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On the Norm Kernel for Three-Cluster System Including a SU(3)
Non-Scalar Cluster

Toshimi SAKUDA

Abstract
A calculational method 1s extended to three-cluster system including a SU(3) non-scalar cluster
in order to study more various cluster systems and is applied to the *K+a+a and "N-+a+a cluster

systems. Eigenvalues and eigenstates of the norm kernel are calculated and discussed.
1. Introduction

Much attention has been devoted to superdeformed (SD) rotational bands in *Ar-“Cr nuclei [1, 2].
These collective aspects are particularly interesting subjects for nuclear structure studies. I have per-
formed a-cluster model calculations for *Ar-*Cr and have shown that the a-cluster structure is a stable
feature in this region [3]. The relationship between the SD bands and the 2a-cluster structure has also
been discussed in several studies [4-7], largely because the SD structure of these nuclei is regarded as
a key to understanding the relationship between the SD bands and the cluster structure. Therefore, it is
very interesting to apply the multi-cluster model approach, which can treat various cluster configura-
tions, to the SD bands in this region. This application could offer valuable insight into the SD bands and
their strong collectivity. In this paper, I will present an extension of the previous calculational method
[8] for determining the norm kernel of three cluster systems in order to study a wider variety of cluster

systems.
2. The norm kernel

In this article, I mainly discuss the "K+a+a system as an example of the explanation of the present
method. The system provides the first link in the chain of 2 a-nk cluster states in A=44-48 nuclei and
is well suited for this purpose. Moreover, it is not so difficult to apply the method to *N-+a+a and other

cluster systems. In the “K+a+a cluster system, the model space is described by a set of wave functions
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The ¢ (a) is the antisymmetrized internal wave function of @ and corresponds to (0s)* configuration.

Fig. 1. Coordinates of the "K+a+a system.

The core state ¢i,;:"v,;,_l 5 (PK) is assumed to be (4, 1) = (0,2) state according to removing one nucleon
from the sd-orbits in “’Ca. The orbital angular momentum /; and the spin /2 of the *K are coupled to
the total angular momentum /,. We adopt a common oscillator constant « for all clusters. The relative
wave functions Uziie(?) and Uyin(R) are harmonic oscillator (H.O.) wave functions with M.l and
Nil\ quantum numbers. The relative coordinates » and R are shown in Fig.1. The bracket implies two
angular momenta’s coupling to a resultant angular momentum. Therefore, the relative angular momenta,
I and /,, are coupled to the total relative angular momentum L. Furthermore, /, and Lz are coupled to
the total angular momentum J of ¥V nucleus.

The norm kernel is concerned essentially with the symmetry of the spatial part of the cluster wave
functions, 1.e., the total orbital angular momentum L is a good quantum number. Therefore, it is conven-
ient to usc the following L-projected wave functions to calculate the norm kernel. We use the model

wave function

(D((Nz:a Ly Ny LD L, Ly LML)
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In the above equation, the relative angular momentum and the orbital angular momentum of K, L+ and

(2)

Iy, respectively, are coupled to the total orbital angular momentum L. The relationship between the J-
projected set of states of Eq.(1) and the L-projected set in Eq.(2) can be derived easily in angular mo-
mentum recoupling. Hereafter, we discuss the method by using the mainly L-projected wave functions.
The model wave function is generated as a direct product of the two relative wave functions and a core
wave function : (N, 0) X (M, 0)X (A, #,). The Pauli-allowed states are obtained by diagonalizing the
norm kernel.
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Thus the totally antisymmetrized basis that satisfies the orthonormal condition is given by

Qe = vx_ﬂlﬁz Nag lo3. Ny I \!,h..f,-‘C]‘.Q:Q V) LR.I,,(D((NZ:t Ly Ny 11>LR1 L :LML)' G
The eigenstates are classified by the total oscillator quanta N=N:+N, and the SU(3) symmetry. The sym-
bol Q denotes the SU(3) quantum number (4, ©) K.

Then the problem is to calculate the norm kernel and the eigenvalues 1 It s very tedious and
enormous to treat the antisymmetrization operator within the internal and relative coordinate system.
Therefore the computation of the kemnels in heavy systems is done by calculating the corresponding
GCM kernels and transforming them. This can be done by noting the fact that corresponding GCM ker-
nel plays the role of a generating function of the kernel of Eq.(3).

3. The norm kernel in GCM space

For the sake of an explanation, I use a more general notation in this section. We treat the GCM wave

function of the form

i %! ~ 4 {p(A,S)P(A, S)9(A, S}, ®

OM(S, 8,8, =

o v
where 4 is the antisymmetrizer which exchanges the nucleons belonging to different clusters and A, is
the mass number of the cluster / and specifies the cluster. The total mass number is A=A, +A:+A,. For
the present system we simply take A;=A,=4 and A:=39. The antisymmetrized cluster wave function
(A, S) is assumed to be (0s) and (0s)'(0p)*(sd)* shell-model wave functions centered at Si for & and
YK, respectively. The center-of-mass (C.M.) point of the total system is typically chosen as the origin
0, that is A,Si+A:S:+A,S:=0. Since #(A,.S) is a Slater determinant, ®““*(S,,S.,S) is also a Slater de-
terminant. This fact makes the calculation by GCM straightforward.

The shell-model wave function of each cluster can be separated into the internal and the C.M. wave

functions.
$(A,S,) = ¢“"<Al.)[aTA"]'ﬁ' exp{ - a‘;f (X,—$)%, (6)
where X; is the C.M. coordinate of the cluster A, Substituting this equation into Eq.(5) gives
DM(S, S, S,) x l'i/:-,-'f‘--—'» ,ﬁ] [—--‘f\--'--“i ’N{pr{ L-——- X876 (A" (A, (Ag)j]. (7)

When we treat the system with definite angular momentum, we need to project out the definite relative
angular momentum components from ®““Y(S,,S,,S,). In order to observe the relative motions of the
clusters, it is convenient to use the inter-cluster relative coordinates ( r and R ) and the total C.M. coor-
dinate Xa.

ceM _ saA ‘ aA  , A A, IA 1
(D[,-:.-n/l(dr D) I ( - )ILXP{_ —X(; ‘\;" __A[_

Xé[(%)%exp{ (R~ D)Z}(—-—) exp{- - (r- )" (A 4" (A, ¢ }(8)
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A(A, A, ALA,

where a1 = A a, an= 3~ ,—a and the displacement parameters of the cluster

centers are

d=8,—8; and D=8,~ 4 758,555 ©)

In this way, the dependence on Xs is factored out, and the GCM wave function is a non-spurious
wave function about the C.M. motion.

We can evaluate the GCM norm kernel analytically, because (Df:c,,,(dD) is also a Slater determi-
nant. As cluster A; is a non-scalar cluster, the calculation of the kemnel is somewhat complicated. The

GCM kernel turns out to be given by

A 7 7 /‘.' a;) 7
(054 (d,D)|d55H (d, D)) -e;\p{ L(D*+ DY) —B(d*+d' D)}
Af , ahA A,
X ' i L)} - e S
e};p{ Tl L A+x3]dd A, Ay D dT dD)} (10)
| 4 mh -+ mh’ F a
X l:(slh,[h'dmh.mli/lB- l+<-_) ! ! Bl iCZ,LhC‘z.”',(—Z)ZZ],
f 2”,},'-_3 -
—(—1)" / and N=2n+, (1)

V nl(2n+2{+1)!

The term Z is derived from the overlap integral between the hole states of A; cluster and the particle

states of A, (or A;) cluster and depends on the angular part of the displacement parameters as follows:

Z :3’1;; yzzlt<d>y!}z’ mlx’(d/>d2 [hdlg H'IES('at't,>

2
] : N Btk 21 a ’
4.-)’!/1 irea'l(t)y{l." mh'(t )z— ”[ # 63(?d'd)
a (12)
I (@D (EDa T EB(-d)
. N L2 th g2 a ,
YOV e (D71 M3 d 1),
where t and t* are the displacement parameters between A, and A, clusters:
A Frd Ay
t=D+ AtA d and t=D+ AA d (13)

In Eq.(12) the abbreviated notation €3(x) = exp(x) — 1 =x —x%/2 are used. The determinant |B| is coming

from the direct part of the hole states of the Ajs cluster and is written as follows:
IB| = e3(pt-t)e3(pd-d") —e3(pd- t")e3(pt-d") (14)

with 0 = a/2. The determinant |Bj can be written as a sum of terms, each of which is a product of poly-

nomial parts and Gaussian parts.
=, Z g(l) (‘OD D/>kl-.rl(pD_ d’)p’ffﬁ:'(pd N D/)k:\'-;r (,Od A d/)k-I' i)
i : (15)
Xexp{wl()pD- D' +w2()oD- d’ +w3(i)pd- D +wi(i)od-d'},
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We can see that four types of scalar products of the displacement parameters are included in the deter-
minant.

In the GCM norm kernel of Eq.(10), the two types of the determinants, (B’ and |BJ’, are included.
The {B|* term is generated from the direct part of the overlap kernel between the 2a and A; cluster wave
functions. We call the term an 8p-1h type. The |B|' term is generated from the one-nucleon exchange
part of overlap kernel between 2a and A; cluster wave functions and is called a 7p type. Using Eq.(15),

the 'B|' term can be expressed as

IB ' Zg(ll) _g(22) Zg(13> Zg(i‘l)COD'DI)MI“‘ FR1(I2) + k) (i3) + k1 (i)
il=1 21 3=1 =1

2001 +K2082) + k2043) + k2(i11) K3Ci1) + A3CI2) +A3013) +K3Ci)
X(‘OD'd/)Aw K2(i2) + Kk2(i3) + k2(iq (pdD/)d 1)+ k3(i2) + k3(i3) +k3(id
X (‘OD'd')"‘“”i' FkaCi2)+ k4 (i3) + k4 (id)

Xexpi (01(i1) +wl (12) + w1 (i3) + wl(i4>)ﬁD'D'} (16)

Xexp{(wZ(il) +02(i2) +w2(i3) +w2(i4) JoD-d’}
X exp{(wB(il) +w3(i2) +w3(43) +w3(i4)>pd-D'}

X expi (0431 +wd(i2) +04(i3) +w4a(i4) Jod-d'}.

By recoupling the vectors, the polynomial parts of the scalar products can be transformed to tensor cou-

pled terms of the four displacement vectors.
k1/2) [k2/2] [k3/2] (kd4/2
(D. D’)“(D' d/)k::(d_ D’ A‘ii(d_ dl)k: - (47)? Z S_’ \L }_‘ ( ).‘;I 2+ K3+ ki

pl=0 p2=0 p3=0 pi4=0

2
k1 k2 k3 k4
X {A.i;l 2p1 Alf.-: '.’.,'I:!A.-'\'Zl :ep:«.A"lkz :e;.-'.}

L OIDIDY Zﬁ.('.'lc2—2p2,0,k1—2p 1,01a4,0) (k4-2p4.0.k3-2p3,01a3,0)

a3 at ai a (17)
% (k4-2p4,0,k2-2p2,0 | a5,0) (k3-2p3,0,k1-2p1,0]a6,0)
' ka-2p4 K2-2p2 a5) o _
X3zl U x {e32p3 k1 2p1 a6} [ (@), %(D)],.[ ¥:(8), %D, |
a3 ad 1] -
where the coefficient
N (N=11/2 v"'lr V‘ 2[ '+' 1)
A[\ (_1> N-U3/2 | 4 < a ! (]8)

VO (N-DEN LD

and also the coefficients ( | ) and { } are the Clebsch-Gordan and the 9j-symboles, respectively.
The GCM wave function with the definite angular-momentum is written in terms of the projections

of the relative angular-momenta /i and /.

q)GC“W((ZIH‘ l I)Lk’lh:LMl.) Zm'.f."-, ml,mh(- l;’:’. m;‘:: l 1 m 1 | LRMR ) <LRMthmh l LIML)
X SADSdd ¥, 11 (D) Yoy 0y (d) X OFEN (A D).

thmh

(19)

The GCM norm kernel with definite angular-momentum turns out to be
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<(DGCM((123» 1) L,y :L1M1,> |(DCC'”(-(Z s b DL Ly 3L/1V[/1,)> =061 Onyary,

-
X Lm',!:u mymy z

Ly mgglymy | Ly M) (Lg Mg l,m, | LM,)

G ’
Mgy Ay Py,

X <l;:a,mlzal;m: L,R‘MIQ (L/R ‘MI\/’ Z;IM; ‘ L’sz) (20)
x [dD[ad Y, D) Y, (d) x [dD'[dd"y;, . (D) ¥, . (d")
X (O (a,D) | 05M. (@, D).

The integrand is a multiplication of the scalar products of the parameters d, D, d” and D’ by the spheri-
cal harmonics. We are therefore able to calculate the integrations analytically. In the angular momentum
projection, we use the intrinsic overlap integral of Eq.(10), and the kernel is written as a sum of two
types of terms, 8p-1h and 7p.

The 8p-1h term contains the |B[* determinant and can be expanded by polynomials of the scalar

products. Then the 8p-1h term can be calculated analytically.
GS‘D‘“i = ‘rdf)‘rda Y;l..ml Cf)) },(-_;i,m:i.‘(a) X Idﬁ/,rd(’i/ Y;i.mq (D/) )/;G‘L‘mgi(al) (21)
X (D-DY*(D-d)*(d-D)*(d-d)".

The 7p term contains the scalar products and also the products of spherical tensors, and is calculated in
the following integral:
Gy,=5dDfddY,, (DY, ,, (d)xsdD'Sdd"Yy (D) ¥, .y (d)
X (D-D)*(D-d)*(d-D)¥(d-d")e x ()™

X [Ylh. mh<-&) Y;Iz", mh'(&/)dzd/z {83 (pt ) t/) —}'"7’453 (40d d/) _7283 (pt d,) _7’253 (pd ) t/)}

+ ),[h' mh (ﬁ) Y;h".rrmh’<f)’) DUDQES (,Od : d,) (22)

Y (D) Y (A0 D*{ —£3(0d t") +7%3(0d-d)}

+ Y;IL mh (a) Y;l;’_ mh’(]’j/>d2D’2{~E3(,0t-'d,) _TZEBCOd'd,)}]

The spherical tensors of the kernel and the Y-functions of angular momentum projection can be
recoupled to spherical tensors of each GCM parameter. Thercfore the 7p term is also reduced to the in-
tegral like Eq.(21) and can be calculated analytically.

On the other hand, the GCM wave function is a generating function of the H.0. wave functions, and

it can be expanded by the H.O. wave functions of Eq.(2).

Oy LD Ll LM, ) = \Z; = C.\'g.uczv:.‘..lg.-( Vg_l'D )NI(L§'0})W
S (23)

x exp( Ej—"—a’."' %‘-Dz)d)((NH,_.;lm,]\ﬁll)LR, Ly LM, )®ys(X,),

Using this relationship, we are able to derive the relationship between the norm kemel in the GCM wave
functions of Eq.(20) and the one in the H.O. basis of Eq.(2).
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<(DGCM((123, L)Lgl, :LML> ‘(DGCM«lzal,l DL L 3LlMll.)> =0,/ Oarut,

Va, v+ N’ Vra:f.:i- Nog tNiy
X 21\'1.1\‘23 ENI’. V23’ C.\',,z, c;-\’z:,.z.,,,-!c.\'1 L C.\g;{.zz;:( 2! ) ] ( 9 )
(24)
a - 9 79 9 7 A - IN N
xexpf-22(@*+a™) — (D 7+ Dy} DM s D™ g

X (O (N Loy N 1) Ly by LM, [0 (N Lo NVL ) L 1 L'M'L)>

This relationship gives the transformation procedure from the GCM kemel of Eq.(20) to the kernel in
the H.O. basis. The matrix elements of the norm kernel in the H.Q. basis are obtained as the coefficients
of the powers of d, D, 4" and D'. Thus we are able to solve the eigenvalue problem of the norm kernel,

which gives all of the necessary quantities.
4. Eigenstates of the norm kernel

The calculated allowed states of *K+a+a system are listed in Table I, all of which are classified
according to the SU(3) symmetry. The states with the total quanta N=22 are not allowed as a matter
of course. We can see the lowest N=23 space contains the important (fp)’ shell-model states as (4, 1)
= (15,3), (13,4), (11,5), -~ It should be noted that the "K+a+a model can describe important ground
configuration of “V. The N=24 space includes the (sd)'(fp)" states such as (2, 1) = (18,2), (17,4), (16,6),
-+ The configurations with a larger value of N=25 have a capacity for presenting the 2a- as well as the
a-cluster states, As the number of quanta becomes larger, multiplicity of the same (4, i)-states increases
notably. It is interesting that even when the number of quanta is large enough and the largest eigenvalue
almost tends to unity, there still remain some states with rather small eigenvalues. It is noted that the

anti-symmetrizing effect of the three cluster system is still important at large N states

Table I. The Pauli-allowed states of the "K+a+a system.
They are classified by the SU(3) label (2, #) with the multiplicity n.

N (A, umy

23 (15,3)(13,4)(11,5)(9,6)(7,7)(5,8)(3,9)
(18,2)%(16.3)%(14,4)'(12,5)°(10,6)'(8,7)(6,8)'(4,9)'(2,10)’

24 (17,4)(15,5)(13.6)(1 1,7)(9,8)(7,9)(5,10)(3,11)(1,12)

(16,6)(12,8)(8,10)(4,12)(0,14)
(1,17(19,2)'(17,3)°(15,4(13,5)(11,6)'(9,7)(7,8)(5.9)(3, 1 0)*(1,1 1)}

25 (20,3)(18,4)%(16,5)°(14,6)(12,7)/(10,8)%(8.9)'(6,10)(4,1 1)(2,12)¥(0,13)
(19,5)(17,6)(15,7)(13,8)(11,9)(9,10)(7,1 1)(5,12)(3,13)(1,14)
(24,0(22,1)°(20,2)°(18,3)(16,4)°(14,5)°(12,6)(10,7)*(8.8)(6.9Y(4,10)'(2,1 1)’(0,12)’
26 (23.2)(21,3)(19.4)'(17,5)(15,6)'(13,7)'(11,8)°(9,9)'(7.10)(5.1 1 (3, 12)*(1,13)’

(22,4)20,5)(18,67(16,7)(14,8)(12,9)(10,10(8,1 1(6,12)(4,13)(2,14)

(25.00%(23.1)(21,2)°(19,3)(17,4)(15,5)(13.6)'(11,7)(9,8)(7,9Y(5,10)%(3,1 1)*(1,12)’
27 (26,1)(24.2)/(22.,3)/(20,4Y'(18,5)(16,6)°(14,7)'(12,8)"(10,9Y(8, 10Y*(6, 1 1)'(4.12)"(2,13)*(0,14)
(25,3)(23.4)(21.5):(19,6)(17,7)(15,8)*(13.9)%(1 1, 10)(9, 1 1Y3(7,12)%(5,13)%(3,14)X(1,15)
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(26,0)°(24,1)%(22,2)*(20,3)°(18,4)°(16,5)'(14.6)(12,7)°(10,8)°(8,9)'(6,10)°(4.11)°(2,12)°(0,13)
28 (27,1)(25,2)'(23,3)"(21,4)(19,5)(17,6)°(15.7)°(13,8)(11,9)°(9,10)°(7,1 1)°(5,12)*(3,13)*(1,14)*
| (28,2)(26,3)(24,4)°(22,5)(20,6)*(18,7)°(16,8)°(14,9)*(12,10)*(10,11)*(8,12)*(6,13)*(4,14)*(2,15)(0,16)

(N-2,0)(N-4,1)(N-6,2)...(3,(N-5)/2)(1,(N-3)/2)

gg 4 (N-1,1)(N-3,2)(N-5,3)...(2,(N-1)/2)(0,(N+1)/2)
(N,2)(N-2,3)(N-4.4)...(3,(N+1)/2)(1,(N+3)/2)
(N-2,0)(N-4,1)(N-6.2)...(2,N/2-2)(0,N/2-1)

e]:' e (N-1,1)(N-3,2)(N-5.3)...(3,N/2-1)(1,N/2)

(N,2)(N-2,3)(N-4,4)...(2,N/2+1)(0,N/2+2)

For comparison, the allowed states of the “N+a+a system are listed in Table I1. This system provides
another testing ground for the persistence of the present method. Furthermore, this is suited for the study
of 2a-nh cluster states in the A=20-24 sd nuclei. The states with the total quanta N< 14 are not allowed
in this system. We can see that the "N+ a + a cluster model space contain many important shell-model
states. The lowest quanta N=135 states are the (sd)’ ground configurations as (4, ) = (8,3), (6,4), (4,5),
-+ The important core-excited states such as the (sd)*(p)' N=16 (4, 1) = (11,2) and (8,5) are included

in the present model space.

Table II. The Pauli-allowed states of the "N+a+a system.
They are classified by the SU(3) label (4, ) with the multiplicity n.

N 2, 1) |
15 (8,3)(6,4)(4,5)(2,6) '
16 (1 l,2)(9,3)2(7,4)2(5,5)2(3,6)2(1,7)

(8,5) (4,7)(0,9)
17 (14,DH(12,2)%(1 0,3)“(8§4)’(6,5)-‘(4,6):‘(2,7)2(0,8)

. (11.4)9,5)(7.6)(5,7)(3,8)(1.9) |
® (17,00(15,1(13,2)°(1 1,3)'(9,4)'(7,5)(5,6) (3. 7)(1,8)’ ‘

(14,3)(12,4)(10,5)(8,6)(6,7)(4.8)(2,9)°
- (18,0)°(16,1)*(14,2)'(12,3)°(10,4)(8,5)(6,6)°(4,7)"(2,8)(0,9) ‘
(17,2)(15,3)(1 3,4)1(1 l,5)2(9,6)2(7,7)1(5,8)2(3,9)’(1 ,10)

l 20 (19,0)’(17,1)‘(15,2)“(13,3)"(11,4)“(9,5)"(7,,6)"(5,7)5(3,8)‘(1,9)2 ‘

. (20,1)(18,2)(1 6,3)(1 4,4)3( 12,5)(1 0.6)2(8.7)"(6.8)2(4.9)1(2, 10)(0,11)

| 5 (20,0)°(18,1)°(16,2)°(14,3)'(12,4)(10,5)'(8,6)'(6,7)'(4,8)(2,9)*(0,10) ‘

(21 ,1)(19,2)2(17,3)3(1 5,4)3(13,5)“(1 1,6)3(9,7)3(7.8)’(5.9)“(3,10)2(1.1 1)

|

|
N (N-1,0)(N-3,1)(N-5,2)--(2,(N-3)/2)(0,(N-1)/2)

. odd (N, 1)(N-2,2)(N-4,3)--(3,(N-1)/2)(1,(N+1)/2)

| N (N-1,0)(N-3,1)(N-5,2)-(3,N/2-2)(1,N/2-1)

| even (N, 1)(N-2,2)(N-4,3)--(2,N/2)(0,N/2+1)
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5. Summary

| have extended the calculational method of the norm kernel on the harmonic oscillator basis to
three-cluster systems including a SU(3) non-scalar cluster. Applying it to the *K+a+a and “N+a+a
three-cluster systems, eigenvalues and eigenstates of the norm kemels have been calculated. They are
characterized by SU(3)-classification with the same multiplicity. 1t is found that the multiplicity of the
same (4, u)-states increases notably according as N becomes larger and the anti-symmetrizing effect of
the three cluster system is still important at large N states. It is necessary to study the structures of 'V

and “Na nuclei using the results of the present calculations.
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