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Abstract

A calculational method is extended to three-clu ter sy tem including a SU(3) non-scalar cluster

in order to study more various cluster systems and is applied to the 39K+a+a and 15N+a+a cluster

ystems. Eigenvalues and eigen tat of the norm kernel are calculated and di cussed.

1. Introduction

Much attention ha been devoted to sup rdeformed (SO) rotational band in J6Ar_48Cr nuclei [1, 2].

These collective aspects are particularly interesting ubjects for nuclear tructure studies. I have per

formed a-cluster model calculations for 36Ar_48Cr and have shown that the a-cluster structure is a stable

feature in this region [3]. The relationship between the SO bands and the 2a-cluster structure has al 0

been discussed in several studies [4-7] largely because the SO structure of these nuclei is regarded as

a key to understanding the relationship between the SO bands and the cluster structure. Therefore, it is

very interesting to apply the multi-cluster model approach, which can treat variou cluster configura

tions, to the SO bands in this region. Thi application could offer valuable insight into the SD band and

their strong collectivity. In this paper, 1 will present an exten ion of the previou calculational method

[8] for determining the norm kernel of three cluster systems in order to tudy a wider variety of cluster

systems.

2. The norm kernel

In this article, I mainly discuss the J9K+a+a sy tern as an exampl of the explanation of the present

method. The system provide the fir t link in the chain of 2a-nh clu ter tates in A=44-48 nuclei and

is well suited for this purpose. Moreover it is not so difficult to apply the method to 'SN+a+a and other

cluster systems. In the 3~+a+a cluster ystem, the model space is described by a set of wave functions

4!4139! A{ inl( ) inl( ) [in[ (39 K) [U () U ( )J ] }471 ,.". ¢ a ¢ a ¢/IIWI.1/2) N23.l23 r, N1.l( R '-R]M'

(1)
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The ¢inl(a) is the antisymmetrized internal wave function of a and corresponds to (OS)4 configuration.

Fig. 1. Coordinates of the 39K+a+a ystem.

The core state ¢~~(III.I/2)CS9K) is assumed to be (A,t.£) = (02) state according to removing one nucleon

from the sd-orbit in 40Ca. The orbital angular momentum i" and the pin 1/2 of the 39K are coupled to

the total angular momentum 1". We adopt a common oscillator constant a for all clusters. The relative

wave function UN2J.I1l(r) and UNI.II(R) are harmonic 0 cillator (RO.) wave function with N23 / 23 and

N .1 1 quantum numbers. The relative coordinate rand Rare hown in Fig. 1. The bracket implies two

angular momenta's coupling to a resultant angular momentum. Therefore the relative angular momenta

123 and II, are coupled to the total relative angular momentum LR• Furthermore, I" and LR are coupled to

the total angular momentum J of 47y nucleu .

The norm kernel i concerned es entially with the symmetry of the patial part of the clu tel' wave

functions, i.e., the total orbital angular momentum L is a good quantum number. Therefore, it is conven

ient to use the following L-projected wave functions to calculate the norm kernel. We use the model

wave function

(2)

In the above equation the relative angular momentum and the orbital angular momentum of JX, LR and

ih , respectively, are coupled to the total orbital angular momentum L. The relationship between the J

projected et of tates of Eq.(l) and the L-projected et in Eq.(2) can be derived ea ily in angular mo

mentum recoupling. Hereafter we discus the method by u ing the mainly L-projected wave functions.

The model wave function is generated as a direct product of the two relative wave functlons and a core

wave function: (Nn, 0) X (M, 0) X (Ah' t.£h)' The Pauli-allowed state are obtained by diagonalizing the

nonn kernel.

L,N23'12{' N{IJ'LR\ ¢inl(a)¢inl(a) [[ UN'l3.12/r), UNI,II (R)1/ ¢;:ICS
9
K)l\f

L

4{¢inl(a)¢inl(a) [[ UN'l3'.Iz{(r), UN1',I((R)1R' ¢;:ICS
9
K)1M) )ct';~'I'l1.Nl,.ll')LR.lh

= NQCLNQ
t.£ (NZ31'l3' NII,)I_R,I,,'

(3)
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Thus the totally antisymmetrized basis that satisfies the orthonormal condition is given by

¢JLNQ = ~r.(N2:JI2:J'Nlll)LR'lhCf~~I23' 111)LR.1h¢J(( 23l23,Nlll)LR,lh;LML)' (4)

The eigenstates ar classified by the total 0 cillator quanta N=N13+N. and the SU(3) symmetry. The sym

bol Q denotes the SU(3) quantum number (A, f.t)K.

Then the problem i to calculate the norm kernel and the eigenvalu s f.t
NQ

. It is very tedious and

enormous to treat the antisymmetrization operator within the internal and relative coordinate system.

Therefor th computation of the kern I in heavy sy t ill i done by calculating the corresponding

GCM kernels and transforming them. Thi can be done by noting the fact that corresponding GCM ker

nel plays the role of a generating function of the kernel of Eq.(3).

3. The norm kernel in GeM space

For the sake of an explanation, I u e a more general notation in thi ection. We treat the GCM wave

function of the form

¢JGCM(S S S ) =
I. 2. 3 (5)

where A- is the antisymmetrizer which exchange the nucleons belonging to different clu ter and AI is

the mas number of the cluster i and specifies the cluster. The total mass number is A=A 1+A2+A1. For

the present system we simply take A,=&=4 and A1=39. The anti ymmetrized cluster wave function

¢(Ai, Sj) is assumed to be (Ost and (Ost(Opt(sd)ll shell-model wave functions centered at Si for a and

19K, respectively. The center-of-rna s (C.M.) point of the total ystem is typically chosen a the origin

0, that is A$,+A1S1+AlS1=O. Since ¢(Ai Si) i a Slater detenninant, ¢JGCM(SI,Sl,Sl) is also a Slater de

terminant. Thi fact makes the calculation by GCM traightforward.

The shell-model wave function of each cluster can be separated into the internal and the C.M. wave

functions.

(6)

where Xi i the C.M. coordinate of the c1u ter Ai. Substituting this equation into Eq.(5) gives

<DGCM(S S s)= A,!A2!A3! IT (aAi )f,4[exp{_f aA i (X.-sY}¢inl(A )¢inl(A )¢int (A )J. (7)
I. 2. 3 A! i=' 7C i= I 2 " J 2 Ihmil 3

When we treat the system with deftnite angular momentum, we need to project out the definite relative

angular momentum components from ¢JGCM (SI,S2,Sg). In order to ob erve the relative motions of the

clusters, it is convenient to use the inter-cluster relative coordinates (r and R ) and the total C.M. coor

dinate X o.

cDGCM(d, D) = (aA )+exp{- aA X 2} A 1!A2!Ag!
l/rmh 7( 2 G A!
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(9)

h - A.(A, +A3 ) - A,A3 d h d 1 f h 1were al - A a, an - A
2
+A

3
a an t e isp acement parameters 0 t e custer

center are

d=82-8a and D=8.- A2~2A3 82 - A2~3A3 83 ,

In this way, the dependence on XG is factored out, and the GCM wave function is a non-spurious

wave function about the C.M. motion.

W can evaluate the GCM nann kernel analytically, b caus tD~~:~:(d,D) is also a Slater detenni

nant. As cluster As is a non-scalar cluster the calculation of the kernel is somewhat complicated. The

GCM kernel turns out to be given by

<tDg,;~:(d,D) ItD~,9:,,,cd'.D') = exp{- :1 (D2+ D'2) _ a~a (d 2+d'2)}

xexp{_aAI2D.D,_aA( A 2 rd'd'- aA 1A 2 (D'd'+d'D')} (10)
2A 2 A2+Aa 2(A2+Aa)

X [OIlI.lh,Omh.mlr,IBI
4+ (- )",h+mh'IBlaCZ. 11r C2.1I,'( : Yz].

2n +1+2n
-:-------:- and N=2n+t.
n!(2n+2l+ 1)!

(11)

The term Z is derived from the overlap integral between the hole states of As cluster and the particle

states of AI (or AI) cluster and depends on the angular part of the displacement parameters as follows:

( ) • (') 2-lh '2-lh' (a ')Z = Ylh-mh d Ylh'-mh' d d d e3 zt·t

( ) . ( I) 2-lh 12-111' 3( ad')
+Ylh-mh t Ylh'-mh' t t t e 2 .

( ) • (') 2-lh 12-lh' ( a ')
-Ylh-mh d Ylh'-mh' t d t e3 zt'd

( ) . (I) 2-lh 12-11,' ( ad')
-Ylil-mll t Ylh'-mh' d t d e3 2 ·t .

where t and t~ are the displacement parameters between AI and As clusters:

(12)

(13)

10 Eq.(12) the abbreviated notation e3(x)=exp(x) -1-x-x2/2 are u ed. The determinant IBI is coming

from the direct part of the hole states of the AJ cluster and is written as follows:

IBI = e3(pt· t')e3(pd' d/) -e3(pd' t')e3(pt· d') (14)

with p = a/2. The determinant IBI can be writt n as a sum of terms, each of which is a product of poly

nomial parts and Gaussian part .
max

IBI = L gCi) (pD· D'tlW (pD· d' t 2W (pd· D/
)k3(j) (pd· d/

)k4(i)
;=1

xexp{wlCi)pD' D'+w2Ci)pD' d/+w3(i)pd' D'+w4(i)pd' d/}.
(15)
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We can see that four types of scalar products of the displacement parameters are included in the deter

minant.

ill the GCM norm kernel of Eq.(lO), the two types of the determinants, IBIJ and IBj" are included.

The IBI4 term is generated from the direct part of the overlap kernel between the 2a and AJ cluster wave

functions. We call the term an 8p-lh type. The IBIJ term is generated from the one-nucleon exchange

part of overlap kernel between 2a and AJ clu ter wave function and is called a 7p type. Using Eq.(15),

the IBI4 t rm can be expr ssed a
max max max max

IBI 4= Lg(i1) Lg(i2) Lg(i3) Lg(i4)(oD'D'll(i1)+kI(i2)+klCi3)+kl(i4)

il=1 i2~1 ,"~I i4=1

x (oD· d')k2W)+k2(i2Hk2(i3)+k2(i4) (od' D')k3(ilHk3(i2Hk3(i3Hk3(i4)

X (oD. d')k4(ilHk4(i2)+k4(i3)+k4(i4)

X exp{(wl(i1) +wl(i2) +wl (i3) +wl (i4) )pD' D'}

X exp{(w2(i1) +w2(i2) +w2(i3) +w2(i4) )pD' d'}

xexp{ (w3(i1) +w3(i2) +w3(i3) +w3(i4) )pd' D'}

X exp{(w4(i1) +w4(i2) +w4(i3) +w4(i4) )pd' d'}.

(16)

By recoupling the vectors, the polynomial parts of the scalar products can be transformed to tensor cou

pled terms of the four displacement vectors.
[k I/Z] [kZ/Z] [k3/Z] [k4/Z]

(D· D')kl(D'd'y'\d' D'/3(d'd')k4=(47ZY I I I I (_)kl kZ+k3+kf
pl=O p2 0 p3=o p4=o

xL:; L:; L:; (kZ-ZpZ,O.kl-Zpl,O Ia4.0) (k4-ZP4.0.k3-ZP3,O Ia3,O)
a3 all 05 0.6

X (k4-ZP4.0,kZ-ZpZ,0 Ias,O) (k3-ZP3.0,kl-Zp 1.0 Ia6,O)

j
k4-ZM kZ-2pZ as]

X"fj~2I+l X k3:~P3 kl:~Pl a/6 [[y.3Cd).y.4(D)],,[y.sCd').y.6CD')],1

where the coefficient

(17)

A~= (-1) (N-/J/2
M(2l+ 1)

(N-l)!!(N+ l+ 1)!! . (18)

(19)

and also the coefficients ( I) and { } are the Cleb ch-Gordan and the 9j-symboles, respectively.

The GCM wave function with the definite angular-momentum i written in terms of the projections

of the relative angular-momenta /1 and 12J •

<DGCM(Cl23,ll)LR,lh:LMJ =L.m23,ml,m"Cl23m23ll mil LRMR) (LRMRlhmhILM,)
~ ~ ~ ~ GeM

X JdDJdd }lunl (D) }l23.m23(d) X <Dunll" (d.D).

The GCM norm kernel with definite angular-momentum turns out to be
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X Lm23.ml.mh m23'.m(m,/Cl23.m23llmlILRMR) CLRMRl"m"ILML )

X (l~.m;3l~m~ IL'RM;) CL~M~l~m~IL'MD (20)

(21)

The integrand i a multiplication of the calar products of the parameter d, D, d' and D' by the spheri

cal harmonics. We are therefore able to calculate the integrations analytically. In the angular momentum

projection, we use the intrinsic overlap integral of Eq.(lO), and the kernel is written as a sum of two

types of tenns, 8p-Ih and 7p.

The 8p-1 h tenn contains the IBI4 determinant and can be expanded by polynomials of the scalar

products. Then the 8p- Lh tenn can be calculated analytically.

GSP-I" = f dDfdd Yi;.ml (D) Yi~''''23Cd) X fdD'f dd' Yi;.m; (D') Yi2:!.mb (d')

X CD' D')kl CD' d')k2 Cd' D'/3Cd' dY4.

The 7p term contains the scalar products and also the products of spherical tensors, and is calculated in

the following integral:

G7P = f dDfdd Yi;.1111 (D) Yi~.m23(d) X fdD'fdd' Yi;.",; (D') Yi2J.m2J(d')

X CD' D')kl CD' d')k2(d' D')k3 Cd' d'/4 xC_)'"II+",h'

X [ Y1". m"Cd) Y;',;,. 1Ih,(d')d2d'2{t:3(Pt, t') +r4t:3(pd' d') -r2t:3(Pt 'd
/
) -r2t:3(pd' t')}

+ Yo (D) Yo' CD')D2D12 3(pd d')Ih.-mh /h'.-mll' t:.

+ Y;'1r.-mh CD) Y1,;'. "h,Cd') D2d'2{-t:3(pd' t') +r2t:3(pd' d
/
) }

+ Y;'1r.-mh (d) Y;;':_mh,(D
/
)d2D'2{-£3(pt· d

/
) +r2£3(Pd' d')}J.

(22)

The spherical tensors of the kernel and the V-functions of angular momentum projection can be

recoupled to spherical tensors of each GCM parameter. Therefore the 7p tenn is also reduced to the in

tegrallike Eq.(21) and can be calculated analytically.

On the other hand, the GCM wave function is a generating function of the H.O. wave functions, and

it can be expanded by the H.O. wave function of Eq.(2).

(23)

X exp(- a~3 d2- ~l D2)(J)(N23l23.Ntll)LR' l" : LMJ(J)os(Xc),

Using this relationship, we are able to derive the relationship between the nonn kernel in the GCM wave

functions of Eq.(20) and the one in the H.O. basi of Eq.(2).



(24)
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xexp{- a23 Cd 2+d'2) -!!:.LCD 2+ D'2)}DN1d 23D'N,'d'N2J
4 4 I 1

X <<1> (CN23 l23, N1l1)L R, lh :LML) 1<1> (CN;,l2;,N1
/l /)L~, l;, :L'M'L))

This relationship gives the tran formation procedure from the GeM kernel of Eq.(20) to the kernel in

the H.O. ba is. The matrix element of the nonn kernel in the H.O. basis are obtained a the coefficients

of the powers of d, D, d' and D '. Thus we are able to solve the eigenvalue problem of the nonn kernel,

which gives all of the nece sary quantities.

4. Eigenstates of the norm kernel

The calculated allowed tate of 39K+a+a y tern are Ii ted in Table I all of which are cIa sified

according to the SU(3) symmetry. The states with the total quanta N<22 are not allowed as a matter

of course. We can see the lowest N=23 space contains the important (fpY shell-model states as (A, fl.)

= (15,3), (13,4), (ll 5) ... It should be noted that the 39K+a+a model can describe important ground

configuration of 47V. The N=24 space include the ( d)"'(fp)8 states such a (A, fl.) = (18,2), (17,4), (16,6),

... The configurations with a larger value of N>25 have a capacity for presenting the 2a- as well as the

a-cluster states. As the number of quanta becomes larger, multiplicity of the same (A, fl. )-states increases

notably. It i interesting that even when the number of quanta i large enough and the largest eigenvalue

almo t tend to unity there till remain orne tate with rather mall eigenvalue . It is noted that the

anti-symmetrizing effect of the three cluster system is still important at large N states

Table I. The Pauli-allowed states of the 39K+a+a system.
They are cla ified by the SU(3) label (A,fl.) with the multiplicity n.

N (A,I1)"

23 (15,3)(13,4)(11,5)(9,6)(7,7)(5,8)(3,9)

(182)'(16,3)'(14 4n12,5)'(1 0,6)\8 7y(6 8y(4,9)'(2, 10)'
24 (17,4)(15,5)(13,6)(11,7)(9,8)(7,9)(5, I0)(3,11)(1,12)

(16,6)(12,8)(8,10)(4,12)(0,14)

(21 1)'(19 2)3( 17 3)'(15,4)'( 13,5)'(11,6)'(9,7)'(7,8)'(5 9)'(3, I0)3( I, I I)'

25 (203)(18 4Y(16 5)'(14,6)'(12 7)'(10,8)'(8,9)'(6,10)'(411)'(2 12Y(0,13)

(19,5)( 17,6)( 15,7)(13,8)( II ,9)(9,10)(7, I 1)(5,12)(3,13)(1,14)

(24,0)'(22, I)'(20,2/(18,3)5(16,4l(14,5/(l2,6)6( I0,7n8,8l(6,9/(4, 10/(2, II )l(O,12)'

26 (23,2)(21,3)'( 19 4)l( 17 5)'() 5,6Y(l3 7)3( I I 8)3(9 9)3(7 10)\5,1 1Y(3 12)3( I 13)'

(22,4)(20,5)(18,6)'( 16,7)(14,8)'(12,9)( 10, 10)'(8, 11 )(6, 12)'(4,13)(2,14)'

(25,0)\23,1 )'(21 2)"( 19,3)'(17,4)'(15 5)'(13 6)'( 11,7)'(9,8)'(7 9)'(5, I0)"(3, 11 )s(I 12y

27 (26,1 )(24,2)'(22,3)3(20,4)'(18,5)'(16,6)'(14,7)'( 12 8)'(10,9)'(8, 10)'(6,11)'(4,12)'(2,13)l(0,14)

(25,3)(23,4)(21,5)'( 19,6)'(17,7)'(l5,8)'(13,9Y( 11, 10)'(9, II )'(7,12)'(5,13)'(3,14)2(1,15)
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(26,0)\24 1)\22,2)8(203)8(18 4Y(l6 5)8(14 6Y( 12,7)8(10,8t(8 9Y(6, LOY(4 II t(2 12)'(0,l3)

28 (27, 1)'(25,2)'(23,3)'(21,4)'(19 5)'(17 6)'( 15,7)'(13,8)'(11 ,9)'(9, 10)'(7,11 )'(5, 12)'(3,13)'(1,14)2

(28,2)(26,3)(24,4)'(22,5)(20,6)'( 18,7)2(16,8)'(14,9)'( 12, I0)'( I0, 11 )'(8,12)'(6,13)'(4,14)'(2,15)(0,16)

N
odd

N
even

For comparison, the allowed tates of the IS +a+a sy tern are listed in Table II. Tills sy tern provides

another testing ground for the persistence of the present method. Furthermore, this is suited for the study

of 2a-nh cluster states in the A=20-24 d nuclei. The states with th total quanta N< 14 are not allowed

in this sy tern. We can see that the I + a + a cluster model space contain many important shell-model

states. The lowest quanta N=15 states are the (sd/ ground configurations as (A, f.L) = (8 3), (64) (4,5)

... The important core-excited states such a the (sd)8(p)"1 N=16 (A., f.L) = (11,2) and (8,5) are included

in the pre ent model space.

Table II. The Pauli-allowed states of the 15 +a+a system.
They are classified by the 5U(3) label (A, f.L) with the multiplicity n.

N (A, /1.)"

15 (8,3)(64)(45)(2,6)

16
(11,2)(9,3)2(7,4)'(5,5)'(3,6)'(1,7)

(8,5) (4,7)(0,9)

17
(14,1)( 12,2)'( 10,3)3(8,4)3(6,5)\4,6)3(2,7)'(0,8)

(I 1,4)(9,5)(7,6)(5,7)(3,8)(1,9)

18
(17,0)(15 1)'(13,2)'(11,3)'(9,4)"(7,5)'(56)"(37)'(1,8)'

(14,3)(12,4)( I0,5)'(8,6)(6,7)'(4,8)(2,9)'

19
(180)'(16 1)3(142)"(123)'(104)'(8,5)'(6,6)'(47)"(2,8)'(0,9)

(17,2)(15,3)(13,4)'(1 1,5)'(9,6)'(7,7)'(5,8)'(3,9)'(1, I0)

20
(190)3(17, 1)'(15,2)'( 13,3t(l1 ,4t(9,5)6(7,6)6(5 7)'(3,8)'(1 9)'

(20,1)( 18,2)(16,3)'(14,4)'(12,5)'(1 0,6)'(8,7)'(6,8)2(4,9)'(2, I0)(0, II)

21
(20,0)"( 18 1)'( 16,2)\14,3)'(12,4)'( I0 5)'(8,6)'(6,7t(4 8)'(2 9)3(0, 1O)

(21, 1)(19,2)'( 17,3)'(15,4)'(l3,5)3( II ,6)'(9,7)'(7,8)3(5,9)'(3, I0)'(1 , I I)
... ..-

N (N-I ,0)(N-3, I) -5,2)" '(2,(N-3)/2)(0 - 1)/2)
odd (N, I)(N-2,2)(N-4,3), "(3,(N-I )/2)( I,(N+ I)/2)

N -1,0) -3, I) -5 2)" '(3,N/2-2)( I /2-1)
even (N,I)( -2,2)(N-4,3)" -(2, /2)(0,N/2+1)



On the Nann Kernel for Three-Cluster Sy tern Includinga U(3) on- calar Cluster 9

5. Summary

I have extended the calculational method of the norm kernel on the harmonic oscillator basis to

three-cluster systems including a SU(3) non-scalar cluster. Applying it to the 39K+a+a and 'IN+a+a

three-cluster systems, eigenvalues and eigenstates of the norm kernels have been calculated. They are

characterized by SU(3)-cla ification with the arne multiplicity. It i found that the multiplicity of the

sam (A, ,u)-states incr ases notably according as N becom larger and the anti-symmetrizing effect of

the three cluster sy tern i still important at large N tate . It is nece ary to study the structures of 41y

and 23 a nuclei using the results of the pres nt calculations.
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