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On the Norm Kernel for the *O+'“0O+a Cluster System

Toshimi SAKUDA

Abstract

A calculation method is presented for determining the norm kernel on the harmonic
oscillator basis and is applied to the *O+'°O+ « three-cluster system. Eigenvalues and
eigenstates of the norm kernel are calculated. Spectroscopic factors are discussed for
0+”N and a+*S channels with respect to the structure of the superdeformed band in

the *Ar nucleus.

1. Introduction

Much attention has been devoted to superdeformed (SD) rotational bands in *Ar—*Cr
nuclei [1,2]. The collective aspects of these rotational bands are particularly interesting
subjects for nuclear structure studies. I have performed a-cluster model calculations for
%Ar—"*Cr and have shown that the a-cluster structure is a stable feature in this region [3].
In the case of ¥S and *Ar, the SD bands have been predicted by cranked Skyrme-Hartree-
Fock (SHF) calculations [4,5]. The relation between the SD bands and the O-cluster
structure has also been discussed in several studies [4—7], largely because the SD structure
of these nuclei is regarded as a key to understanding the relation between the SD bands
and the cluster structure. Therefore, it would be interesting to apply the multi-cluster
model approach, which can treat both the a- and '*O-cluster configurations, to the SD band
in *Ar. I also aim to clarify the relation between the a- and “O-cluster structures, as this
will provide valuable insight into the SD bands and their strong collectivity.

2. The norm kernel

In the case of a system composed of three clusters, the model space is described by the

set of wave functions
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where ¢™’s are the antisymmetrized internal wave functions and Uys; 13(r) and Un, u(R) are

harmonic oscillator (HO) wave functions with Nsl; and Nil; quantum numbers for the
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relative motions. The relative coordinates r and R are shown in Fig. 1. We adopt a com-
mon oscillator constant a for all clusters. The model wave function is generated as a direct
product of the two relative wave functions : (IVz3,0)x (N,,0). The Pauli-allowed states are

obtained by diagonalizing the norm kernel.

Fig. 1. Coordinates of the “O+"“O+a system.
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Thus the totally antisymmetrized basis that satisfies the orthonormal condition is given by

we 1 INQ
(I) - W 21’\"23 123, N1 11 CJVZS 123, N1 ll(D]<JV23 123, N1 11). (3)

The eigenstates are classified by the total oscillator quanta N=N,;+N, and the SU(3) sym-
metry. The symbol Q denotes the SU(3) quantum number (4, ©)K.

The problem then is to calculate the norm kernel and the eigenvalues #™. It is an enor-
mous and very tedious task to treat the antisymmetrization operator within the internal
and relative coordinate system. Therefore the computation of the kernels in heavy systems
is done by calculating the corresponding GCM kernels and transforming them. It can be
done by noting the fact that the corresponding GCM kernel has a generating function for
the kernel in Eq. (2).

3. The norm kernel in GCM space

For clarity, more general notation is used in this section. We treat the GCM wave func-

tion of the form
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where 4 is the antisymmetrizer which exchanges the nucleons belonging to different
clusters, and A; is the mass number of the cluster i and specifies the cluster. The total
mass number is A=A +A,+A;. For the present system we simply take A;1=A.=16 and A;=4.
The antisymmetrized cluster wave function ¢(A;,S)) is assumed to be (0s)* for @ or (0s)*(0p)™
for O shell-model wave functions centered at S;. Usually the center-of-mass (CM) point of
the total system is chosen as the origin O; ie., A;S:+A,S,+A;S;=0. Since ¢(A;,S) is a
Slater determinant, ®“*(S;,S,,S;) is also a Slater determinant. This makes the calculation
by GCM easy.

The shell-model wave function of each cluster can be separated into the internal and the

CM wave functions.

3
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where X; is the CM coordinate of the cluster A;. Substituting this equation into Eq. (4) gives

(DGCM(Slesa) :\/@Lﬁ [aj ] 1;4[exp{ Z i (sti)z}¢im(A1)¢im(A2)¢lm(A3>}. (6)

In order to observe the relative motions of the clusters, it is convenient to use the inter-

cluster relative coordinates (r and R) and the total CM coordinate Xe.
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where a, [ u g 2 a, axl i 1§ a and the displacement parameters of the cluster cen-
2
ters are d =S.0 S; and D =S.0 A +A S.0 , +A S;. In this way, the dependence on X¢

is factored out, and the GCM wave function is therefore a non-spurious wave function
about the CM motion.

The GCM norm kernel can be evaluated analytically. The GCM kernel turns out to be
given by

(0°(d, D) |0 (4, D)) = exp{- (D" D)~ (a ")}
®
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where
Bl = {e1(d-d)'—el(d-d)%0(d-d") (pd- d)*}e2(S,- S
—{e1(d-a)*+el(d-d)%0(d-d) (pd- d)}e2(d- SDe2(S,-d")
+e1(d-d)(0S,- d)el(S,-d)e2(d-S') +el(d-d)*(pd- S"Del(d- 8 De2(S,-d")

+ [f {e1(d-d)*—e1(d- d)e0(d- d) (od- d)*} (08, S") ®

+{e1(d-a)?—e1(d-d)e0(d-d) (pd- d)} (od-S") (oS, d’)}l(d- S"Del(S,-d),

with p=a/2. The abbreviated notations e0(x)= exp(px), e1(x)= exp (ox)0 1 and £2(x)=
exp(px)-1-px are used. The determinant OBJ can be written as a sum of terms, each of
which is a product of polynomial parts and Gaussian parts.
‘B‘ _ Z g(z) (pD‘ D/)M(i)(,oD' d/)m(i)(,od' D/)k3(i) (,Od' d/)k4(i)
i=1 (10)
Xexp{a)l (1)oD- D' +w2(i)oD-d +w3(i)pd- D' +wi(i)od: d’}.

When this expression is substituted into Eq. (7), the following result is obtained.

o . L, a , a , max o omax o omax o omax
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X (pD'D/>kl<il) \/cl<i2> t kl(i3) + kl(i4) (pD'd/>k2<il> t /c2(1'2) f /cZ(z'S) + k2(14)

X (pd_D’)kfi(il)+k3(i2)+k3(i3)*k3(i4)(pd‘d/)k/l(il)+kﬂ1(iz)fk/1(i3)+kr1(i4) (11)

Xexp{(wl(il) ol (i) +ol ) +w1<i4>)pD-D’}exp{(w2<il) w2, +w2(,) +w2(i4)>pD-d’}

Xexp{(a)S(il) w33, +w3(,) +w3(i4))pd-D’}exp{(w4(il) +wd(iy) Fwd(y) +w4(i4))pd-d’}.

The GCM wave function with a definite angular-momentum can be written in terms of
the projections of the relative angular-momenta [, and l:s. The integrand involves the mul-
tiplication of the scalar products of parameters d and D by the spherical harmonics. We are

therefore able to calculate the integrations analytically.

(DY, (d)xd7Y(d,D). (12)
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As the GCM wave function is a generating function of the HO wave functions, this GCM

wave function is also expanded by the HO wave functions of Eq. (1).
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where the coefficient

Cy = (=D Wnt2+ ! and N = 2n+1L. (14)

We are now able to derive the relation between the norm kernel in the GCM wave functions
of Eq. (11) and that in the HO basis of Eq. (1).

<®GCM< ( 123, ll)]M) ‘q)GCM< ( l/za 1/1)]M>> = 2N1,N23 le ’ N23’ CN111CN23123CN1’11’CNZ3/123/

< /al )Nl+N1'< /a23 >N23+N23’

2 2 eXp{*%(derdlz) 7%<D2+D/2)}DNldNQSD/j\n/d/]\r'ZS/ (15)

<(D](N23123, N1i1) ‘ (D](NZS’ZZS’,NI’II’) > .

This relation gives the transformation procedure from the GCM kernel to the kernel in the
HO basis. The matrix elements of the norm kernel are obtained as the coefficients of the
powers of d and D. Thus we are able to solve the eigenvalue problem of the norm kernel,

which gives all of the necessary quantities.

4. Eigenstates of the norm kernel

The calculated allowed states are listed in Table I, all of which are classified according
to the SU(3) symmetry. The states with total quanta NI 31 are not allowed as a matter of
course. The lowest N=32 space contains the important (sd)®*(fp)* shell-model state (16,8),
which is an excited state. It is noted that the *O+"°O+ a model cannot describe the (sd)*
ground configuration of *Ar. The configurations with a larger value of N have the capacity

to present the O and a-cluster states.
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Table I. The Pauli-allowed states of the “O+"“O+«a system.

They are classified by the SU(3) label (4, 1) with the multiplicity n.

N A, )"
32 (16,8)
33 (19,7 (17,8) (15,9)
34 (22,6) (20,7) (18,8)* (16,9) (14,10)
35 (25,5) (23,6) (21,7)* (19,8)* (17,9)° (15,10) (13,11)
36 (28,4) (26,5) (24,6)* (22,7)* (20,8)° (18,9)* (16,10)* (14,11) (12,12)
37| (31,3) (29,4) (27,5) (25,6)* (23,7)° (21,8)" (19,9)° (17,10)* (15,11)* (13,12) (11,13)
a8 (34,2) (32,3) (30,4)* (28,5)* (26,6)° (24,7)° (22,8)* (20,9)° (18,10)° (16,11)* (14,12)*
(12,13) (10,14)
29 (37,1) (35,2) (33,3)* (31,4)* (29,5)° (27,6)° (25,7)* (23,8)* (21,9)* (19,10)* (17,11)°
(15,12)% (13,13)* (11,14) (9,15)
10 (40,0) (38,1) (36,2)* (34,3)* (32,4)° (30,5)° (28,6)* (26,7)* (24,8)° (22,9)* (20,10)*
(18,11)° (16,12)° (14,13)* (12,14)* (10,15) (8,16)

(41,0) (39,1)* (37,2)* (35,3)° (33,4)° (31,5)* (29,6)* (27,7)° (25,8)° (23,9)° (21,10)"

41 . A
(19,11)* (17,12)° (15,13)° (13,14)* (11,15)* (9,16) (7,17)

For comparison, the allowed states of the a+*S system are listed in Table II. The a+*S
cluster structure also contributes to our understanding of the SD states. States with the
total quanta NO 7 are not allowed in this system. We can see that the *S+a cluster model
space contains many important shell-model states. The lowest quanta N=8 states are the
(sd)* (0,8), (2,4) and (4,0), which are known as the main configurations of the ground state
of ¥Ar. The important core-excited states such as the (sd)®(fp)* N=10 (10,4) state and the

(sd)*(fp)* N=12 (16,8) state are included in the present model space.

Table II. SU(3) classification of the Pauli-allowed states of the a+*S system.

N (1)

8 (4,0) (2,49) (0,8)

(7,2)(6,1)(5,0) (6,4)(5,3)(4,2)(3,1) (5,6)(4,5)(3,4)(2,3)

9 (4,8)(3,7)(2,6)(1,5) (2,9)(1,8)(0,7)

(10,4)(9,3)(8,2)(7,1)(6,0) (9,6)(8,5)(7,4)(6,3)(5,2)(4,1)
10 (8,8)(7,7)(6,6)(5,5)(4,4)(3,3)(2,2) (6,9)(5,8)(4,7)(3,6)(2,5)(1,4)
(4,10)(3,9)(2,8)(1,7)(0,6)

(13,6)(12,5)(11,4)(10,3)(9,2)(8,1)(7,0)

1 (12,8)(11,7)(10,6)(9,5)(8,4)(7,3)(6,2)(5,1)
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(10,9)(9,8)(8,7)(7,6)(6,5)(5,4)(4,3)(3,2)
11 (8,10)(7,9)(6,8)(5,7)(4,6)(3,5)(2,4)(1,3)
(6,11)(5,10)(4,9)(3,8)(2,7)(1,6)(0,5)

(16,8)(15,7)(14,6)(13,5)(12,4)(11,3)(10,2)(9,1)(8,0)
(14,9)(13,8)(12,7)(11,6)(10,5)(9,4)(8,3)(7,2)(6,1)
12 (12,10)(11,9)(10,8)(9,7)(8,6)(7,5)(6,4)(5,3)(4,2)
(10,11)(9,10)(8,9)(7,8)(6,7)(5,6)(4,5)(3,4)(2,3)
(8,12)(7,11)(6,10)(5,9)(4,8)(3,7)(2,6)(1,5)(0,4)

The lowest N=32 (16,8) state of Table I is not the ground configuration, but a 4hw ex-
cited configuration of **Ar. That corresponds to the N=12 (16,8) state of the a+"S cluster

system.

5. Spectroscopic Factors

The decay width is one of the most important physical quantities for identifying the
cluster structure. We calculate the spectroscopic factors (S-factors) of the a, '*O, *Ne and
*#S-channels for the typical eigenstates of the norm kernel. As an example, the reduced
width amplitude (RWA) for the *O+ *Ne channel is defined by

36!
16!20!

r<¢im(160) |:¢inl<20Ne)’ Kl(f')]

los

Ty]M(le,ll) = IM‘IFIM(%AI‘)>. (16)

Integrating the RWA with respect to r, we obtain the corresponding S-factor.

S]M(ZZS,ZJ = Ij{rijw(lz3,ll)}2d7- 17)

The S-factors of the *S+a channels are calculated similarly.

We calculate the @ and O S-factors for the (16,8) K=0, J=0" state, which is believed to
be the main configuration of the SD band in *Ar. The resulting a+*S S-factors for the (16,8)
band are listed in Table III. The wave function of *S is taken here as the (24,0) state. The
(24,0) state is expected to be a main component of the SD band and is largely the “O+'*O
cluster state.
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Table III. The a+*S (24,0) spectroscopic factors for the (16,8) state of *Ar.

(ls, 1) (16,8) K=0, J=0
(0,0 0 0.0488
(22 0 0.0499
(4, 49 0 0.0308
(6,6 0 0.0128
(88 0 0.0028

It was found that the (16,8) state has large S-factors for the @+*S (0") and a+*S (2 cluster
channels.

The 'O +*Ne S-factors for the (16,8) K=0 band are listed in Table IV. The (8,0) state
was taken for the wave function of *Ne, which is the dominant configuration of the ground
state. The YO +*Ne S-factors for the (16,8) band are not generally expected to be small.
This result indicates that the (16,8) state has a variety of cluster structures containing not

only the two-cluster structure but also the three-cluster structure.

Table IV. The "*O+*Ne(8,0) spectroscopic factors for the (16,8) state of *Ar.

(I, 1) o (16,8) K=0, J=0
(0,0 0 0.00100
(22 0 0.00102
(4,4 0 0.00063
(6, 6 0 0.00026
(8 8 0 0.00006

The a+¥S S-factors for the (16,8) K=0 band are presented in Table V. In this case, the wave
function of *S is taken to be the (4,8) state, which is the main configuration of the ground
state of *S. The calculation of the a+*S(4,8) S-factors is outside of the framework of the
¥0+"0+a cluster model, because the *O+0 cluster system cannot describe the *S(4,8)
state. These S-factors are therefore calculated in the a+*S cluster model. We are able to
specify the large values for the S-factors in the a+%”S(0") and a+*S(2") channels. This result
could be interpreted to indicate the importance of the a-cluster structure in the SD band.
It is of interest to investigate the structure of *Ar in the combined framework of the O+

%O+a and a+”S cluster configurations.
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Table V. The a+%S(4,8) spectroscopic factors for the (16,8) state of *Ar

KI 1) J (16,8) K=0, J=0
00, 0) 0 0.0412
02 2 0 0.0318
04, 4 0 0.0103
06, 6 0 0.0016
08, 8 0 0.0001

6. Summary

I have presented a calculation method for determining the norm kernel on the HO basis.

Applying this method to the *O+'"*O+a three-cluster system, eigenvalues and eigenstates of

the norm kernel were calculated. They are characterized by SU(3)-classification. Using the

obtained norm kernel, the spectroscopic factors have been calculated. An illustrative calcu-

lation of the YO+ N and a+"S spectroscopic factors has been carried out for the (16,8) state

of *Ar. It is shown that both of the - and O-cluster configurations play important roles

in the SD band of the *Ar nucleus.

References

[1] C.E. Svensson et al., Phys. Rev. Lett. 85 (2000) 2693 ; Phys. Rev. C63 (2001) 061301(R).

[2] W. Sciani et al., Phys. Rev. C80 (2009) 035319.

[8] T.Sakuda and S. Ohkubo, Phys. Rev. C49 (1994) 149 ; C51 (1995) 586 ; C57 (1998) 1184 ; Prog.
Theor. Phys. Suppl. No.132 (1998) 103 ; Phys. At. Nucl. 65 (2002) 703 ; Nucl. Phys. A712

(2002)59 ; A744 (2004) 77.

[4] T. Inakura, M. Yamagami, S. Mizutori and K. Matuyanagi, Prog. Theor. Phys. Suppl. No.146

(2002) 567.

[5] M. Bender, H. Flocard and P.-H. Heenen, Phys. Rev. C68 (2003) 044321.
[6] S. Ohkubo and K. Yamashita, Phys. Rev. C66 (2002) 021301(R).
[7] Y. Kanada-En’yo, M. Kimura and H. Horiuchi, ATP Conf. Proc. 644 (2002) 188.

(Received April 19, 2010)





