion. For an element a € KF'?)(S“““/Q,). we denote its image
J¥(a) e I?é(N") by the same letter a.

Consider the homomorphism
L (4.4) j¥:KON® 1) — L KO(N**+1) (0<]<7)

induced by the inclusion j,: N%*¥1C N8+t

Then, we have

LEMMA 4.5 (cf. {7, §4]). Jo& is an epimorphism and
Ker j§ =7 (%),

Proor. By [7, §4], we see that jJ is an epimorphism and Ker jJ is a cyclic
group generated by #%. On the other hand, 2™'4%* =0 in K:B(NS"’B) by [17, Prop.5.5].
Thus 2™*'8%* =0 in I?é(N”"). Consider the homomorphism jX: K(N®*) —— K(N®").
Then, Ker jy= Z,={(0%*) (C K(N*)) (cf. [6, Lemma 5.4 and Proof of Theorem 1.1]).
Therefore, ¢(2™B8%*)=2"F%* %0 for the complexification ¢ :@(N"")—»I?(N""). These
imply that the order of A% is equal to 2™ g.ed.

LEMMA 4.6 (cf. [7,84]). JjI is isomorphic for | =7, 6,5 and 3.

LEMMA 4.7 (cf. [7,§4]). Jj¥ is an epimorphism and
Ker ji=2Z»n{(28% ).

Proor. By [7, §4], j{ is an epimorphism and Ker j{ is a cyclic group gener-
ated by 28%*.  On the other hand, the order of 24%**! is equal to 2™'! in KO(N®*7)
by [17, Prop.5.5], and KO(N®*7) = KO(N®+*). Thus, we have the desired result.

g.e.d.

LEMMA 4.8. If ae,Br=xB*" holds in R(Q,) for some a€Z and x € RSp(Q,),
then ae,B, =xB? holds in R(Q,).

ProoOF. The statement is trivial for n =0. Assume that n >0. Since 2™''(28,)
=0 in KO(S7/Q,) by Lemmas 4.6 and 4.7, there exists an element x" € RO((Q,) such that

om2g, =7 in R(Q,)
by (3.9). Therefore we have
aaqBix "t =xpyt !

and so (2™?)" 1 ga,B, =(2™2)* xf? in R(Q,). This implies the desired result, because
R(Q,) is a free Z—module. g.e.d.
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LEMMA 4.9. If aaf, =xB2? holds in RQ,) for some a€Z and x € RSp(Q,),
then a =0 mod 4.

Proor. By (2.4) and Proposition 2.8, x is uniqely represented as
X =2e+4+2600g+26,a,+26,a,+4 2307 2A b0+ 2073 A g1 bai
where ¢, ¢,, €,, ¢, and A, are some integers. By Proposition 2.3,
a,fy=a(2—2a,—b,+b,,) and xBE=xB+a,—4b,+ b,).

Represent x(5+ a,—4b,+ b,) by the linear combination of the basis of R(Q,) by mak-
ing use of the relations in Proposition 2.5, and compare the constant term and the co-
efficient of a, in ae,B, with the ones in xB} Then, we have

2a=10e+2ey—4A, + 21, and 0=10¢c,+ 2 —4A, + 24,,
and so a=0 mod 4. q.ed.
LEMMA 4.10. The orders of a,8%* and a,8% are 4 in KO(N®*%)=KO(S**%/Q,).

PrOOF. We notice that 0% =2%aq, by Proposition 2.5. Consider the homo-
morphism i*:@(S“’”’/Q,) —)K"U(S""a/Q,) induced from the inclusion i{:Q,CQ,.

Then we have
(2 aB) = i*(2%" a,) = 2% 0, %0 in KO(S*/Q,)

(cf. [7, Th.1.3]). On the other hand, 4a,8%* =0 in KO(N®'2?)=KO(N**3) by [7, Lemma
4.5]. Thus the order of a,8% is 4 in KO(N#**%). Also 40,* =0 in IEE(N"""); KO
(N*%) by [7, Lemma 4.5]. Hence the order of &,8% is 4 in KO(N**®) by Lemmas 4.8
-9, Proposition 2.7 and (3.9). g.e.d.

LEMMA 4.11 (cf. [7, §4]). Jj; is an epimorphism and
Ker j; =Z,(2a,87%) ® Z, (2, 8}*).

Proor. By [7, §4], j5 is an epimorphism. Consider the homomorphism i*:
KO(S®*+3/Q,) —KO(S**2/(Q,) induced from the inclusion i:Q,CQ,. Then

1" (20B3F) =2 0y % 2% oy = (¥ (20, A1)

in KO(S%**2/0Q,) by [7, Th.1.3]. Thus 2a,8%* %2, 8% in KO(N**?)=KO(N®*?). Hence
the desired result for Ker jJ follows from Lemma 4.10 and {7, Lemma 4.5]. g.e.d.

LEMMA 4.12 (cf. [7, §4]). JjT is an epimorphism and
Ker j¥=2Z,{qf%*)®Z,{a, ().

Proor. By [7, $4], jf is an epimorphism. Ker j¥is givn in [7, Lemma 4.7].
q.e.d.

Summarizing Lemmas 4.5—7, 4.11 and 4.12, we have
PROPOSITION 4.13. (i) JjX:KO(N%**') — KO(N®*Y) is an epimorphism and j
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is an isomorphism for | =7,6,5 and 3, and

Zzn+|<‘8§k> lf l =O,

Zyms (26%) if L=,
Ker jf=

Zy(aBT*) ® Z,(a BTF) if 1=1,

Z,(20,8%) ® Z,(20,%) if 1=2.
(1) #RO(S2/Q,) =242 2,
where e(n)=0 if n is even,=1 if n is odd.
Now, we consider the ring homomorphism
(4.14) n=iy®m : KO(S*/Q,) — KO(S*%/Q,) ® KO(L3"(q)),
where iy and = are the ones of (3.11) and (3.7), respectively.

THEOREM 4.15. (i) Let t=rq r=2™""' m=21 and q is odd
Then, min (4.14) is a ring isomorphism.
(1) m(ay) = @y, n(ay+ a,) =0y + ay, m(a) = e (1 =0,1, 2),
7(28)=2a,+2a,+ 20, ift is odd n(28,) =28, +25 if t is even,
mp}) =—4a}—10af 120, + 7* n(B7) =BT+ 27
where @ = r(n—1) is the real restriction of the stable class of the canonical complex line
bundle n over L2*'(q) (cf. Lemma 3.6).
PROOF. nm and i are epimorphisms by Propositions 3.8 and 3.12, respectively.

On the other hand, by Remark 4.3, Proposition 4.13(ii) and [11, Prop.2.11],

QIn+2-€(n) if r=1,
#KO(S*3/Q,) = and #KO(LE () =q".

241”4—26(7:)7.1! lf 7'22,

Therefore = in (4.14) is also an epimorphism since ¢ is odd, and so (i) follows from
Lemma 4.2.
(i1) follows from the definition of = and Propositions 3.8 and 3.12. g.e.d.

REMARK 4.16. By Proposition 2.7, (3.3), (3.9), [11, Prop.2.11] and Theorem
4.15, the ring homomorphism
¢: RO(Q,) — KO(S**/ Q)

is an epimorphism and so the ring KO(S**3/Q,) is generated by ag, o+ a, if t=1, ay, o, +
a,, 2B, and B? if t 23 is odd, o, a;, 28, and B if t is even. Moreover, by Theorem
4.15(1), Proposition 4.13(11) and [11, Prop.2.11], we have
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23mr-Emipn b s odd,
#ROS9/0,) =

2enezetn G f t is even.

Combining Theorem 4.15 and Remark 4.16, we complete the proof of Theorem
1.4.

§5. Some relations in KO(S***/Q,) (r=2"") for odd n

In this section, we give some relations in KO(S***%/Q,) (r=2™122) for odd n,
which play an important part in the next section.
For the elements 28(0), B(s) € KO(S***3/Q,) in (3.13), we have the following lemmas:

LEMMA 5.1.  For any integers ko', ke, 20 and ks >0 (0=s=m), we have
(1)s e LB =0 if m—s+h 20,
(2)s 2606) TI7 0B (E ) =0 if m—s+h<0,

where h="h (kq, ", ks)=1+[(n — 25502k ,)/2°7] and c(k,)=0 if k, is even,=1 if k, is
odd.

Proor. We prove the lemma by the induction on s and h. Consider the case
s =0, and suppose that h(k,)<0. Then ky2n+1 and B7*=0 by (3.9). Thus (1), and
(2), for A(k,) <0 hold. Suppose that h=~h(k,)=0, and assume that (1)}, and (2), hold
for any k, with h(k,)<h. Since h=1+2(n—k,) >0,

288 (0" Pa, =0
by Lemma 3.14, and so
(*) 2B (0)eo 271 B (OYkort 4 31, 2™ IR R (0) 1 B (1)L (1) B(i,)=0,

by (3.13) and the definition of Pnr, in Lemma 3.14, where I,= {({,, ", {;):1<j<m—2,
0=i{,<<i;Em—2}. By the inductive hypothesis and (3.13), thé second term and
the term for any (i,,"-,{;) € I, in (*) vanish. Thus, (1), and (2), hold.

Suppose that 1 <s<m and h=h(k,, ", ks) <0, and assume that (1),. and (2),.-
hold for any s" with 0<s' <s. In the case m—s+h =0, by (3.13), we have

2m+1—sﬂ| ab’(s)"«vz ’fio (lzs)Zm»l-smdiaﬂ(s — 1)2k_v—i’
where a=[[$5 B{t)*. By the assumption,
‘ gmeisnedof (s | )Het=0 (0=iSk,)
This shows that (1) holds for A =h(k,, ", ks) <0 and m —s +h 20. In the case m —
s +h <0, we can show that (2); holds for h =h(k,, '+, ks) <O in the similar way to the
proof of the case m —s +h 20.

Let 1<s<m and h=h(k,, ", ks)=0, and assume that (1); and (2)s hold for
any ko, ks with A(k,,+*, ks) <h. By Lemma 3.14,
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221 aB(8)ks Pprs=0.
Hence
amishofB(sYs 2™ el (s — 1)B(s)s+ 20,222+ B(s —1))aB(s)sB(i,) B (i;) =0,

where a=1II{3A(t)* and L= {(i,, ", i;)):1=<j=m—1—s, s=i, < <i;sm—2}.
In the similar way to the proof of the case =0, we have (1); and (2), for h 20 by the
the inductive hypothesis. g.e.d.

LEMMA 5.2,  For any integers ko, ", ks, 20 and ks >120 (0 s <m),
2MISMgR(gYe=(—1)I2m 1WA qB(s )t if m—s+h 20
Also
26lgB(g )= — 26 2qB (s ) if ke 22 and m —s +h' <O.
Here, h'=h'(ky -+, ks)=[(n — 231.02°k,)/2°] and a=TI54 B ()=
ProoF. We see easily that
Zmrshof(s)t28(s+1)=0
if ks—1=21>0 and m —s+h'20, and also
26kl gf(sY2B(s+1)=0
if ks=2 and m—s+h'<0 by Lemma 5.1. Thus, we have the desired results. q.e.d.
LEmMMA 5.3, (i) 2™#8(0yB(1»=0 if m—1+2h 20,
2¢13(0Y.B(1)s=0 if m—1+2h <O0.
(1) 2™ 22aB(sys=0 if s=21 and m—s+1+2h =20,
28k aB(8)=0 if s21 and m —s +1+2h <0,
where h =h (ky, -, ky) is the one in Lemma 5.1 and a= I1528(t)%
ProoF. (i) By (3.13), we have

2m¢2hﬂ(o)koﬂ(1)k,: ‘ik.=0 < ,;31 ) 2m¢2h¢ 2iﬂ(0)k‘,+2k,*li’
260 B0 (1) = Lty () 25tk 2g (Ot
l
On the other hand,
2m~2h+2iﬂ(0)k¢~2k,~i =O (0 g l ékl) lf m — 1 + 2h go,
26ROt =0 (0 IS k,) if m—142R<0

by Lemma 5.1. Thus we have (i).
(i1) is proved in the same manner as the proof of (1) by making use of (3.13) and
Lemma 5.1. g.e.d.
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LEMMA 5.4. Suppose that m =23, 1 20 and | =Zh =h(k,, k,) except for (I, h)=(0,
—1). Then, we have
(1a 2By (L) 4 6 (1)2m B0y B(1) ' =0 1f ky20, k22,
@ 2m 2ROy (1Y —a ()2 B0y B(1) =0 if ko, k121,

where §(1)=1 if =1, =—1 if | £1. Moreover, we may replace 6(l) in (1), and (2), by
+1 if I >h.

ProoF. In the case h <0, each term in (1), and (2), vanishes by Lemmas 5.1
and 5.3, and so (1), and (2), hold. We prove the lemma by the induction on A =0.
By Lemma 3.14,

2LR(0) B(1) 2P, =0 if k=20, k, =2,
2180y B(1). Py =0 if ko, ky21.
By expanding the left hand sides of the above relations, we have
(1)  2mgOynt gLy 4 2m B0yt /(1)
+ 20,22+ B0)BO)y B(LY 1 B(4) -+ B(is) =0,
(2)  2mtBOy et gLy 4 2m 2t B (0) B (L)"
+ 22, 2™ 2 4 B(0)B0) (1) B(iy) - B(iy) =0,

where I, ={ (i),, ;)1 =j=m -2, 1 <i{, < <i;Em—2}. In the case h=0, any
term in 25, of (1) and (2) vanishes by Lemma 5.1, and

2n B0 B (1 =2m BB (LR — 2m B (OF (LY

by (3.13). Thus, we obtain (1), and (2), from (1) and (2).
Consider the case h=1. Then, by Lemmas 5.1 and 5.3, 25, in (1) is equal to

t2m2tg Oyt f(l)a = £ 2m g0y ?B(1)*  (by (1))
On the other hand
21RO B(LY = 27 2B (0B (L) — 27 B0y B(L  (by (3.13)).
Hence, by (1)
2mt B0y (1) —3 2mt+tg(0) (1)~ =0.

Since 2™ B(0)* (1) =0 by Lemma 5.1, we have (1), By Lemma 5.1, 33, in (2)
is equal to

£2m 2R (O) B(1) = + 2™ B(0)B(1)¥ (by (3.13) and Lemma 5.1).

Therefore, we have (2),.
Suppose h=2. By Lemma 5.1 and (2), , any term of 3, in (1) and (2) vanish-
es, and also
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2m2B (Ot g (1)t =221 B(0) B (1) — 2™t B(0)k* B(1)* (by (3.13)).
Thus, we have (1), and (2), for h=2. Since 2™!B(0)s'F (1) =0 =2™L(0)%'B(1)*
if I>h by Lemma 5.1, the last assertion follows. q.e.d.

LEMMA 5.5. Suppose that m 23, | 22 and | 2h =h (ke k,) except for (I, h)=(2,1).
Then
(3n-s 3 2"BO0YB (1) + 2™ B(0)Y="1B(1)-' =0,

(Drs 27 SHBOBL =27 HBOP BN =0,
(s 327BOA(LR —27"BOP BN =0,

if ko=0, k, 22,

if ke ki1
(Was 272 BOPB(N + 27 2RO BN =0,
ProoF. By Lemma 3.14, we have
201 B0yt g1 2R, , =0 if £,20, k22

By expanding the left hand side of the above relation,

(3) om-2+LB(QYkot B(1 )kt 4 2m-3+L Qa2 G(] )i 1
+ 22,22 +-B(0)BO)= B(1) 1 B(1y) - B(i4) =0,

where L, ={(i,,"", i;):1=jsm -2, 1=, < <iy=m—21}. In 25, of (3), the terms
for j =23 vanish by Lemma 5.1, and also the terms for j=2 vanish by Lemmas 5.1, 5.3
and (2),_, in Lemma 5.4. Thus, 3, in (3) is equal to

0 if 12h%3,
2m 2+ 8080y B(L) =
+2m 1 R0 B(L)8 = £2m 280y 2B(1) " if | =h=3,

by Lemmas 5.1, 5.3 and 5.4. On the other hand, by (3.13)
2rg0)y=2B (1)t =2mB(0)y=B (1) —2m2B(0)y="' (1),
and by Lemma 5.1,
2mH4 B0y B(1)%'=0 if h =3.

Therefore, we have (3),.
Also, we have

20RO B(LYe Py =0 if kg, k21,
by Lemma 3.14, and so
(4) 2m21B(0) ' B(L)s 4 2™ (0) B (1) 4 32, 2™ 342+ B(0) B(0) 1B (1B (11) B (i) =0.

In the similar way to the proof of (3)» the terms for j =2 in 33, of (4) vanish, and 3,
of (4) is equal to
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0 if [=h=%3,

+2m280)8(1)x if I=h=3.
Hence, we have (4),. g.e.d.
LEMMA 5.6. Let ko, and k, be non negative integers. Then
22k B0 f(1)krt 4 21kl B0 B(1)k*! =0
in KO(S*™*3/Q,), where € (ko) =0 if ko is even, =1 if ky is odd
Proor. By Lemma 3.14,
21l B(0)%B(1)4 Py, =0,

and P,, =(2 +8(0))3(1) by the definition of P,,. Therefore, the desired result follows.
q.e.d.

LEmMMA 5.7 Let 2sssm—2, l2—1 and | 2h=h(k,, " ks). Then
(Bhasa 2okl gB(s — 1) B(s)ks £ 2m ot gf (s — 11 B(s)e ! =0,
(Blazo  2Mshrieliol gB (s — 1 )err B(s)ke — §(L)2m o tek) gf(s —1)err ()% =0,
if ko ti ks 20 and ks 22,
(Bpsn 2™ 1Rl g5 — 1o f(s)hr & 2m+€1ho) gB(s — 1)feen 1 B(s ) =0,
(6)azo gmostieetio) g (s — 1)k B(s)Fr + 8(1)2m S teti) o (s — 1)k B(s)k =0,
if ko, ks220 and kg, ks21,

where a= 1§28t and 6(1)=—1 if 1 =0, =1 if | 21. Moreover, we may replace &(l)
by 1 if | >h or ko is an odd integer.

ProoF. First we consider the case h<—1. By Lemma 3.14,
26k gB(s — 1)k B2 Py o =0 if kg, 20, ks=2.
Thus, we have
(5) 2metlaB(s — 1yt B(s)et 4 2me et gf (s — 1) 2 B(s )
£ X, 2m AR (2 4 B (s — 1)) aB(s —LJ 1 B(s) B (i) =0,

where L;={(i,,", ;) 1<jsm—1—s, s, < <i;&m—2}. 2, of (5) vanishes
by Lemma 5.1, and

2m—s-1.£(k,,l aﬂ(s _ l)k,,_, '219(8)“‘*_1 =i 2m-s-1~€(l¢o) O'ﬁ(S _ l)k"" B(S)k"’

by (3.13) and Lemma 5.1. This implies (5),5s.;. In the similar way to the proof of
(5)as 1, (B)ne 1 is obtained from the relation

(6)  2m o ein (s — L (s 427 1R g (s — L B(s)
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X, 2 (2 4 B(s — 1)) aB(s — L B(s)B(E) - Bli;) =0
which is the expansion of the relation
2kl aff(s — 1)1 B(s)s 7 Pps =0

in Lemma 3.14.
In the case h =0, the terms for (i,, ", i;) € Iy in 33, of (5) vanish except for (s)
by Lemma 5.1 and so 25, of (5) is equal to

$2m-s-1 k) gf (g — 1)k B(s) (by Lemma 5.3)
= 2™l gB (s —1)s2B8(s)t (by (5).,).
On the other hand,
gmesieh g (s — DR B ()R
= 2k g (5 — 1B () £ 2R g (s — 1t B( )

by (3.13) and Lemma 5.1. These imply (5), from (5). (6), is obtained from (6) in the
similar way to the proof of (5),.
Suppose h 21 and consider the relation 2'X(5)

Om-S+lv€lky) GB(S . 1)’“7“16(8)*57] +2m-s-1.z.£u¢°) GB(S _l)k_,,‘.zﬂ(s)ks—l
+ 25 2me ek (24 (s —1))aB (s — 1)t B sy B(1y) - B(1,) =0.

The terms for (i,, ", {;) € I; vanish by Lemma 5.1 except for (s), and also the term for
(s) vanishes by (6), ,. Therefore, we have (5),z1. (6)szy follows from the relation 2 X
(6) in the similar way to the proof of (5),.,. g.e.d.

LEMMA 5.8 Let m =23, kn,=20 and kp,=0. Then
2¢kl af(m —2)km-t B (m —1)km-t 26000 g (m —2)*m2 B (m — 1)Y=t =0,
where a is any monomial of £(0), -, B(m —3).
Proor. The result follows immediately from the relation
26l aB(m —2)=-2f(m — 1) Py o, =0

and the definition of P, ., in Lemma 3.14. q.e.d.

LEMMA 5.9, Let 2=s=m—2, | 22 and |2 h=h(ky, -, kg). Then the follow
ing relations hold:

(Daeaay 27"l (s — 1)k B(s)kr 43 2mo 1 €kl (s —1)kr-1 () =0,

(Daiezay  2mo 20kl gf(s — 1)ken B(s)ks — QM0 €k g (5 — ] o=t Ghed =0,
if Kooy kea 20, kg 22,

@hig) 2T RIS (s — 1) B(s)kr —3 2m ekl gB (s — 1)k B(s)k =0,
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By 271G (s —1)n B 27T (s — 1 B8 =0,
if koo 'y ks2=20 and ks, k21,
where a=TI[528(1)*
Proor. By Lemma 3.14, we have
201tk g (s — 1)kt B(s )2 Py, s =0.

Therefore

oML E k) g (g — ] Yes- 1+l Qg )keh - 2MoS 2oL E k) g (g — 1 ra-r02 B(g)ks !

+ 20, 2m ek (2 4 B(s —1))aB(s — 1)kt ()1 B (i) - B(iy) = 0.
If ko is odd, any term in ., vanishes by Lemmas 5.1, 5.3 and 5.7. Also, by (3.13)
gmes- el gl (5 — 1A (s ot = 2R RIGB (s — 1B (s)
—oms ko g (5 — 1Yk B )ke
and
2msgf(s —1)ks-1Q(s)kst =0 if | =2

by Lemma 5.1. Thus, we have (7), in the case k, is odd. In the case k, is even, the
terms for (i,,**", ;) € 2, except for (s) vanish by Lemmas 5.1, 5.3, and 5.7. Thus, >,
1s equal to

0 if 123,
2m S L B(s —1))aB(s — 1)1 B(s)s =
+2m 9 (s — 1k Bl if [ =2,

by Lemmas 5.7 and 5.1. Also, by Lemma 5.7
£2m s afi(s — 1k B(s)h = £ 275 2afi(s — DFe-2 Bl if | =2,
Therefore, we have (7), in the case k, is even. (8), follows from the relation
2611 g (5 — 1ot ()™ Py =0
given by Lemma 3.14 in the similar way to the proof of (7), above. q.e.d.

LEMMA 5.10. Suppose m =23, | =20 and | =h =h(k,, k). Then, the following re-
lations hold for any k,=20 and k, =22 :

2m-21R(0M (1) = 2™t B(0)B(1) " if 1 =0, 1 and (I, h)*(0, —1)
ar B0y p () = —2mBO)y=B(1)" if 122,

2m 3RO B(1)h =3 2m B0 B(1)N ! if 1 =2, 3 and (I, h) *(2, 1),
2m B0y Bl =—2m 10y p(L) " if | 24.

Proor. These relations follow immediately from Lemmas 5.4 and 5.5. g.e.d.
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LEMMA 5.11.  Suppose 2<s<=m —2, l=2—1 and | 2h(k,, "+, k). Then the fol-
lowing relations hold for any ko, -, ks, 20 and ks =2 :

2m-sq+e(ko)aﬂ(s)k, — i 2mAs»1w(ko) aﬂ(s)ksﬂ lf l — 1’

Om-S-1+Elky) g B (g ks = 2M-S+1+E(Ke) g ( g)ka"E if 1=0,
oS LeleElke) R (G)ks = — QMm-Sele bl gR (SRt (f | >,
oMo Elk g (s)ks = 3 292 €l g (s )ks if 1=2,

OS2 Leblke) R (g ks = — QM-S+LrElk) g ( g Yk if 123,
where a= [[52L(1)k.
Proor. We see easily the desired results by Lemmas 5.7 and 5.9.
g.e.d.

LEMMA 5.12. Suppose | 20, l=h=h(ky, ", ks, 1), ko, """, ks2 20 and ky, 2
1. Then we have the following relations:

(1) Mgkt 4 (1 £201)2™2018% =0 if s=1 and m =2.
Moreover
2mP 4320 =0 if s=1, m=22 and h =0,
22014524872 =0 if s=1, m=2 and h=1,
2mpr —32™2B1 2 =0 if s=1, m=23 and h=1.
(i1) 2m g (1)t 4 (1 £ 2028 2ne1slgf( 1Y =0 if s=2 and m =3.
(iii) oS bE ko) g (§ — 1 Yksih 4 (1 4 QUF) QM-S L ek g (s — 1Yot = 0
if 3=s=m-—1.
Here, a=TII;2B(t)% in (i1) and (1i1).

Proor. (i) The first relation holds obviously by Lemma 5.1 if h=n—-1—k, <
0. Consider the case m =2. By Lemma 5.6 and (3.13), we have

(5.13) 2€(ko) Qo2 4 3 DE(KoI1 Bhotl | DEK)IRK — () if k=1,
When h=n —1—k,=0, the second relation
28T +3 2801 =0

follows from (5.13) and Lemma 5.1. Also, the first relation for h=0 1s obtained from
the second one by Lemma 5.1. When h=n—1—k,=1, the third relation follows from
(5.13), Lemma 5.1 and the second one. The first relation for A =1 is shown from the
third one by Lemma 5.1.

Now, consider the case m =3. In the relation (2), of Lemma 5.4, put &k, =1.
Then, we have the second relation and also the first one for A =0 by Lemma 5.1. The
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forth relation follows from the first one for h =0 and Lemma 5.1. The first relation for
h =1 1s the immediate consequence of the forth one.

Suppose m =2 and h=2. We shall prove the first relation for A =2 by the in-
duction on A. By (5.13) if m =2 and (2), of Lemma 5.4 if m =3, we have

mist Bt £ 3 2™ Bt 4 2m 2 BP = 0.

By the inductive assumption,

2mHA 4 BBt = £ 2m R
Therefore, we have

(1 £201)2m et 4. 2m2 B = 0,
and so

gt (12 20h)2m2tpp =0
by Lemma 5.1. Thus, we complete the proof of (1).

(ii), (ii1) In the case h <0, (ii) and (iii) are obtained from Lemmas 5.10, 5.11

and 5.1. Consider the case 2<s=m —2 and h=0. We shall prove (ii), (iii) for h =

0 by the induction on h. Let h=0 and put ks=1 in the relation (6), of Lemma 5.7.
Then, we have

(5. 14) 2m-s-leteeli) aﬂ(s_l)kx_ﬁz - QmosLegiiy) afB(s— 1)1:_‘,.,‘*1 —gmose2leElk) g (g 1)"-‘»' =0.

By Lemma 5.3, 2™ 2aB(1)%*2=0 if h =h(k,, k1, 1) =0 and k, 1s odd. Thus, (ii) for A
=0 and odd k, i1s obtained from (5.14) with s =2 and Lemma 5.1. (i1) for A =0 and
even k, follows from 2 x(5.14) with s=2 and Lemma 5.1, since

2m20B(1)k*2 = 2maB(1)5*' if h=h (kg Ky, 1) =0

by Lemma 5.10. Moreover, (iii) for h =0 and 3<s<m —2 follows from 2 x(5.14),
Lemmas 5.1 and 5.11. Let A =1 and put k¢=1 in the relation (6), of Lemma 5.7.
Then, we have

(5.15) 2m-s1rlthkgR (g — 1 ks-1*2 4 3 QM-S lElk) g (g — ] Yhsr*d 4 2MS 2o oEko) g R (g ] Yker = ()

(ii) for A =1 and (iii) for A 21 and 3<s=m —2 follow from (5.15) and Lemma 5.1
by the induction on h. Consider the case s=m —1 and h=0. By Lemma 5.8 and (3.
13), we have

(5.16) 2l af(m —2)kn-'? 4 3 2k g (m — 2)enrt 4 263 0B (1 — 2)kns = 0,

(i11) for h=0 and s=m —1 can be proved inductively by making use of (5.16), Lemmas
5.1, 5.3,5.10 and 5.11 in the similar way to the proof of (ii1) for h 21 and 3<s<m
—2. q.e.d.
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§6. Basic relations concerned with an additive base of
KO(S***/Q.) (r = 2™) for odd n

In this section, we prove some basic relations concerned with an additive base of
KO(S*+2/Q,) (r =2™") for odd n by making use of the relations given in §5.
Let s, k and d be the integers which satisfy

(6.1) 0<ssm—2, 2%k —1)sn—d <2%, k=22 and d 20.
Then we have the following lemmas.

LEMMA 6.2. Suppose 1 s <=m —2, k=2k'22 and d is even under the assump-
tion (6.1). Then

2RIBEB () = 2 2m BB (s —t).
Proor. Let u=s—t(1<it<s). Then, by (3.13), we have
2m BBt 1P =B = (2] K jems gt
The i—th term except for 1 =1, 2 is equal to
(=1) (2 F)2me g ip )
by Lemma 5.2. The i—th term form i =1, 2 is equal to
(7 K)2msrspepup B+ 1) —28P " (by (3.13)

= (¥ F) emernptpp(u + 12

+ (R T e g g a1y e

_ (2';1{) om-S-242i 04 B (1, )27 By 4 1)
+(_1)2'—'k-1(2‘;k) Om-S-4+2042% Ga B (1,)2' ko1 -i (by Lemma 5.1)

_ 2¢1 Mm-S-6+2i+2% Od 2-4
=+{";")2 BIB(u)* Bu+1)
. i-1 2#11'[ M-S-4+2t* % Od
+(~1) ;)2 BA¢B(u) (by Lemmas 5.2 and 5.1).
By Lemma 5.1
0 if i=1 or 2 and k':even =2,
(21;15)2m_s-e+2nzrkﬂ.11/9(u)2-iﬂ(u+1) — 2""3*“‘*2"‘/9'11/9(11)/9(114-1) if i=1 and k' :odd =1,
Qmos+-3 2k RAR(y +1) if {=2 and k' :0dd 21.

On the other hand
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2mfund 32k 2 (2 + B(u))B(u +1) =0 (by Lemmas 5.4 and 5.7).
Therefore, we have
2m S 2R (B (u 4+ 1) % — B (1)) = 242k pep(y) (O<Su<s—1).
Summarizing these terms for 0 Su<s —1, we have the desired result, since 2™ 5-23¢2*
=0 by Lemma 5.1. g.e.d.
LEMMA 6.3, Suppose 1 <s <m —3, k=2k" and d is even under the assumption
(6.1). Then
2m7$‘2ﬂfﬂ(8)k — 2"."3*‘*"/9'11)8(3 + 1) _2m—s/|o2kﬂnliﬂ(s).

ProOOF. The result for £'=1 follows immediately from (3.13). Suppose k' =2.
Then, by (3.13), we have
(%) 2mS2RHB(s + 1) =B(s)Y) = f‘;l(h;)2""3‘2’2"5'1’5(3)""'-
By Lemmas 5.10, 5.11 and 5.2,
2mS B () = (— 1) 2m BB (s)

for 2=<i{<k’. The first term in the right hand side of () is equal to

k2mRER(s)F T = —3K'2m S EBIB(s)
by Lemmas 5.10 and 5.11. Therefore, the right right hand side of (x) is equal to
2B () —k2m BT B(s).
On the other hand
2meBIB(s + )Y =(=1)F2m o BB (s +1)

by Lemma 5.11. Hence, by Lemma 5.1, the desired relation for even k" holds, and also
the relation

(xx) 2rERRB(S) = —2m kBB (s + 1) +3 27 BEA ()
holds if £" is odd. Moreover, by (3.13) and Lemma 5.12
2mSTkBEB(s + 1) = 2MERBIB(S) + 2™ HRBEA(8)? = £ 27 HBA(s).
Thus, the desired result for odd k' follows from (x*). g.e.d.

LEMMA 6.4, Suppose s=m —221, k =2k" and d is even under the assumption (6.1).
Then
BEB(m —1)—226¢B(m —2) if k'=1,
BiB(m —2)F =
—2K2BB(m —1) —2%*B¢B(m —2) if k=22

Proofr. The result for £'=1 follows immediately from (3.13).
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Suppose k' '=2.  Then, in the same manner as the proof of Lemma 6.3, we have
BLB(m —1)* —B(m —2)%) = 2%2F¢F(m —2) — k'2*BE(m —2).
Since Pp m=8m)=8(m —1)*+228(m —1) =0 by (3.13) and Lemma 3.14, we have
BiB(m —1)¢ = (=1)<12%26¢B(m —1).
Therefore, we see that
(%) BEB(m —2)¢ = (=1 1 2%28¢B (m — 1) — 22208 (m —2) + K'2*BTH (M —2).

In the case k' is even, the last term in (*) vanishes by Lemma 5.1, and so the desired
relation holds. Suppose k' is odd. Then the last term of (x) is equal to

+2%B4B(m —2).
by Lemma 5.1. On the other hand
2K1BIB(m —1) = 2¥1BER (M —2)* + 2% BB (M —2) = £2%BIL(m —2)

by (3.13) and Lemma 5.12. Thus, the desired relation for odd k' follows from (*).
g.e.d.

LEMMA 6.5. Suppose s =0, k=2k" and d is even under the assumption (6.1).
Then, we have

BiB(1)—227" =0 if m=2 and k' =1,
2mAkgIB (1) 4 2™ %kREN =0 if m =2 and k' = 2,
2m-dokﬁ.ltﬂ(1) _2m1+2kﬂ,11»1 — 0 Zf m g 3

ProoF. By making use of (3.13) and Lemma 5.1, we have

~) 2maptpy =t (1) amuppe

i
Thus, (*) implies the desired results for m =2 and K =1. Consider the case k'=2.
Then the first term in the right hand side of (%) is equal to

_ k' 2mvu2kﬂ‘1’”

by Lemmas 5.12 and 5.1-2, and the i—th term in (*) is equal to

(D (K )amempen =ik

by Lemma 5.2. Therefore, we have
2RBIB(L)F = 2nGE k2RI ERET = (— 12 HRE,
since 2™ 22841 — () by Lemma 5.1. On the other hand, we have

(—1F2%2888(1)  if m =2,
2mrpEp (1) = ‘
(= LF2mekgg(1)  if m 23,
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by Lemmas 3.14, 5.10 and 5.2. Hence, we have the desired results. g.e.d.

LEMMA 6.6.  Suppose 0 = S<m—3, k=2k" and d is even under the assumption
(6.1). Then
Pa(—1)yomskpdg(s+1-1) = 0.

PrOOF. The desired relation follows immediately from Lemmas 6.2, 6.3 and 6.5.
q.e.d.

LEMMA 6.7. Suppose s =m—2= 0, k= 2K' and d is even under the assumption
(6.1). Then
Fo (=122 2ptp(m—-1-t)= 0 if k' =1,
Lo 2P pis(m—1-1) = 0 ifk =z 2.
PROOF. Lemmas 6.2, 6.4 and 6.5 imply the desired relation. q.e.d.

LEMMA 6.8. Suppose 1 = S < m—2, k= 2k'+1 and d is even under the assumption
(6.1). Then

2'_3_2,8?(/9(3"’ 1 _t)""_'k — B(s— t)rk)

is equal to
grosSikgap(l) — 3 2moterk g ifk=3 s=t=1,
—QmoSIRREp(]) 2T R g ifk=5, s=t=1,

_2m—s—3»2!k181dﬂ(s) _7 Zm—s—b!"‘kﬂcllﬂ(s_l) l'f k: 3, s= 2’ t = 1Y

2m—87302‘kﬂldﬁ(s) + 2’"'3"42'“"/9:’/9(8—1) Zf kg 5, S = 2, t: ].1
amos Rk gt B(s—1t) ifkz3 2st<s-1,
izm-s-mz'lzﬂfzﬂ(l) + 2m-34<2"'kﬂnliol lf s = i = 2’

where t is an integer with 1 < 1< s.

ProorF. Put u = s—1%. By (3.13), we have

2m gt g 1 = Ty (B 2m ot g pupt e gl 1
The term for { = 3 vanishes and the term for 7 = 2 is equal to

HE2ME BB 2B (ut 1)
by Lemma 5.1. Also, by Lemmas 5.4 and 5.7,
2MEBY AU T B(uA 1T 4 2M BB (PR T B(ut 1T = 0.
Therefore, we have
2r gt pur 1= B (2 ) 2o gt plupt,

and so

(%) 2“’5‘2ﬂf(ﬁ(u+ 1 )217-1( _ ﬁ(u)z'k) — %LI'(Z;“) 2m—872‘2tﬂ:1'3(u)2‘k—t4
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The i-th term in (#) for £% 1, 2, 4 is equal to
(_1)4—1 ( 2t'71)2m—s—442”‘kﬂdﬂ(u)
l 1

by Lemma 5.2. The i-th term in (%) for i=1 ({=1), {=2 (}=2) and i =4 (£=3) is
equal to

(re) (2] )27 B () Blut1) — 4B(w)*
<[] 2mr psp e B 1yt TR (2K 2 g Bl )
(by (3.13)).
In the case ¢t =1, (&, k) = (1, 3), (**) is equal to
(2‘1;1)2u—s-2*2t‘8fﬁ(u)4-tﬂ(u+l) _(2:1) 2u~so21ﬂ;iﬂ(u)s—t_

In the case 1 =1, t=1, k=25 o0or i=1, 2, t =22, k= 3, the j—th term in (xx) for 2
<j=2"'k— 3 vanishes by Lemma 5.1, and so (%) is equal to

(%)) 2m e rmptp@ - plu 172 = 2 k- 2)(2 J2m e gt pwy Bl 1)
+ (—1)p % (2;1)2»|-sfhmoz’klg;tﬂ(u)z"‘l“z_[ '

In the case i =4, t =3, k=3, the j—th term in (%) for 1 < j < 2"k — 3 vanishes
by Lemma 5.1, and so (**) is equal to

(21 )2m s gt plut 17 %2 4 (-1 (257 ome e grp et
Suppose ¢t =1, 2, 4 and 1 £t <s. Then we have

(27) 2o m gt ) plur L=

| (—1)2"""*(2;,“)2"*“*‘*2'*;9:‘,9(1) if wu=0 (by Lemmas 5.4, 5.2),

(—1)2""‘""(2;.")2"-8-““"*5;’,9<u+1) if =1 (by Lemmas 5.7, 5.2).
Suppose ¢ =1 and (¢, k) =(1, 3). Then

3 gmos-42ttk gaa if u=0 (by Lemmas 5.12 and 5.2),
-1
(Zi )2""8*21/9.',/9@)5_:: ‘

In the case i =1, 2, 4, (¢, k) ¥ (1, 3) and u =0,
(_1)2"%(2‘1:")2m—s-u2¢.2:kﬂfﬂ(u)mﬂka-c: (_1)1-1<2‘L_")Zufsfuz'*'kﬂ;tﬂ(u) (by Lemma 5.2).
In the case i =1, 2, (¢, k) (1, 3) and u =0,

(21:-1 k— 2)(2:") 2m—s¢2tﬂ?’8(u)s—iﬂ(u+l)2"' k-3

+ 2"k — 2)(2;.“)2""“*‘;9:'/9(%1)2""‘-3 (by Lemmas 5.1, 5.4, 5.7),

+ (2% — 2)(2;.")2"-8-3*‘*"",9:',3(u+1) (by Lemma 5.2),

7 2ms 42k pagy) if w=1 (by Lemmas 5.12, 5.2 and 5.1).
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& +ms22kgepey if i =1, t=1, k=5 (by Lemma 5.1),

0 otherwise  (by Lemma 5.1).
Therefore, we have

211-.9-3*2):‘9:1/9(1) _ 3 2»1—3—4‘2'}:/9:101 (’U, — 0)
(**):{ if i=1,( k)=(@1, 3),
—RIIRBI(s) — T 2N TNTRAIA(s—1) (uz 1)

_2m—s—3*2kﬂfﬂ(l) + 2m—s4.2’kﬂ;n1 (u — 0)
(**):! 1fl:1,t=landkz5,

2m—s—842kﬂ?ﬂ(s) + 2m—s—6~2’kﬂldﬂ(s__1) (u > 1)

(2;71>{ _2m/8»4¢to2'kﬂ;iﬂ(l) + (_l)tfl 2mfsfd<2‘*'kﬂ4liol } (u — 0)

(=D (2 ) ame e g p(u ) + 27 T BIBW)] (w1
ifi=1,2, t=22 and k=3, and

(o) = (— 1) (2 oo gt gur 1) + 270 BB (w2 0)

if i=4, t=23 and k=3.
Hence, we have the desired results by summarizing the {—th terms with 1 <7 < 2" in
(*). g.e.d.

LEMMA 6.9. Suppose 1 < s <m—3, k=2k'+1 and d is even under the assumption
6.1). Then

27O BIB(s) = —2m KB (s 1) + 27 BIA(s).
ProorF. By (3.13), we have
(+) 2m et BEp(s) = Do K ) (—1)2m st prp(s) Bls+ 1)
In the case k'=1, the right hand side of (x) is equal to
—2m S BER(s+1) + 2m T2 BEA(s)

by Lemma 5.7 and (3.13), and so the desired result is obtained
Suppose k' =2 2. Then the i—th term with 2 <i < k" —1 in (%) vanishes by
Lemma 5.1, and so the right hand side of (%) is equal to

2V BB B A — K 270 BEA(S) B(s )N 4 (m DN 27 B (s) <
On the other hand
2VUBIR(S) B(s L) = (~1)F 2T AR B(s 1),
20 BIB(S) B(sH1)* T = 22" AR (s )
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by Lemmas 5.7, 5.11 and 5.1, and also
2u—8»2ﬁ2k' ﬂ;ﬂﬂ(s)k'ﬂ — (_l)k 2m—s—¢~2kﬂnltﬁ(8)

by Lemmas 5.10 and 5.11. Therefore, we obtain the desired result from (*).
g.e.d.

LEMMA 6.10. Suppose s=m—2 =1, k=2k+1 and d is even under the assumption
(6.1). Then

BiB(m—2)* =22 B B(m—-1) + 2***B{B(M~2).

PROOF. In the case k'=1, we have

BiB(m—2)*=BIR(Mm—2)B(m~1) — 2*B{B(mMm~2)* (by (3.13))
= —2B8YB(m-1) — 3 2*BF7B(Mm—2) (by Lemmas 3.14 and 5.12)
=268%8(m—1) + 2*8¢B(m—2) (by Lemmas 5.1 and 5.12).
Thus, the desired result for k' =1 is obtained.
Suppose k'=2. Then we have
BYB(Mm—2)* = BIB(m—2)B(m—1)¥ — k' 2°BTB(m—2)"B(m—1)*"" + (—~1)* 2% B B(m—2)**"

in the similar way to the proof of Lemma 6.9. Since B(m—1)>= —2*8(m—1) and
B(m—2)B(m~1)= —28(m—1) by Lemma 3.14, we have

BIB(M—2)B(m—1)* = (=1)* 2¥28{B(m—1),
2208B(m—2)28(m—1)*"' = +2¥'8¢8(m—1) (by Lemma 5.1).
Therefore we obtain the desired result for k" =2 2. qg.e.d.

LEMMA 6.11. Suppose 1 < s<m—3, k=2k'+ 1 and d is even under the assumption
(6.1). Then we have

=3 QR 4 on e BTR(1) + 27 BIA(2) =0 if s=1, k=3,
roeenhgil 4 gno e TRGIR(1) + 5 2 UHBIB(2) + 27T BIRB) =0 if =2, k=3,
QrETR R 4 (1 £ 2% ) 2m N TRBTR(L)
+ LiEon T pIB(s— 1) — 7 27T RIB(s 1)
+5 2" THHBIB(s) + 2" BYB(s+1) =0 if s=23, k=3,
21;737«2"'1:/9:1»1 + (1 + 2.%1 )2,"4,-,4.25;‘ ﬂ?ﬂ(l)
+ D 2ns A gig(s—1) =0 if s=1, k=5.

PROOF. The desired results follow immediately from Lemmas 6.8, 6.9 and 5.1.
qg.e.d.

LEMMA 6.12. Suppose S=m—2 =1, k=2k"+1 and d is even under the assumption
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(6.1). Then, we have
-3 2Pkt 4 2R BIR(1) — 2" BYB(2) =0 if m=3, k=3,
TR/ 4 2VEIRILB(1) + 5 2™PBIB(2) — 2% RYAEB) =0 if m=4, k=3,
28R 4 (1 £ 27727 BYR(1) + A 2B B(m—2— 1)
—7 29%2888(m—3) + 5 2%*28¢B(m—2) — 2% 2Q7B(m—1) =0 if m=5, k=3,
28R g 4 (1 £ 27) 272 B B(1)
+ IR (=128l g(m—-2—1t) =0 if m=3, k=5

PRrROOF. The desired results follow immediately from Lemmas 6.8 and 6.10.
g.e.d.

LEMMA 6.13. Suppose 1 = s<sm—2, k=2k'+1 and d is even under the assumption
(6.1). Then, 2™ °*8¢8(8)* is equal to

Om-sITkga g 1y _ 3 om-s4adtkgad il o | g _3

_2n—s—3'2kﬂ:1ﬂ(2) + 2Mfs442'kﬂ:1ﬂ(1) + 2m~s-4»2’kﬂ¢lid lf s = 2, k= 3’
—omSIIPIR(s) — 7 2™ IERBIR(s—1)

+ DR TR BER(s— 1) + (1 272N R BTA(1)
omeTTRRE if §23, k=3,

—omeIAkRER(1) 4 2m TGN if =1, K25,

QR PR (s) + SR om TR pIp(s— 1)

+ (120 )2m e TRRRR(L) 4 2M S FTERI if 822, k25,

PRrROOF. The desired results follow from Lemmas 6.5 and 5.1. q.e.d.

LEMMA 6.14. Suppose 2 < s < m—2 and d is even under the assumption (6.1). Then
272 B(s—1)B(s) = te(k)2" T BIA(s) — 27T HERBIB(s 1),
where e(k) =0 if k is even, =1 if Kk is odd.

ProoF. By Lemma 6.2, we have
2" BIA(s—1)B(s) = D, 2" BEB(s— 1) B(s—1)
if kis even. On the other hand,

0 if 2t <s,
(%) 2rEe BB (s— 1) B(s—1) =

—onsaBkpigs 1) f t=1,
for any k=2 by Lemma 5.1 and (3.13). Therefore, the desired result for even k
follows. Let k be odd. Then, by Lemmas 5.7 and 5.1, we have
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2B A(s—1)B(s) = £ 27 BLA(s).

Thus the desired result for odd k follows from Lemmas 6.13, 5.1 and (%) above.
q.e.d.

LEMMA 6.15. Suppose 2 < s<m—2 and d =2 is even under the assumption (6.1).
Then

omos Ik gat o) ITEZ (2+ B (1))
(—1)* 1 2me2 82 (1) IIi5 (24 B8(1)) B(s)* ' +
2" BY B(1) (2+ BO) ITE B(D)B(s) * B(s+1) if s =m—3,
(—1)¥1 272 g3 B(1) ITES (2+B(1) A(s)* if s=m-2.

PROOF. By Lemma 3.14, we have

2% R4 BV Py =0 for 0= < k-2,
and so
(%) 27 HEBIT B i (2+B(1)B(s) +
2 2m e g (1) i (2+B(1))B(s) ! B(1y) -+~ B(is) = 0.
In the case s =m—2, (%) is equal to the relation
2R B BN T (2+B(1)) B(8) = =27 ¥ 81 B(1) T (24 B(2)) B(s)!

for 0 <1< k—2. Thus, we have the desired relation for 8 = m—2. Consider the case
s =m—3. By Lemma 5.1, the terms for (i,,---,i;) € I vanish except for (8), (s+1)
and (s, s+1). The term for (s+1) is equal to

2r R BT B(1) RS (24 B(1) B(S) B(s+1)
=Z',?;éi2”"”“‘"ﬂ{“ﬁ(l)ﬂ(O)---ﬁqi\)---ﬂ(s—l)ﬂ(S)‘ﬂ(SH)
+2m TR EI B(1)B(0) - B(s—1)B(s)' B(s+1) (by Lemma 5.1),
where the notation @ means that B(7) is deleted. The term for (s, s+1) is equal to
2m R B(1) IS (24 B(8) B(s) B(s+1)
= fiéi2""“"‘"/5’1“/9(1)ﬂ(O)---ﬁi\)---/5’(8—1)/9(8)“'/9(3+1)
+ 2m BT B(1) B(0)- B(s—1)B(8)" B(s+1) (by Lemma 5.1).

On the other hand, by Lemma 5.7, we have
2"‘8""‘",6’{“ﬂ(l),8(0)-.-ﬂ/(\i)-nﬂ(s—l)/9(8)’(2+/9(S))ﬁ(s+1)=O if k—=l=z3orizl,
2me KB B(1)B(0) - B(s—1) B(8) 2+ B(8))B(s+1) =0 if k—1 =3.

Also, if k—1 =2, we have
2me kB B(1)B(0) -+ B(s—1)B(s) " B(s+1) = 0 (by Lemma 5.3),
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2me kB B IS B(E)B(S)X B(s+1) = 272 B B(s+1) = 0 (by Lemma 5.1),

since B(f) = BT + 22 Q(B,) by the definition of B(¢) in (3.13), where Q(8,) is a polynomial
in B, whose constant term is zero. Therefore, we have the following relations by (x)

Qre BT IB() I 2+ B(2)B(s)' = — 2™ 4* B B(1)ITH% (2+8(2)) B(s)
for 0= < k-3, and
2m B B(1) T (2+B(1)) B(8)*2
= =2 B(L) IR R+ B())B(s) £ 27281 8(1) 2+ BO) I3 B(1) B(8)*? B(s+1).
The desired relation for s < m—3 follows immediately from these relations. q.e.d.
LEMMA 6.16. Under the same assumption as in Lemma 6.15, we have
MR BN IIEG 2+ B(1)B(s)* = 2" BT ITT% (2+B(1) B(s)* £
2 B I B(B)(2+B(s—1)) B(s)*.
PROOF. Since B(1)= A%+ 2?6 by (3.13),
2R B IIES 2+ A(1)B(s)<™ = 2" * BT IIi% (24 B(1) B(s) +
2T I (2+B(1)B(s)*.
Also, 287172 (2+8(t))B(8)** Pns =0 by Lemma 3.14, and so
2" BT 2+ B(R))B(8)* ™ + 20, 2™ T BT IS (24 B(1)) B(8)< B(3y) - B(i;) = 0.

The terms in 23, vanish except for the term for (s) € Is by Lemma 5.1. The term
for (s) is equal to

2m BT IS (24 B(E)B(s)* = 277 BYTIIL A(1) (2+B(s—1)) B(s)*

by making use of Lemmas 5.7 and 5.1. Therefore, we have the desired result.
q.e.d.

LEMMA 6.17. Under the same assumption as in Lemma 6.15, we have
2m e BHITER (L) (2 B(s—1)B(s) = 2767 B(s),
2" BE B(1) 2+ BONTIET B(H)B(S)F?B(s+1) = £2m 12 I B(s) + 2" 2 Big(s).
PROOF. Since B(%)*=pB(k+1)—2%8(1) by (3.13), the left hand side of the first

relation 1s equal to
£2" B B(s) T £ 2m B B(s— 1) B(s)"
by Lemma 5.1. On the other hand
2mo g gy = o gt m (P11 ) o ps— 1= 0
by (3.13) and Lemma 5.1. Also, we have
2MU BT B(s—1)B(s) = 227 BT B(s) = 27T BT B(s)
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by Lemmas 5.7, 5.1 and 5.2. Thus we obtain the first relation. The left hand side
of the second relation is equal to

(x) 2™ 1B g IIEA B(E)B(s)* + 22 BYA(1)ITIH B(1) A (s)"
+ 27 B B I () B(s) T £ 272 g2 R(1) TTEA B(1) B(8) ™!

by (3.13) and Lemma 5.1. The first term of (*) is equal to 2™ 8¢ 8(s)*" by (3.13)
and Lemma 5.1, and this is equal to zero, as is shown in the proof of the first re-
lation. The second term of (x) is equal to 2™ *?g¢A(s)*" by (3.13) and Lemma 5.1,
and is equal to zero by Lemma 5.3. The third term of (x) is equal to 2™ %' g¥'8(s)*
by (3.13) and Lemma 5.1, and

ZI—SvIﬂt‘i—l ﬂ(s)k —_ izﬂ—s—l+2kﬂld-lﬂ(s)

by Lemma 5.7. The last term of (*) is equal to 2™ *g¢8(s)* by (3.13) and Lemma
5.1, and

2" BUB(s) = 27 BI(s)
by Lemma 5.2. Therefore we have the second relation. q.e.d.
By Lemmas 6.15-17, we see easily the following
LEMMA 6.18. Under the same assumption as in Lemma 6.15, we have
amee gt B T (24 A(1))
(=D)Fr2m2 g i 2+ A(D)) B(s) ! 227 plp(s)  if s=m—3,

(=1 2m 2RIt 5 (24 B(D) Bls)Ft £ 272 gt p(s)  if s=m—2.

LEMMA 6.19. Under the same assumption as in Lemma 6.15, we have
27 B B(s—1) B(8) T = (—1)F 2™ T gl p(s) — 2™ BT A(s—1) A(s)*.

PrOOF. By Lemma 3.14, A7Y8(s)**Pas =0, and so

27 B(s—1) BS) T+ 2™ BT B(s) T +

3,27 RN+ B(s=1) B(8) T Bir )+ BLis) = 0.
The second term is equal to

32" B¢p(s)"* (by Lemma 5.11)
=(—1)*"3 2" “* gig(s) (by Lemma 5.2).

The terms for (i,, ---, i;) € Is vanish except for (s) by Lemma 5.1 and (3.13). The
term for (8) is equal to

2rBN2+B(s— 1)) A()* = (=1)"27 7 Big(s)+27 " pTA(s—1) B(s)" (by Lemma 5.11).

These imply the desired result. g.e.d.
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LEMMA 6.20. Under the same assumption as in Lemma 6.15, we have
2% gi(s)*
= 2" I (24 (1) B(s) ™ + (= 1)* 274 BiB(s)
— 2™ eRR(s—1) B(s)  + a6 2™ BB (w) IIu (2+ B(1)) B(s) .
PrROOF. By Lemma 3.14(),
B(s) = 4 %2+ B(1)) + 225050 Bw) ITEL1 (24 B(1)).
Hence, we have
2n R prB(s) = 2m g I (24 B(1) B(s)™ ™ + 277 B A(s—1) B(8)*
+ 200 2m AR I (2+ 8(1) B(s)*
Therefore, the desired result follows from Lemma 6.19. g.e.d.
LEMMA 6.21. Under the same assumption as in Lemma 6.15, we have
2me g I (2+ 8(1) p(s)* ™ = 0.
PROOF. By Lemma 3.14, 2?87 II73(2+B8(1) B(8)* *Pns =0, and so
2m e pt e (24 B(1) B(8)< + 30, 2™ gy TS (2+ B(1)) B(8)< 7 BLin) -+ BLis) = 0.

The terms for (i,, .-+, i;) € Is vanish except for (8) by Lemma 5.1. The term for (s)
1s equal to

2m g I (2+ B(1))B(s)* =0 (by Lemma 5.7).
Thus, we have the desired result. g.e.d.
LEMMA 6.22. Under the same assumption as in Lemma 6.15, we have
2n g I (2+ 8(1) B(s)* ! = 0.
PROOF. By Lemma 3.14, 28717 (24+8(2))B8(s)* *Pns =0, and so
2ne B IR 2+ B(D)) B(8) ™ + X5, 277 pY I (2+ B(2) B(8) ™ Bir) - B(is) = 0.
The terms for (i,, ---, ;) € Is vanish except for (s). The term for (s) is equal to
2n AT 2+ B(1)) B(8)* = 0 (by Lemma 5.7).

This implies the desired result. . q.e.d.
LEMMA 6.23. Under the same assumption as in Lemma 6.15, we have

2P IR B TISd 2+ B(1)) B(8)*
(—1)* 2" git g T84 (24 B(1) = 27 B () if s 'S m-3,

(=L)F2m =2k gt p(1) I3 (2+ B(1)) if §=m-2.
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PROOF. By Lemma 3.14, 2% g{*f(s)'Pn, =0 for 0 <[ < k-2, and so
2mfsok—l~2ﬂ“"zﬂ(l)Hls;é(Z‘.‘ﬂ(t))ﬂ(s)l
+ Zl-‘2m_s~k,(,2_1ﬂipzﬂ(1)Hf;$(2+ﬂ(t))ﬂ(8) lﬂ(h)ﬂ(Lf) = O

The terms for (i,, ---, i;) € Is vanish except for (8), (s+1) and (s, $+1) by Lemma
5.1. Here we notice that the terms for (s+1) and (s, s+1) appear in 33, only for
the case s<m—3. In the case 2 <8 <m—3, the sum of the terms for (s+1) and (s,
8+1) in 33, is equal to

(%) 2" 2 a (D TIE B(1) B(8) (2% 8(s)) Bs+1)

by Lemma 5.1. By Lemma 5.7, (¥*)=01if 0 <! < k-3. Suppose [ = k-2. Then (x)
is equal to

+27 BN R(8)  B(s+]1) + 2728 B(s) B(s+1)
— izm-Solﬂ:i—lﬂ(s)k i 2m—s-lﬂ;i»lﬂ(s)kvl

by (3.13) and Lemma 5.1. The term 2™ °7'g{"'g#(s)*"' vanishes as is shown in the first
half of the proof of LLemma 6.17. Hence, we have

0 if 0<1<k-3,
(%)=
4__2""3'“2"3:‘_1/3(3) if 1= k—zv

and so
2m SR pe 2 g(1) T3 (2+ 8(1)) B(s)!
—2meetk i gt g (1) T80 (24 B(1)) B( )
= f 0<sl<k-2(s=m—-2)or 01 <k-3 (ssm-3),
—2m gt 2R I (24 (1) Bs) £ 2™ gt g(s) if I = k-2 (s=m-3).
This implies the desired results. q.e.d.

LEMMA 6.24. Under the same assumption as in Lemma 6.15, we have

2m—s—lﬂ]¢vl f;—ll(2+ﬂ(t))ﬂ(s)k—l
(_l)k‘lzn»sﬁq»kﬂ;!—zﬂ(l) ?;(1)(2+,8(t))i 2m—s-l¢2klg;1-l/9(s) lf 2 g s < m—3,

(—1yk2m s et g(1) I (2+ A(1)) if s=m—2.
Proor. By (3.13), we have
2m B I (24 B(1)) B(8)E!
= 2"t B () I (24 8(1)) B(s) " — 2B T (2+ B(8)) B(s)*!
— 2" BT 2+ B(1) B(s)*
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Therefore, the desired result follows from Lemmas 6.21-23. g.e.d.

LEMMA 6.25. Suppose 3ss=m—2, 1susx8—2 and d=2 is even under the
assumption (6.1). Then

27 Bt R(U) T oa @+ B(E) B(8) ™ = —2™ 28V B(w) [T 1ot (24 B(1)) B(s)*.
PROOF. By Lemma 3.14, B{8(u) I3, (2+8(8))B(8) ™ Pps =0,

and so
2" BB T a1 (24 B(1)) B(8)*
+ 2152’. o jﬂxﬂ(U)Hz u+l (2+,8(t));8 S)k llg(ll ,B(lj) =0

The terms for (i,, -+, i;) € I, vanish except for (s), (s+1) and (8, S+1) by Lemma
5.1. The term for (s+1) is equal to

2" BB (W) I ouen (24 B(1)) B(8)* ' B(s+1)
= 2™ 2Rt B(1) B(s)* ' B(s+1) (by Lemma 5.1)
= 2™ 293 131 B(1) B(s)<" = 0 (by (3.13) and Lemma 5.1).
The term for (s, S+1) is equal to
2" B AW I a2+ (1) B(8) B(s+1)
= 2" BT A1) B(s) B(s+1) (by Lemma 5.1)
= 2" SRR IIS18(1) B(s)*? =0 (by (3.13) and Lemma 5.1).
Therefore, we have the desired result. q.e.d.
LEMMA 6.26. Under the same assumption as in Lemma 6.25, we have
2" BB (W T (24 B(1)) B(9)"
= S (— 1T G (W) TS (24 B(E)) B(s— 1)
PROOF.  Since
2" IR A (W) I o (24 B() B(s)* = 27 A1 (W) TT i r (24 B(2)) B(8)*
+ 2" B(w) T e (24 B(1) B(s—1) B(s)*,

the desired result for even K follows from Lemmas 6.2 and 6.14, and also the one for
odd k follows from Lemmas 6.13 and 6.14 by making use of L.emma 5.1. q.e.d.

LEMMA 6.27. Suppose 2 =<8 <=m—2 and d =2 is even under the assumption (6.1).
Then

2m B S B W T ., (24 B(1)) B(s)*
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= DA D (=) 2 e p (W) T s (24 B(2)) B(s— 1)
(= 1)2m T g () TS0 (24 B(1)) £ 2781 A(s)  if s = m—3,
= A D (1P 2R () TS (24 B() B(s— 1)
+ (=1)F12m R (1) T e (24 B(1)) if s=m-2.

PROOF. The lemma is the immediate consequence of Lemmas 6.24-26.
q.e.d.

LEMMA 6.28. Under the same assumption as in Lemma 6.25, we have
T T (=1 2m el () B(s— D TTEok (24 B(1))
— 2m—s—2¢2’k fﬂ(s—l) _ 2m—4«23k ;’ﬁ(l)

PROOF. Since 2™ *#*3%(24 8(s~2))8(s—1)=0 by Lemma 5.9, the term for I =
1 in 317, is equal to

2m—s—2<2’kﬂld13(s_l)-
Consider the terms for 3 < /<8 in X7.,. Then
2m—s—3.2"'k ldlg(s_ l)ﬂ(u) — O

for any © with s—/ €4 <£8-2 by Lemma 5.1. Hence, the term for [(3£]<8) is
equal to

Saa2m IR (W) B(s— DT (2+8(1)).
Therefore, the summation 315, of the left hand side of the desired relation is equal to
(%) Xia i eR(w Als— DI (2+ 8(1)).
Also, by Lemma 5.1
2m B () B(s— 1) Bs— i) =0
for any i, u with 2<i<[-1, 1 <u<s—/. Hence
TA2m el (w) B(s— D I an (24 8(1))
= Ssdom gt g () Bs— 1) TS (24 B(1))
for 2< 1 <8-1. Therefore, (*) is equal to
T2 TR (s— 1) +
Tetam el g(u) B(s— 1) (2+ Bs— INTIILL (2+ BN}
On the other hand, by Lemma 5.1
groe e g A(s— 1+1) = 0,
and so (x) 1s equal to

_2-;';; *2m-s»l-3¢2“‘kﬂfﬂ(s_ l) + Z;s‘—:ll—lszsd-dﬂ“'k ;iﬂ(u)ﬂ(s_ Z)Hf:t:l](z'*'ﬂ(t))}
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by making use of (3.13). While, by Lemma 5.9
QRS (24 B(s—1—1)B(s-1)=0 (2=1l=ss-2),
Rt RTRgI (W) (24 B(s—1-1)B(s—-1)=0 (2= =s-3).
These imply that
(%) = 2" “*glp(1).

Therefore, we have the desired result. q.e.d.

§7. The group I’(\O(S"“S/Qr)(r=2”‘“) for odd 7

In this section, we shall determine the additive structure of IF(\O(S‘"“/Q,) (r =
2™ ") with m=2 for odd n by giving an additive base. In case m=1, IZ\O(S""S/Q,)
= E@(L"“M)) and its additive structure is given in [12, Th. B]. The result in case
m=21s given in [7, Th.1.3].

Let m=2. Then, we have the relations in 125(5‘"’3/Q,) given by the following
propositions.

PROPOSITION 7.1. Suppose 0 <s=m—2 if k is even, 1 < s8=m—2 if K is odd,
and d is even under the assumption (6.1). Then, we have

(=1 2m R gle(s+1— ) + 2" KRR (s+1, di k) =0,
where Ro(s+1. d: k) is the element
(1 +(=1))2m°2gig(s+1) if k=2k,
(1 + (=¥ )RR +1) + (1 + (1)) 2% "*g8(s)
+ (1 + (=171 +(=1)2"") 2% *Big(s—1)
(1 (1)) 4 (1) 2o e kg1

— (1 = (=17 )2t g if k=2k+1.
PROOF. Combining Lemmas 6.6, 6.7, 6.11 and 6.12, the desired result follows
immediately by making use of Lemma 5.1. g.e.d.

PROPOSITION 7.2. Suppose 2 <8 <m—2 and d =2 is even under the assumption
(6.1). Then

MR (TS (24 B(2) + 27 R (s, di k) =0,
where R(s, d; k)= (—1)35,2 @ " Vegdg(o_ ) 4
(—L)erTeR kg iR(s) + 27 BT A(S)
(1= (S (R 21 BB 1) — 277 BT,
Here, k' =[k/2] and e(k)=0 if k is even,=1 if k is odd.

PROOF. The desired result follows from Lemmas 6.2, 6.13, 6.14, 6.18, 6.20,
6.27 and 6.28. g.e.d.
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PROPOSITION 7.3. Suppose 1 <8< m—2 and d is an odd integer with 0 < d < 2°
under the assumption (6.1). Then, the following relation holds in KO(S*'*/Q,) for any
non negative integer N:

MBI AN TIIL (24 B(1) + o (—1)2 2™ gip(s— 1) = 0.
PrOOF. By [8, Lemma 7.3(ii)] and [9, Th.1.7], the relation
(#) 2" BTG (24 A(1) + Lo (1) 2™ *gig(s— ) = 0

holds in K(S‘"'a/Q,). Consider an element P(28,, 82) of R(Q,) which is a polynomial
in 28, and B2. Then P(28,, A?) is an element of c(RO(Q,))C R(Q,) by Propositions
2.6 and 2.7. Since g € R(Q,) is self-conjugate,

cr(P(24, 1)) =1+ 1)(P(28, p1)=2P(28, B),

where 7: R(Q,)—— RO(Q,) is the real restriction and t: R(Q,)———R(Q,) is the
conjugation. Therefore, we find that the image of (¥) by 7 is the desired relation by
making use of the commutative diagram (3.2) and the definitions of g, B(%) € K™%0,
in {9, (1.1) and (5.1)] and of 28,, B(t) € I’f\é(S‘"'s/Q,) in (3.3) and (3.13), since we
identify RO(Q,) with ¢(RO(Q,)) under the monomorphic complexification ¢ (cf. §2).
q.e.d.

PROPOSITION 7.4. (i) 2™'q,=0 (m = 2).

(ii) 0 if m=2,
21&‘10l —

+2™ e if m =z 3.
PRrROOF. (1) By Propositions 2.5 and 2.7,
2"ay = " in RO(Q,)
and a,87" € Ker £ by Lemma 3.10. Therefore,
2™, =0 in KO(S*™%0,)

by (3.9) and the definitions of a,, 28, and g? € I?O(S‘"'a/Qr) in (3.3) (see also Propo-
sitions 2.5 and 2.7).
(i1) By Proposition 2.5,

@B = BB — B) — 2afi in R(Q,).
On the other hand, by [9, Lemma 5.3]

frr — B = L2 (2+8) B EL(2+8(2) in R(Q,).
Thus
(*) wfr = (B + (—1)"2" ) DR I RE. (2+8(1)) in R(Q,).

Since the both sides of (%) are the polynomials in @, and B2, the same relation as (%)
holds in RO(Q,) by Proposition 2.7. Also the same relation as (%) holds in KO(S*™YQ,)
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by the definitions of a,, A2 and B(t) € I?OJ(S""‘(’/Q,) in (3.3) and (3.13). Therefore,

we have
2", = 2" LRIAW IR, (24 8(1)) (by (3.9)).
From this relation, 2*'q, =0 if m=2. Let m=3. Then, by Lemma 5.1,
2" 8(m—i)=0 (2= i =m-2)
Hence, we have
2SRRI 2 (24 () =27 g(1) = x2™ 6 (by Lemmas 6.5 and 5.1).
q.e.d.
Now, we are ready to prove Theorem 1.6 for odd n.

PROOF OF THEOREM 1.6 FOR oDD 7n. The group f@@“ﬁQJ(T=2”U for
odd n is additively generated by a,, @, and 8, (1 =i < N’) by Propositions 2.5, 2.7,
(3.9), (3.13) and the fact that 2Pms ;= 81 Pn,=0 in Lemma 3.14(i1). On the other hand,
2V XM X I u(l) = 2mm = #I?()(S‘"*a/Q,) by Propositions 4.13(i1), 7.1-4, Lemma
5.1 and the definitions of @, u(Z) and 8, (1 < i < N’) in (1.5). Therefore, we complete
the proof of Theorem 1.6 for odd n. q.e.d.

COROLLARY 7.5 (cf. [13, Cor.1.7]). The order of &, in KO(S*™¥Q,) is equal to

2™ f n is an odd integer.

§8. Some relations in KO(S***/Q,)(r=2™") for even 7

In this section, we give some relations 1in I’(\(j(.S""'S/Q,)(T:2""l =2) for even m,
which play an important part in the next section.
For the elements 28(0), 8(s) € KO(S*%/Q,)(1 < s<m) in (3.13), we have the

following lemmas.

LEMMA 8.1. For any integers k,, ---, ks, 20 and kg >0 (0= s < m), we have
the following relations:

2" M B(H) =0 if s=0, 1 and m— s+ h>0,

(s
arosthEka s B(E) =0 if 2<s< mand m— s+ h >0,

(2)s 2% M[,8(1)"=0 if m— s+ h<O,

where h=h (kg -, ks)=1+[(n— 3502°k:)/2°"] and e(ko)=0 if ko is even, =1 if k,
is odd.

PROOF. We prove the lemma by the induction on s and h. Let s=0, and sup-
pose that h(ky)< 0. Then ko=n+1 and 287" =0=287"" by (3.9) and Lemma 3.10.
Thus (1), and (2), for A(k,) < 0 hold. Suppose that h = h(k,) =0, and assume that (1),
and (2), hold for any k, with A(ky) < h. Since h = h(ky)=1+2(n— k) >0 and n is
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even,
Mg P =0

by Lemma 3.14, and so

(%) 2™ R(0)" + 272 g(0) " + 35, 2" M R(0) 7 B(L) B(i, )+ BLis) = O,

where Iy= {(i,,,{;):1<j<sm—1, 0= i, < - <i;Sm—2}{.
By making use of (3.13) and the inductive hypothesis, the second term and the term
for any (i,,---,i;) € I, in (*) vanish. Thus, (1), and (2), hold.

Let 8 =1, and suppose that h = h(k, k,) <0. By (3.13),
2m 7 B(0) (1) = :‘;o(’?)2"-“"*“,9(0)““""‘ if m—1+4+h>0,
2e(ks) g(0)YFr(1 Y% — 220( }Ii?))25(k,)*21ﬂ(0)x0¢2k.-i' |
Ifm-—1+h>0,
rRROY Tt =0 (0= i S k)
by (1), and (2),. Thus (1), for A< 0 holds. If m—1+h=<0,
295 R0) =0 (0= < k)

by (1), and (2),. Hence (2), for A< 0 holds. Suppose h = h(k,, k,) =20, and assume
that (1), and (2), hold for any k,, k, with h(k,, k) <h. Since h=1+n— k, — 2k,
>0 and m 1s even,

2"(0)*p(1)" ' P, ,=0
by Lemma 3.14, and so
(#%) 2710 G(0Y8(1)F + 272 g(0)" g(1)"
+ 2, 2724 B(0) BOFB(1)B(, ) Bis) =0,

where I, = {(i,,, i) 1=j=m-2, 1=, << i;=m—2}.
By the inductive hypothesis and (3.13), the second term and the term for any (i,,---,
ij) € I, in (x*) vanish. Thus, (1), and (2), hold.
Let 2<s<m. Suppose h= h(ko, -+, ks)< 0, and assume that (1)s-, and (2)s-,
hold. Then, by (3.13),
k&'

2mfs«rne(k(,]aﬂ(s)k_v — :‘:o< L )Zm—s¢h4e(ko)»2iaﬂ(s_1)2kx—i‘
2a(s)' = Bl )21 ag(s 1),
where a =118t If m— s+ h>0,
2u~sm¢e(k.,mnaﬂ(s_l)zks-i ~0 (0 <i<k,)
by (1)s-; and (2)s-,, and so (1)s for A< 0 holds. If m—s+h <0,

25(’%)’2‘0’8(8_1)“‘"‘- =0 (01 <ks)
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by (1)s-; and (2)s-;, and so (2)s for A < 0 holds. Suppose h = h(ko, -, ks) 20, and
assume that (1); and (2)s hold for any ko, -, ks with A(ko, -, ks) <h. By Lemma
3.14,

2" 0B(8) " Ppy =0 (a=TI38(1)"),
and so
(k%) 2mTMER g gyt 2R R o5 —1) B(8)"
+ X, 27 24 p(s — 1) aB(9)”T B - BLEs) = 0
where I, = {(i,, -, is):1Sj<sm—1-s, s<i,< < i{;ESm—2}.

By the inductive hypothesis and (3.13), the second term and the term for any (i,,---,
i;) € I, in (x*x) vanish. Therefore, (1)s and (2)s for A =0 hold. q.e.d.

We can prove the following lemma in the similar way to the proof of lLemma
5.2 by making use of Lemma 8.1 and (3.13).

LEMMA 8.2. For any integers ko, -+, ks-1 =20 and ks >1 >0 (0s8<m), we
have

2m—s~€¢h' aﬂ(s)ks — (_l)l2ﬂ~34€»h'o2laﬂ(s)ks-l lf m— s+ h,’ >O
Also

(ko) c(ko).z k-1

aB(s)” aB(s)”’
Here, h' =[(n —T15.62°%:)/2°], a=T528(8)" and e =0 if s=0,=¢(k,) if 1<s<m.

if ks =2 and m— s+ h' =0:

The following lemma is obtained in the similar way to the proof of Lemma 5.3
by making use of Lemma 8.1 and (3.13).

LEMMA 8.3. Let h= h(ko, -, ks) be the one in Lemma 8.1 and a = I1;38(1)".
Then we have

2 e0) R =0 if s=1, m—2+42h=0,
(i)
C(’fol

£(0)°8(1)" =0 ifs=1, m—2+2h<0.

m-5+1+2he€(ko)

2 aB(s) =0 if 2sssm, m—s+1+2h=20,

(i1)
5("0)

aB(s)" if2<ss=m, m—s+1+2h<0.

LEMMA 8.4. Let m=3, 1 =1 and 1 2 h= h(ko, k) except for the case |l =1
and h is even. Then

(1)r *(244(0)2"*'8(0)
(2)n +(2+8(0)2" " 5(0)°" B(1)

knvl m-3+1 ko+l k-1

(1) = (2+8(0))2 if ke20 and k, =2,

"= (244(0)2

B0 B(1)
8(0)°"B(1)" if ko >0, k >0.

m-3+1

ProOOF. By Lemma 3.14,
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2l—lﬂ(0)koolﬂ(1)k|—2pm.l — 0’

and so
2" (24 8(0) (0) B + 20, 27 (24 8(0) B0 (L) 8L ) - BLiy) = 0.
The terms for (i,, ---, ij) € I, vanish except for (1) € I, by Lemma 8.1. This implies

(1)n. (2), follows from the relation
21-1ﬂ(0)ko-1ﬂ(1 )kl_le_l -0

in Lemma 3.14 by making use of Lemma 8.1 in the similar way to the proof of (1),.
g.e.d.

LEMMA 85. Let m=3, 121 and 1l Z2h=h(ke k). Then

i

Bh 2™R(0) BT £ 2™ R(0)°B(1) =0 if ko2 0 and k22,

-2+

B8(0)°B(1)" =0 if ky>0 and k >0,
"t8(0) p1)" if k=0 and ky = 2.

m-1+1 ko-

(4 2"7'g(0)
(5 2"B(0) ()" = +2

1B(1)k, ‘_*‘2’.

PROOF. If [=1=h and h is even, each term in (3),, (4), and (5), vanishes
by Lemma 8. 1. In other cases, (3), and (4), follow from 2x(1), and 2x(2), in Lemma
8.4 by (3.13) and Lemma 8.1. (5), is the immediate consequence of (3), and (4),.

g.e.d.

LEMMA 8.6. Let m=3 and h(ko, ki) =1. Then

-2+2n

(6)  —2"5(0) B + 2™ R0y B(1)" = 2" B(0)=0 if ko 20 and k, =2,
(1) 2" R(0)" TR + 27 R(0) p(1)" + 27T
Proor. Consider (1), for [/ =1 = h(ke. k) in Lemma 8.4. The term
2m-—3ﬂ(0)ko+2ﬂ(1)k,
vanishes by Lemma 8.3. By (3.13),
(*) 2m72ﬂ(0)ko+lﬂ(l)k‘ — :{:0( hl?] ) 2m—2»2iﬂ(0)kﬂo102k|»t

The term for {=0 in (*) vanishes by Lemma 8.1, and the term for ¢z =1 in (*) is
equal to

8(0) =0 if ko >0 and ky >0.

(k;l ) 2,.;_2*2:’8(0)&“1;21:.4 _ i( k:l )2;.--2.2:“,‘2';‘,3(0)

l
by Lemmas 8.1—L2. Therefore, we have
2" 2H(0) " B(L)" = 27 p(0).
On the other hand, by (3.13)
2"R(0) ()" = 2" B(0) B(1)" — 2" p(0) ()"

Thus (6) follows from Lemma 8.4(1),. (7) follows from Lemma 8.4(2), in the similar
way to the proof of (6). q.e.d.

ko+1
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LEMMA 8.7. Let m=3 and h(ko, k) =2. Then

(8)  2"B(0)*"B(1)" T + 2™ B0y B £ 2" TB(0) =0 if ko= 0 and ki 22,
(9)  —2"g0)°"g(1)" + 2™ B(0Y°B(1)" £ 2" " B(0)=0 if ke >0 and k >0.

ko+1 m-2+2n

PROOF. Consider (1), for [ =2 = h(ko, k) in Lemma 8.4.
Then

2" B0 p(1)" = £274(0)*" ()" (by Lemma 8.5(5),)
By (3.13), we have

Ko +2k,+2-1

(%) 2m~zﬂ(0)kpozﬁ(l)k, _ :;,:o(lfi})zu-zoztﬂ(o) .

The term for £ =0 in (%) vanishes by Lemma 8.1, and

m-2+2¢ Kko+2ky+2-1 m-2+2n

2 B(0)
by Lemmas 8.1-2. On the other hand, by (3.13) and Lemma 8.1,
2M»lﬂ(0)kq42ﬂ(l)kl—l — 2M—l‘8(0)koﬁ(l)kl i 2m~lﬂ(0) ﬂ(l)klfl.

Therefore, (8) follows from Lemma 8.4(1),. (9) follows from Lemmas 8.4(2), and 8.5(5),
in the similar way to the proof of (8). qg.e.d.

= +2"*"80) if (=1

ko+1

LEMMA 8.8. Let m=3, | =23 and | = h= h(ko, k). Then

B(0) g1 ~ 2
m—zdﬂ(o)koflﬂ(l)k. + 2m~3~lﬂ(0)koﬂ(1)k. -0 if ko>0. K >0.

m-3+1

B0) B =0 if k20, k22,

m-2+1 ko+1

(10), 2
(11 2

ProOF. Consider (1), in Lemma 8.4. Then

(24 8(0) 2" '(0)*" g(1)" = 0
by Lemma 8.5(4),_,. Also, by (3.13),
2m»3~lﬂ(o)kn¢2lg(l)k.~l — 2m—3’lﬂ(0)kuﬂ(1)k| _ 2n-l~lﬁ(o)koélﬂ(l)k|—l )

Therefore, (10), follows from Lemma 8.4(1),. (11), follows from Lemmas 8.4(2), and
8.5(4),., in the similar way to the proof of (10),. qe.d.

LEMMA 8.9. Let 2<s<sm—-1, [ =21 and | 2 h=h(ke, -, ks).
Then
(12)r  (2+p(s—1))2

m-8-2+1+&(ko) ksa+l ks-1

B(s)
aB(s—1)"""8(s) if 2<s<m-2 ke 20 and ks2 2,

ap(s—1)

m-5-3+l+&(ko)

+(2+ 8(s—1))2

0 if s=m—1, ks 20 and ks 22,

m-s-2+1+€(ko) s -1 ks

(13 (2+p(s=1))2 af(s—1)"" B(s)
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1

m-5-3+L+€(ko) ksa-1

B(S)

ks+1

+(2+ 8(s—1))2 wB(s—1) if2<s<m—2key >0 and kg >0,

0 l-fszm—l,ksfl>o and ks>0,
where q = Hf;:ﬂ(t)k'. Moreover, the right hand sides of (12), and (13), vanish if h<O0.

PROOF. By Lemma 3.14,

ot-ivetke) s+l

af(s—1)""8(s)* * Py =0,

and so

m-5-241+€(ko) ks+1

(2+8(s—1))2 aB(s—1)"""p(s)""
Z,S(z‘fﬂ(s—1))2"“8-2*1_!&(“)0/9(8—1)kﬁdﬂ(s)krlﬂ(il)-"ﬂ(ij) -0

Since I,., = ¢, (12), for $ =m—1 holds. Consider the case 2 < s$<m—2. Then, the

terms for (i,, -+, 7;) € I vanish except for (s) € I by Lemma 8.1. Therefore, (12),
holds. (13), follows from the relation
1 14€(ko) ﬁ(S 1)1(3. ‘/9( )ks-le‘s -0

in Lemma 3.14 in the same manner as the proof of (12),. The last statement is easi-
ly verified by Lemma 8.1. g.e.d.

LEMMA 8.10. Let 2<s<m—1, [ 20 and [ =2h = h(k,, -, ks). Then
aBls—1)"""8(s)""

T g (s—1)"8(8)" if ke 20, k22,
(15)s af(s—1)"""p(s)" = = ap(s—1)""
(16)r 2 aB(s—1)""B(s)" = 2 af(s—1)
where o = T1$2R(1)".

m-S+l+&(kg) ksa+1

(14), 2
=+2

m-s+l+€(koy) m-8-1+1+&(ko)
2 2

ﬂ(s)ks ifks—l >0, ks >0,
B(s)"" if ke, 20, k, =2

m-S-1+1+€(ko) m-selele€(ko) ksa

PROOF. Since
2m7341¢lo£(kn) ﬁ(s 1)1;3,*1 ( ) _1:O

by Lemma 8.1, (14), and (15), follow from (12), and (13), respectively by making use
of (3.13) and Lemma 8.1. (16), is the immediate consequence of (14), and (15),.

g.e.d.
LEMMA 8.11. Let 2<s=m—2 and h(ke, -, ks) =1. Then
(17) 2" (s — 1) () + 2T (s 1) B(s)*
= ot STkt o(s—1) if ka2 0, ks=2,
18) 275 (s 1) a(s) — 27 as 1) a(s)
= pome ke Bt o(s—1) if ke >0, ks >0,

where o = f;ﬁﬂ(t)k‘. Moreover, the right hand sides of (17) and (18) wvanish if s =2
or 0=n—2 2k <22,
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ProOOF. Consider (12), in Lemma 8.9. By (3.13)

2lllfs—2+£lkn) ﬂ(s l)k,—.*z ( )ks - E ( g ) n -8 2v€(ko)42iaﬂ(s_1)k,-nzk_.&th'

The term for £ =0 vanishes by Lemma 8.3, and

m-3-2+€(ko)+2i ks o2k s+2-1

aB(s—1) T =

m-8+2ks-1+2%k s+€(ky)

2

I+

2 aB(s—1) if {21

by Lemma 8.2. Therefore, we have

27!!75»248(’(0) ksa+2 + 2"73Q2k3_|f27k3§5{kn)

ap(s—1)"""p(s)"
On the other hand, by (16), in Lemma 8.10

Il

aB(s—1).

2’!—8—1*5(‘10) ks-1+1 ks 2u—s+ue(ko) kg-1

B(s) =+ af(s—1)"""p(s)

Hence, we have (17) by (12), in Lemma 8.9. In the same manner as the proof of
(17), we have (18) by making use of (13), in Lemma 8.9, (16), in Lemma 8.10 and
Lemma 8.1. The last statement follows from Lemma 8.1. qg.e.d.

aB(s—1)

LEMMA 8.12. Let 2<s<m—2, 1 22 and lz h="h(k,, -, ks). Then

(19)n 2" ap(s— 1) p(0)™

= 2" p(s— 1) B(s)" if ks 20, ks 22,
(200 27T M ap(s—1)" p(s)"

= 2" 85~ 1)"B(8)” if ke >0, kg >0.

P rROOF. Consider the right hand side of (12), in Lemma 8.9. Then, we have

2m—s—24loe(kn)a/9(s_1)k,_.olﬂ(s)k,‘ gl g R g o
by (16)s-1 in Lemma 8.10, and
2" g (s = 1) p(s)" = 2" g (s 1) ()
by (16)r2 in Lemma 8.10. On the other hand,
QSRR oo ] yRetg Jet

_ 2m—s—2¢b£(ko) 0,3( )kﬂﬂ(s) -u sd;t(ko)aﬂ(s_l)k,—.olﬂ(s)ks—l

by (3.13). Thus, (19), follows from (12),. Consider (13), in Lemma 8.9. Then, we
have

2m—s724h£(kn]aﬂ(s_l)k,-rlﬂ(s)kg«l — iZruféxol»c(k.,)aﬂ(s_].)Icﬁ—xﬂ(s)k,7
y (16)a-1, and
2m—3»3~l~5[ko)a‘8< )k, .ﬂ( )ksu _ m sfuz.c(k.,)aﬂ(s_1)1&“’3(8)1:5

by (16)s-2. Thus (20), follows from (13),. q.e.d.
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The following lemma is obtained from Lemmas 8.6-12.

LEMMA 8.13. (1) Let m=3, k=0 and k, =22. Then

(21) 2™7R(0Y*g(1)" = 2™R(0)*p(1)" if h(ko k\)=1,
(22) 2™7B(0)*B(1)" = 2™ 8(0)p(1)" T £ 2™ *B(0)  if h(ke, ki) =2,
(23)a 2™ B(0)Y*p(1)M = 2™ B(0) (1) if 123 and 1 2 hke k).

(1) Let 2<s8<m—2, ks, 20 and ks =2. Then

(24) 2" g5 —1)"8(s)" = 22" M ag(s— 1) 8(8)T if 02 hke, ) ks),

(25) 2“’3'1’5“‘0)019(8_1)"s-lﬂ(s)kx
_ 2’"_8”‘5("0)0/9(8“1)kkl/g(S)kfl 4 2mfs‘2ks—n21k.«£(’fo)aﬁ(s_l) lf h(ko, . ks) _ 17
(26)a 2m-s-2+l.e(k0) aﬂ(S—l)kHﬂ(S)k‘

m-S+l+€

=- " 0B(s—1)"8(s)

where a = Hfjﬂ(t)k'. Moreover, the last term of (25) wvanishes if $ =2 or 0 < n—
D2k, <2572

LEMMA 8.14. Let m=3 and 1 < hsn—2. Then

k-1

if 122 and 1 =2 h(ke, -+ ks),

2MENR(0) T = (= 1)MH (2" = 2™ R(0)T + (27 = 1)2™ R0
PRrROOF. Consider (4), for [ =h=h(ke, k) and k, >0, k,=1. Then
(x)  2™FIB(0) M 43 2™ R(0) + 2™ R(0) M =0
by (3.13), where we notice that
1sh=hlkol)=n—hk—1sn—2

The desired result is obtained by the induction on A by making use of (*). q.e.d.

§9. Basic relations concerned with an additive base of
KO(S*%/Q,) (r=2™") for even n

In this section, we prove some basic relations concerned with an additive base
of KO(S*™¥%Q,) (r=2™") for even n by making use of the relations given in §8.
Let s, k£ and d be the integers which satisfy

0Osssm—2, 2°(k—1)sn—d<2%%, k=2 and d=0 (cf. (6.1)).
Then, we have the following lemmas.

LEMMA 9.1. Suppose 1 < s<m—2, k and d are even under the assumption (6.1).
Then

2" SR B(s+2— 1) F— Bs+1— )% F) = 2" TR R(s+1— 1)
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for any t with 1 <t <s+1.

PrROOF. Let u=s8+1—t. Then, by (3.13)

27Tt BH A ) = Bl ) = T (2K 2me g e
The i-th term is equal to
(—1)"-'(2';2k)2”"s"*2"‘ﬂi’ﬂ(u) (1<i<27%)

by Lemma 8.2. Therefore, we have the desired result. g.e.d.

LEMMA 9.2. Under the same assumption as in Lemma 9.1, we have

T 2m gt e(s+1-1) =0
PROOF. By summarizing the relations of Lemma 9.1 over ¢, we have
Sisigmoadetkgag(s 1 —t) = 2™ TR R(S4 1) — 2mS g
By Lemma 8.1, 2""‘2,9;"”:0, and
om-S2gup oy 1)k = 4 OmeSAkgp(o L)

by Lemmas 8.1-2. Therefore, we have the desired result. q.e.d.

LEMMA 9.3. Suppose 1 <s<m—-2, k=2k'+1 =23 and d is even under the as-
sumption (6.1). Then

2»1—54 ‘1’(,8(3"}'2_ t)zlqk—ﬂ(sﬂ'l—t)z'—'k)
l 2m—s;l¢2’kﬂfﬂ(s¥l)i om-8-3+2k :’ﬂ(s) if 2=1<s+1,

oms e hpdo(s+1—t) if 3<t<s+l.
PrROOF. Let 2=t <s8+1 and u =s+1—¢. Then, by (3.13)
2Rt g D) = 2N BB + %R ) Blut 1
= T (F R ) e gt p ™ g 1P
Since the I -th term for 1 < i < 2*'k’ vanishes by Lemma 8.1,
2 2gt p(u4 1) = 2™ 2 pr (™ Blut 1)
Thus,
() 2% 1gBu D - g ) = X2 (2 ) gt
The 7-th term for i 1, 2 (3< i< 8+1) in (*) is equal to
(_1),_.(2;”)2..,34.% “9(x) (by Lemma 8.2).

The i—th term for { =2"(v=0, 1, and v =0 if £=2) in (%) is equal to

<2t_ )Zm -8~ 2¢2zﬂ ﬂ(u)z l(ﬂ(u+1)_ 2 ﬂ(u))z‘ 151 (by (3 13))
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= (27 Yz B 1+
I (—1)) (2”}“— L)ame-emeigiguy® i p(u+ 1)1 )
= oG B ut 1T 4
(— 1w 2] Jometan ug oyt R (by Lemma 8.1)
= o gt ) + (<107 (2 )2 p8aw) (by Lemma 8.2).
Therefore, we have

2" R B(u+1)" " — p(w)? )
| 2m7s—4.2’kﬂ:l/3(u)i 2,"787‘.2k/3:’/3(u)ﬂ(u+1) f2=t< s+1,

omee TRl a(u) + 27 RGN 2+ B(w) flut]) if 3S B s+l
On the other hand,
am e g 24 Bu) Blu+1) = 0
by Lemmas 8.5 and 8.10. Thus, we have the desired result. q.e.d.
LEMMA 9.4. Under the same assumption as in Lemma 9.3, we have
D2t eig(s+1-1) = 0.

PROOF. By summarizing the relations in Lemma 9.3 over I (2< 1< s+1), we
have

Sen et tgig(s+1—t)
= 27BN (s) " — 2n IR - 2 TR )
= 2" R(s)F — 2™ *BlA(s) (by Lemma 8.1).
On the other hand,
2n T BlA(s)*
= !‘;o(}E')(—l)‘2’""‘””'/91’/9(8)“‘/9(s+1)""‘ (by (3.13))
= 2" 2BYR(s) s+ 1)* + (—1)F 2" kRig(s)C ™ (by Lemma 8.1)
= 2" IRRIR(s) Bs+1) + 2" HBEA(s) (by Lemmas 8.1-2)
= QMR p(g 1) + 2™ Bep(s) (by Lemmas 8.5, 8.10).
Therefore, we have the desired result. q.e.d.

LEMMA 9.5. Suppose 2 <8 <m—2 and d >0 is even under the assumption (6.1).
Then

ameeikigt p (N I (2+ B(1)) B(s) = =27 gt B(L) IT 720 (24 B( 1) B(s)
for 0l <k-2
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PROOF. By Lemma 3.14, 2**7"8¢'8(s)'P,, =0, and so

m-sdklgd (1) TS 3(24 A1) B(S)

+ 20, 2B BN e (2+ A(1)) B(s)'B(i) -+ Blis) = 0,
where [, ={(iy, -, is):1€j<Sm—s—-1, s<i, < < i;<m—2}.
The terms for (i,, ---, i;) € I, vanish except for (s) € I, by Lemma 8.1 in the similar
way to the proof of Lemma 6.15. Thus, the desired result follows. g.e.d.

LEMMA 9.6. Under the same assumption as in Lemma 9.5, we have
2m B BTN (2+ B(1) = (= 1) 2™ 2B g (2+ A(2)) B(s) .
PrRoOOF. By Lemma 9.5, we have
2r R BN TG (24 B(1)) = (— )2 21 B T2+ B(1) B8)*
On the other hand,
2" A IS (2+ 8(1) B(s)*
= 2" TG (2+ B(1) B(9) ! + 27 BT LI (24 8(2)) B(9)* ™ (by (3.13))
= 2" (24 8(1)) B(s) " (by Lemma 8.1).
Thus, we have the desired result. q.e.d.
LEMMA 9.7. Under the same assumption as in Lemma 9.5, we 'have
2" BTB(s—1) B(8)* = (=1 ) 2™ gl p(s) — 2" B(s—1) Bls)".
PROOF. By Lemma 3.14, B878(s)"*Pn, =0, and so
2m BB —1)B(9)"
= —2"Blp(s) T = X0, 2™ (24 pls = 1)) BEB(S) TR B
The terms for (i,, -+, i,) € I, vanish except for (s) € I, by Lemma 8.1, and
2" pi(s) T = (— 1) 2m R a(s) (by Lemma 8.2).
The term for (s) € I; 1s equal to

— (24 p(s—1))2"°7glB(s) = £27 T HBIR(s) — 27 B B(s— 1) B(s)"
(by Lemmas 8.1-2).

Thus, we complete the proof. g.e.d.
LEMMA 9.8. Under the same assumption as in Lemma 9.5, we have
2" Bip(s)"
=27 B I (24 A1) B(s) "+ (=127 BIA(s)
— 2" RIA(s— D) A(s) + A2 BB (W) I a2+ A(2)) B(8) "
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PRrROOF. In the same manner as the proof of L.Lemma 6.20, we can prove the
lemma by making use of Lemmas 3.14(i) and 9.7. g.e.d.

LEMMA 9.9. Suppose 2<s<m—2 and d is even under the assumption (6.1).
Then

2n U RT(9) = Te2™ T BA(s— 1) + (— 1) T2 Mgl p(s).
PROOF. In the case k is even.
2" g18(s)"
= 2" Rip(s 1T — 2" pdp(s) (by Lemma 9.1)
= k2"t e(g+1) — 2™ *p0(s) (by Lemmas 8.1-2).
In the case k is odd, by the last part of the proof of Lemma 9.4,
2MRIB()T = 27T BIR(s 1) + 27 T HBIA(s).
Therefore, we have the desired result by Lemmas 9.2 and 9.4. q.e.d.
LEMMA 9.10. Under the same assumption as in Lemma 9.9, we have
2" 2080(s—1)B(s)F = £ 2™ TRl p(g 1),
ProoF. By Lemma 9.9, we have
2" TIRIB(s— 1) A(8)" = (1 + (—1)* 2™ #pig(s~1)B(s)
+ X2 A (s~ D) pls—1) + 27 gl A(s 1)
= gm-s4Tk ¢6(s—1)* (by Lemma 8.1)
= omoetThgp(s) — 2m P Rglp(s—1) (by (3.13))
= +2m S 2Tkeep(o_1) (by Lemma 8.1).
These complete the proof. q.e.d.
LEMMA 9.11. Under the same assumption as in Lemma 9.5, we have
2" B (24 B(1) B(8) T = (—1) 2™ T B (1) L (2+ B(1)).
PROOF. By (3.13), we have
2m B LA (24 8(1)) B(8) T = 2" B B(L) I o (2+ B( 1)) B(8)*
= 2m BT I (24 B(1) B(8)* T — 27 BTSN (2+ (1) B(s) "
= 2" BN IS (24 A(1) A(s)* ™ (by Lemma 8.10).
On the other hand,
2K R R(8)' Py =0 (0= 1 <k—2)

by Lemma 3.14, and so we have
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Om-3+k-1-2 ;i—zﬂ(l)nf;;(Z"‘lg(t))ﬂ(S)l
n ZI om-g+k-1- 2Jﬂ¢ zﬂ(l)H (2+;9(t))/9(3) Bis)p(i;)=0

The terms for (i,, ---, i;) € I, vanish except for (s) € I, by Lemma 8.1. Thus
2n R BTS2+ B(1) B(s) = — 2™ a2 4(1) ITiLa(2+ B(1)) B(s)"
for any | with 0=<[<k—2. Therefore, we have the desired result. g.e.d.

LEMMA 9.12. Suppose 3<8<m—2 and d >0 is even under the assumption (6.1).
Then

2" BB T (24 B(1)) B(8) ™
= &+ (= 1) T2 g g () TT52.0(2+ B(2)) B(s— 1)
for any u with 1 S u<8—2.
PrROOF. By Lemma 3.14,

BB LI (2+ 8(1) B(8)** Py s =

and so
2" BB I (24 8(1) B(8)*
= =2, 2" RIB(W I (24 B(1) B(8) 8L, )+ BUiy).
The terms for (i,, -, i;) € I, vanish except for (s) € I, by Lemma 8.1. Thus, we
have

2" BB (W TS a (24 B() B(s)*

= F2negy ﬂ(u)nsu,,(2+ﬂ(t))ﬂ<s)“ (by Lemma 8.1)

= & N0, 2m T RER(u) T52,0(24 B(1)) Bs— 1) = 27 S8 8(w) TT3:2.,(2+ B(1) B(s)
+ 2m SR TRRAR(y) TI52,,(2+ B(1)) B(s—1) (by Lemmas 8.1, 9.9-10)

= & (=172 R R (W) TTEEA(2 + A1) Bs = 1),

Therefore, we have the desired result. q.ed. .
LEMMA 9.13. Under the same assumption as in Lemma 9.12, we have
L= 1) T2 g p () B(s — 1) TTE2.4(24 B(1)) = £2™ 7 %gdp(s—1).
PROOF. We can prove that the left hand side of the desired relation is equal to

+m B kgeg(g—1) £ 2" TR gig(1)

by making use of Lemmas 8.1 and 8.12 instead of Lemmas 5.1 and 5.9 respectively
in the proof of Lemma 6.28. While
2m 4% a0(1)=0 (by Lemma 8.1).

Therefore, we have the desired relation. qg.e.d.
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The following lemma is the immediate consequence of Lemmas 9.11-13.

LEMMA 9.14. Under the same assumption as in Lemma 9.5, we have
2m RS iAW) TS (24 B(1) B(s)*
— (_l)kflzm—s—zdc /9(1)1—[ (2+,B(t))+ 2»! $-2+2% “8(8 1)

§10. The group I?O(S‘"'“/Qr)(r=2'"") for even n

In this section, we shall determine the additive structure of @(S‘"*a/Q,) (r=
2™ Yywith m = 2 for even n by giving an additive base. In case m=1, fé(S‘“’s/Ql)
= @(L”"(M) and its additive structure is given in [12, Th.B]. The result in case
m=2 1s given in [7, Th.1.3].

Let m=2. Then, we have the relations in I’(\O(S‘"‘S/Q,) given by the following
propositions.

PROPOSITION 10.1. Suppose 2<8=<m—2 and d >0 is even under the assumption
(6.1). Then

om-s- 34k pd- 25(2)1-1 (2+ﬂ(t)) + ( 1)kzio(_1)2‘2»!,3,4.2"';;‘8;,/9(8_ t) =

PROOF. The desired relation is the immediate consequence of Lemmas 9.6, 9.8-
10 and 9.14. q.e.d.

PROPOSITION 10.2. 2"%a, =0 and 2"%, = 0.

PROOF. We see easily that 2"%q, = 24,88 in ﬁ\é(Q,) by Propositions 2.5 and
2.7, and 2q,8"" € Ker £ by Lemma 3.10.
Therefore, 2™%a, =0 in [?OJ(S""S/Q,) by (3.9) and the definitions of a,, 28, and B? €
I?OJ(S"““/Q,) in (3.3) (see also Propositons 2.5 and 2.7). In the similar way to the
proof of Proposition 7.4(i1), we have

0=2a,8"" = (=1)"2"* 00 B(w) T2 (24 B(1)) + (= 1)™'2™ g,

in IZ\OJ(S‘"‘a/Q,). From this relation, 2"%z =0 if m=2. Let m=3. Then, by
Lemma 8.1,

2"B(m—i)=0 (2<i<m-1).
Therefore, we have
2" TR I (2 +8(8) =0,
and so 2""%q, = 0. q.e.d.
Now, we are ready to prove Theorem 1.6 for even 7.

PROOF OF THEOREM 1.6 FOR EVEN .  The group IEB(S""“/Q,) (r=2™" for
even 71 is additively generated by a,, @ and 8, (1< i< N') by Propositions 2.5, 2.7,
(3.9), (3.13) and the fact that 2P, ,= g, P, , =0 in Lemma 3.14(i1). On the other
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hand, 2%%x 2™x [[X, (i) = 2™¥"* = # KO(S*™%Q,) by Proposition 4.13 (ii), 7.3,
Lemmas 9.2, 9.4, Propositions 10.1—2, Lemma 8.1 and the definitions of @, u(i)
and &, (1<i{< N’) in (1.5). Therefore, we complete the proof of Theorem 1.6 for
even 7. qg.e.d.

COROLLARY 10.3 (cf. [13, Cor.1.7]). The order of &, in KO(S*"¥Q.) is equal
to 2™ % if n is an even integer.
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