66

竹中・稲垣・大島・大島・村山・山口・中山・山本:Web Knowledge Forum®を利用した理科授業のデザイン実験

研究論文

Web Knowledge Forum[®]を利用した理科授業のデザイン実験

	中 真希子 利 総合人間科学研究科	洦 垣 成 哲 神戸大学発達科学部
大 島 純	大島律子	村山 功
静岡大学教育学部	CSILE Project in Japan	静岡大学教育学部
山 口 悦 司	中山 迅	山本智一
宮崎大学教育文化学部	宮崎大学教育文化学部	神戸大学大学院総合人間科学研究科

Design Experiments of Science Learning using Web Knowledge Forum[®] Makiko TAKENAKA*, Shigenori INAGAKI**, Jun OSHIMA***, Ritsuko OSHIMA****, Isao MURAYAMA***, Etsuji YAMAGUCHI*****, Hayashi NAKAYAMA*****, Tomokazu YAMAMOTO* *Graduate School of Cultural Studies and Human Science, Kobe University, **Faculty of Human Development, Kobe University, **Faculty of Education, Shizuoka University, ****CSILE Project in Japan, *****Faculty of Education and Culture, Miyazaki University

We designed two CSCL-based science lessons for the 6 th grade classroom, i. e. air and how things burn, and the characteristics of various solutions. The CSCL technology we used was Web Knowledge Forum[®], the second generation of CSILE[®] software. In the both cases, we designed a lesson in which Web Knowledge Forum[®] was used as an on-line communication tool. The design in the second lesson was revised by providing students with cognitive scaffolds so that they could more articulately manage their knowledge as socially constructed. Comparative analyses manifested that students in the second lesson were more engaged in science activities through social construction of their knowledge in Web Knowledge Forum[®].

Key words : CSILE[®], Web Knowledge Forum[®], CSCL, design experiments, collaborative learning

研究の背景と目的

本研究は、CSCL (Computer support for collaborative learning) システムとしての Web Knowledge Forum[®] を小学校の理科の授業に導入して行ったデザイン実験 の結果をまとめたものである.日本の小学校での Web Knowledge Forum[®]の本格的な授業への導入 は、本研究がはじめての試みである.

Web Knowledge Forum[®]は、学習共同体が共有で

きるデータベース作成ソフトウェアであり、学習者が 協調して自分たちの知識を構築し、組織化していくた めの支援を目指している.このシステムは、CSILE[®] (Computer-Supported Intentional Learning Environment[®]) の第2世代目となる Knowledge Forum[®]の Web バー ジョンで、トロント大学オンタリオ教育研究所応用認 知科学センターの Bereiter, C. や Scardamalia, M. らを 中心とするプロジェクトチームによって開発された. CSILE[®]や Knowledge Forum[®]を利用した協調的な データベースの構築活動については、学習者に対して
彼らの持っている既存の知識や情報を分かち持たせる
ことで、質の高い学習機会を提供し、結果として伝統
的な教授と比較すると、複合的な科学現象に関する概
念的理解を促進することなどが報告されている(e.g.,
Oshima, Bereiter, & Scardamalia, 1995; Oshima,
Scardamalia, & Bereiter, 1996).

本研究では CSCL システムなどのテクノロジーを 学習場面へ導入するにあたり、デザイン実験アプロー チ (Brown, 1992; Collins, 1992) を用いている. デ ザイン実験アプローチでは、学習環境を考える際に次 のようなスタンスを取る、まず、実際の教育的実践を 構築する中で、これまでの学習に関する研究で明らか にされてきた知見を総合的に利用して、活動をデザイ ンしていくことである.これは、例えば実際の教室の 中で起っている学習場面では、カリキュラム・デザイ ンやテクノロジーの使用、物理的な環境要因、教師や 生徒の役割といったことは、相互に作用しているもの であり、それらを独立して把握するのではなく、学習 システムのひとまとまりとしてとらえることが必要で あることを示している. 従来のような実験群と統制群 を設定し、限られた要因の効果を比較するようなアプ ローチとは異なり、研究対象となる実験授業を組織 し、その学習活動を総合的な視点でデザインする、そ して、そのデザインの評価を反省的に行い、有効性や 課題を検討しながら、さらにデザインの修正を継続的 に行っていくことでよりよい学習環境の構築を目指す ものである.

本研究では、デザイン実験アプローチの手法を用い て、2つの単元について実験授業を行った.単元をデ ザインするにあたり、学習者の知識の構築とその共 有、及び学習のリフレクションを通して協調的な学習 を促進するために Web Knowledge Forum[®]を使用す ることを試みた. 2つの実験授業の間では、1つ目の 実験授業において見出された課題を2つ目の実験授業 で解決するように、学習の足場かけ(scaffolding)の デザインを修正した.例えば、Web Knowledge Forum[®]のデータベースの構成やその利用の仕方に関 する修正である. その修正がWeb Knowledge Forum[®]上での活動にもたらした変容について明らか にすることを、本研究の目的とする. II. Web Knowledge Forum[®]

Web Knowledge Forum[®]は、インターネットを介 して共同体の協調的な知識構築を実現するための学習 支援ソフトウェアである.

Web Knowledge Forum[®]の先代である CSILE[®]の開 発理念は、学習者に対して知識構築活動の生起を支援 すること、また、学習者が認知的な目標へ向かう活動 を支援することなどである(Scardamalia, Bereiter, McLean, Swallow, & Woodruff, 1987). Web Knowledge Forum[®]も同様の理念をベースにしてい る.

Web Knowledge Forum[®]の学習支援ソフトウェア としての特徴は、学習共同体に対して大きく次の2つ の支援を行うものとして説明することができる.その 1つは、学習者の知識構築活動の支援であり、もう1 つは共同体の協調的な学習の支援である.

知識構築活動は、学習者が Web ブラウザからイン ターネットを介して Web Knowledge Forum[®]のデー タベースにアクセスし、そこに自己の考えや知識を 「ノート」という形式で外化し、保存・蓄積していく ことを通じて行われる.「ノート」の作成はテキスト だけでなく,グラフィックスやムービーといった多様 な表現手段によって行うことができる. 作成された ノートは「ビュー」と呼ばれるものの中に保存・蓄積 されていく. 「ビュー」とは、データベース内でフォ ルダのような役割を果たすものであり、学習活動の対 象となるトピックや概念といった枠組みとして作成す ることができる、ビューの中に保存されたノートは、 階層的に蓄積され、データベース内でリスト状に表示 される. また, 保存されたノートは再編集することが 可能で、ノートの著者は自分のノートにいつでも書き 足しや変更を加えることができる、さらに、自分の意 見と関連があるノートについては、それが他者のノー トであっても他のビューにあるノートであっても、リ ンクを作成することで関連を示すことができる.この ように、Web Knowledge Forum[®]では、多様な表現 手段による知識の外化、外化した知識の蓄積、再編 集、知識間のリンクといった作業を通して、学習共同 体の知識ベースを作成していくことで、学習者の知識 構築活動を支援する.

Web Knowledge Forum[®]はアカウント管理されて おり、学習者は各人の ID とパスワードでデータベー スにログインする、アクセスを許可された学習者は誰

でも、Web Knowledge Forum®のデータベース上に ある他者のノートを自由に閲覧することができる. ま た、「ビルド・オン」という機能では、例えば他者の ノートに意見したり、質問したり、他者の意見を引き 継いで自分の考えを述べたりする際に、ノート間の関 係を視覚的に明確に示すことができる、意見や質問な どを、この「ビルド・オン」機能を使ってデータベー スに追加すると、追加されたノートは構造化され、階 段状の「スレッド」として表示される. スレッドと なっている一連のノート群はそこで議論が生起してい ることを示し、そのスレッドの連なりの様子は議論の 深まりを示す指標となる. その他の協調学習を支援す る機能として、同じ考えの学習者が協力し合ってノー トの作成を行える「共著者」の設定がある.Web Knowledge Forum®では、学習者同士が自分たちで構 築した知識ベースを共有し、互いにノートを読みあっ たり、意見しあったり、協力してノートの作成を行っ たりすることで共同体の協調的な学習を支援する.

上述してきたような特徴を持った Web Knowledge Forum[®]を導入した2つのデザイン実験の概要について次に示す.

Ⅲ. 2つのデザイン実験の概要

1. デザイン実験1「燃えるをとく」

a. 単元の概要

1つ目のデザイン実験は、国立大学附属小学校6年 生の1クラス、計41人に対し、理科の「ものの燃え方 と空気」を題材にした単元「燃えるをとく」で行っ た、実施期間は、2000年5月18日から7月11日まで の、通常の単元配当時間とコンピュータの時間を合わ せた計42時間であった。

実験授業の単元目標は、「燃焼には空気中の酸素が 必要であるということを理解する」「酸素が空気中に 残っていても燃焼が止まることについて、燃焼が止ま ることと空気との関係を自分の言葉で説明することが できる」であった、

この単元では、仮説検証などを通じた燃焼理論の構 築を中心とした活動を設定した.単元のデザインは、 対象クラスの担任教師に加え、対象校の理科関連の教 師2名、大学側のサポートメンバー9名の計12人の協 議に基づいて行なわれた.まず、対象校の教師が単元 目標や授業案を考え、その後、大学側サポートメン バーを交えた協議会で全体のデザインを決定した.ま た,授業の中での Web Knowledge Forum[®]の利用法 に関するデザインも全体の協議で決定し,単元に即し た利用ができるようにした.このような協議によって デザインされた実験授業は次のように進められた.

子どもたちは、まず、教師が行った2つの演示実験 を観察した.1つ目の演示実験は、束にした新聞紙と 丸めた新聞紙を燃やし、どちらがよく燃えるかを予 測・観察するものであった.2つ目は、集気ビンの中 に火のついたロウソクを入れて蓋をすると、ロウソク の炎がそのうちに消えていく演示実験であった.この 2つの演示実験を観察した後、子どもたちは、「なぜ 集気ビンの中のロウソクの炎が消えたのか」につい て、それぞれ仮説を立て、その仮説を描画法で表現し たモデル図を作成した.次に仮説の中から、同じ意見 の子どもが集まり仮説グループを編成した.その結 果、11の仮説グループが編成され、それぞれの仮説を 検証するための実験を遂行しながら各自のモデル図の 修正を行い、燃焼に関する理論を構築していった.

b. Web Knowledge Forum[®]のカスタマイズ

Web Knowledge Forum[®]は,子どもたちが実験の 計画,予想,結果を記録し,また,仮説の見直しを行 うスペースであるとともに,授業のポートフォリオで もあった.この実践では,Web Knowledge Forum[®] を次のようにカスタマイズした.

まず,子どもたちが自分たちの仮説についてさまざ まな活動を行っていくためのスペースには,データ ベースのトップページに図1-bのクリッカブルマッ プを配置した.オリジナルバージョンでこのページに 表示されるのは,テキストで示されたビューの一覧の みである.クリッカブルマップを用いて構造化を図る ことで,子どもたちが取り組んでいる学習活動を明確 に示し活動を意識化させるねらいがある(村山 ら,2000).

また、授業の流れを振り返ることができる「私たち の研究日誌」(図1-c)をログインと同時にサブウィ ンドウで表示した.この研究日誌には、毎時の研究課 題と活動の内容が示されており、授業中に行った教師 の演示実験や子どもたちが行った仮説検証のための実 験の様子をムービーで見ることができるようになって いる(図1-d).「私たちの研究日誌」は、子どもた ちが各自で授業を振り返る際に使用するものとして学 習活動のデザインの中に位置づけた.

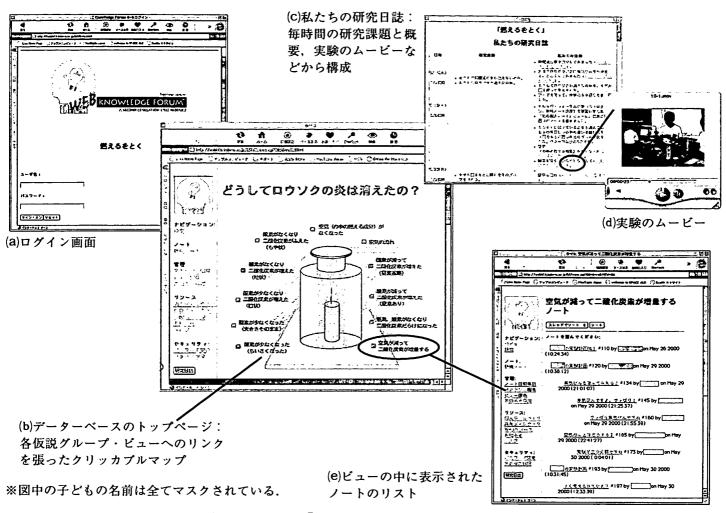


図1 デザイン実験1「燃えるをとく」:データーベースの構成

デザイン実験2「身近な水溶液の性質を探ろう」 a.単元の概要

デザイン実験の2つ目は、1つ目と同じクラスで、 人数は42人に対し行った.単元は理科の「水溶液の性 質」を題材にした「身近な水溶液の性質を探ろう」で あった.実施期間は、2000年11月7日から2001年3月 14日までの、通常の単元配当時間とコンピュータの時 間を合わせた計43時間であった.

実験授業の単元目標は「水溶液の酸性・中性・アル カリ性の性質を理解する」「水溶液には金属を溶かす ものがあることが分かる」であった.

この単元では、単元目標を達成し、かつ、子どもた ち自身が課題を見いだしてそれを追究していく調査探 求的な授業を展開した.また、1つ目の実験では行わ なかった他者のノートを読むなど、他者の知識の参照 が必要となる活動を意図的にデザインした.2つ目も 1つ目の実験授業同様に、単元のデザインや Web Knowledge Forum[®]の使用法は,対象クラスの担任教師と対象校の教師2名,大学側のサポートメンバー9名の計12人による協議で決定した.

授業では、子どもたちはまず、教師の「酸性雨って どんなもの?」という問い掛けに対し、知っているこ と、思いつくことを発表し、それを元に酸性雨につい てのコンセプトマップを作成した.コンセプトマップ は、酸性雨の原因、被害、影響、特徴、性質といった 項目に分類・整理された.次に、整理された酸性雨の 性質に注目し、水溶液には酸性だけでなくアルカリ性 や中性といった性質のものがあることを実験を通して 学習した.この実験では、5種類の無色透明の水溶液 の性質をアルミニウムや BTB 溶液、リトマス試験紙 を用いて調べた.子どもたちは、こうして酸性、中 性、アルカリ性についての基礎的学習をした後、自分 たちの身の回りにある飲み物や洗剤など、身近な水溶 液の性質を pH メーターなどを用いて調べた.そし

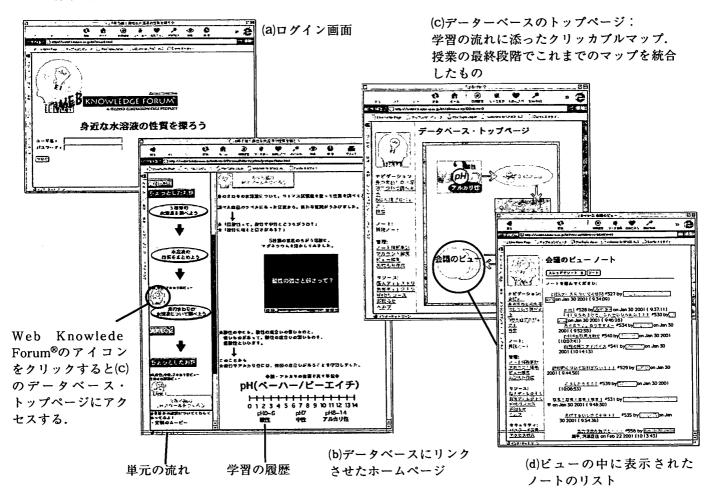


図2 デザイン実験2「身近な水溶液の性質を探ろう」:データーベースの構成

て、その結果をクラス独自の pH スケールを作成する ことで共有した.その後、コンセプトマップを作成し たときに分類と整理を行った酸性雨の原因、被害、影 響、特徴、性質についてグループごとに学習した.最 後は、酸性雨についてグループごとに調べたことを、 クラスの pH スケールに関連付けるという活動にクラ ス全体で取り組んだ.

b. Web Knowledge Forum®のカスタマイズ

この単元では Web Knowledge Forum[®]を,子ども たちが水溶液の性質について調べた結果を書き込んだ り,グループで酸性雨について調べていく学習の記録 に用いた.このスペースには、1つ目の実験授業と同 様にクリッカブルマップを配置し,ビューの構造化を 行うとともに,授業の流れに沿ってクリッカブルマッ プを随時更新していった(図2-c).

また,授業のポートフォリオとしての使用にあた り,Web Knowledge Forum[®]のデータベースにホー ムページをリンクさせる方法を取り入れた. 子どもた ちがデータベースにログインするとまずこのホーム ページが表示される (図2-b). このホームページ は左右の2つのフレームから構成されており、 左フ レームには単元全体の流れがキーコンセプトとしてボ タン化され示されている、単元全体の流れを視覚的に 明示することで、学習に対する子どもたちの共通理解 を促進するねらいがある. 左フレームのボタンをク リックすると、くわしい学習内容が右フレームに表示 されるようになっている. データベースへは左フレー ムにある Web Knowledge Forum®のイメージをク リックするとリンクするようになっている. データ ベースへのリンクボタンは、学習に合わせて更新した クリッカブルマップに随時アクセスできるよう、キー コンセプトを示したボタンの近くに配置した.ホーム ページは、毎時間の授業のはじめにこれまでの学習を 振り返ることと、これからの学習の方針をクラス全体 で把握するために、プロジェクターでスクリーンに映 し出して使用した.

Ⅳ. デザイン実験の分析

1. 目的

本研究で行った2つのデザイン実験では,実験1と 実験2で,データベースに連動させた学習履歴の表現 方法と,その学習履歴を使った振り返り活動の授業に おける位置づけを修正した.また,実験2では他者の 知識の参照を必要とする活動を取り入れた.単にソフ トウェアの使用経験の積み重ねからだけでなく,コ ミュニケーションツールとしてのWeb Knowledge Forum[®]の活用の促進,例えば,データベース上の ノートを学習リソースとして活用することの促進,そ して,知識構築活動の質の向上を促す足場かけとなる という仮説に基づいた修正であった.

具体的には、学習履歴の表現方法について、実験1 ではサブウィンドウを使って表示していた授業の履歴 を、実験2ではホームページに変更してデータベース とリンクさせた.そこに表示される内容についても、 実験1では毎時の授業の進行状況を時系列に示しただ けであったが、実験2では、授業全体の流れを容易に 把握できるよう工夫した.授業における振り返り活動 の位置づけについては、実験1では、各個人で行うも のとしていたが、実験2では、毎時間の授業のはじま りにクラス全体で行い、これまでの学習の振り返りだ けでなく、今後の学習の目標などを共通に理解できる ようにした.実験2における他者の知識の参照につい ては、クラスで1つのpHスケールを作成したり、グ ループ活動の成果をpHスケールに関連づけて、それ を共有する活動を取り入れた.

こうした,実験1から実験2へのデザインの修正が Web Knowledge Forum[®]上での活動にもたらした変 容の実態について明らかにすることを分析の目的とす る.

2. 対象

質問紙調査は、実験1が対象クラス41人中の37人 で、実施日は2000年7月18日であった.実験2で は、42人中39人で実施日は2001年3月14日であった. また、データベースにおける分析の対象は、2つの実 験授業でデータベースに子どもたちが作成したノート であった.面接調査については、実験2のみで実施し た.実施日は2001年3月21日で、無作為に抽出した子 ども10人を対象に行った.

3. 方法及び手順

デザイン実験1及び2について,以下の5つの分析 を行った.

a. Web Knowledge Forum[®]の使用感について

Web Knowledge Forum[®]の使用感について検討す るために,質問紙で(1)「ナレッジ・フォーラムの使い 方は簡単だ」,(2)「ナレッジ・フォーラムは,授業に 役に立つ」の2項目について子どもたちの自己評価を 得た.評価は4段階尺度評定法(かなりそう思う,や やそう思う,あまりそう思わない,まったくそう思わ ない)で求めた.

b. コミュニケーションツールとしての活用状況

Web Knowledge Forum[®]のコミュニケーション ツールとしての活用状況を検討するために,データ ベースの中に子どもたちが作成したすべてのノートを 対象として,以下の4つの観点から分析を行った. (1)ノートの作成

「ノートの作成」を検討するために、子どもたちが データベースに作成したノートの総数を調べた. (2)他者のノートへの意見

データベースに作成されたノートは「新規ノート」 と呼ばれる学習者の新しい考えなどを書いたものと、 「ビルド・オンノート」と呼ばれるデータベース内の 既存のノートに意見などを加えたものとに分けること ができる.そこで、「他者のノートへの意見」を検討 するために、子どもたちがデータベースにビルド・オ ン機能を利用して作成したビルド・オンノート数を調 べた.

(3)スレッドの形成

データベースに作成された新規ノートは、その新規 ノート単体だけの「シングルノート」と呼ばれるもの と、ビルド・オンされたノートを伴ってスレッドを形 成する「スレッドノート」に分けることができる.ス レッドノートは、データベース上で対話の連鎖が起っ ていることを表す指標となる.そこで、「スレッドの 形成」を検討するために、データベース中のシングル ノート数とスレッドノート数を調べた.

(4)ノートを読む

「ノートの読み」を検討するために、データベース

に作成されたノート全体のうち,著者を除く他者に読 まれたノートの割合を調べた.また,「読みの積極 性」を検討するために,1人あたりどれくらい他者の ノートを読んだかについても調べた.

c. 知識構築活動の評価

Web Knowledge Forum[®]を利用した子どもたちの 知識構築活動について検討するために、データベース に作成されたノートの内容を調べた、ノートの内容は non-cognitive, cognitive, socially-cognitive の3段階で 評定した. それぞれの基準は以下の通りであった. non-cognitive は授業内容に直接関係ない内容のノー ト, cognitive は授業内容に関係した発言が見られる が、他者とそれを共有しさらに深い理解を求めようと する意図が明確には見られない内容のノート, socially -cognitive は授業内容に対して言及してあり、さらに 他者とそれを共有し深い理解を構築しようとする意図 が見られる内容のノートであった. 評定は独立した2 者で行い,一致しなかった評定については2者間の協 **議で決定した. また, 評価はスレッドノートを先頭と** してビルド・オンノートが付加された一連のノート群 であるスレッドとビルド・オンノートが付加されな かったシングルに分けて行った.

d. 学習成果に関する評価

Web Knowledge Forum[®]を利用した子どもたちの 学習成果について検討するために,以下のような評価 を行った.すでに述べたように,実験1と実験2では 基本的な活動デザインが異なる.実験1では,子ども たちにおける燃焼理論の構築を中心とした活動を設定 した.実験2では,子どもたち自身が課題を見いだし てそれを追究していく調査探求的な授業を展開した. このような学習活動のデザインの違いにより,同じ評 価基準を用いて学習成果を比較することは困難であ る.よって,それぞれの単元について次のような方法 で評価を行った.

実験1では、子どもたちがどのような燃焼理論を構 築したかについて調べるために、授業の最終段階で Web Knowledge Forum[®]上のノートに書かれたモデ ル図の妥当性を分析した.妥当性の基準は、燃焼前と 燃焼後の酸素と二酸化炭素の増減について正しく言及 していることであった.

実験2では、子どもたちが、単元の前半で獲得した

知識を調査探求活動でどれだけ活用しているかを評価 した.グループごとに行った調査探求活動で作成され たノートが,次に示す2つの評価基準を満たしている かどうかについて分析した.評価基準は,水溶液の3 つの性質についての知識を活用していること,水溶液 には金属を溶かすものがあるという知識を活用してい ることであった.

e. ホームページについての評価

デザイン実験2で、学習履歴の表現方法を大幅に変 更し、図2-bに示したホームページの形式を取り入 れた.この変更に関しての子どもたちの評価を得るた めに、面接調査を行った.調査の項目は、実験2で 「ホームページが作成されていることについてどう思 いましたか」であった.

4. 結果

a. Web Knowledge Forum[®]の使用感について

表1には2項目の質問に対する回答を整理してい る.回答の分析結果から,実験1の「(1)ナレッジ・ フォーラムの使い方は簡単だ」では,37人中27人が 「かなりそう思う」や「ややそう思う」と肯定的な回 答をしていたが,10人は「あまりそう思わない」と回 答していた.「あまりそう思わない」と回答した10人 について追跡調査したところ,そのうちの7人が, キーボードでの文字入力やコンピュータそのものの操 作が苦手であると回答していたことが分かった. 「(2)ナレッジ・フォーラムは,授業で役に立つ」 については,37人全員が「かなりそう思う」ないしは 「ややそう思う」と肯定的な回答を示した.

実験2の「(1) ナレッジ・フォーラムの使い方は 簡単だ」では、39人中31人が「かなりそう思う」や「や やそう思う」と肯定的な回答をしていたが、8人は 「あまりそう思わない」と回答した.「あまりそう思 わない」と回答した8人について追跡調査したとこ ろ、そのうちの5人が、キーボードでの文字入力やコ ンピュータそのものの操作が苦手であると回答してい たことが分かった.「(2) ナレッジ・フォーラムは、 授業で役に立つ」については、35人が「かなりそう思 う」ないしは「ややそう思う」と肯定的な回答を示し たが、4人は「あまりそう思わない」と回答してい た.

表1 Web Knowledge Forum [®]				
	かなりそ う思う	ややそう 思う	あまりそう 思わない	全くそう 思わない
項 目 (1)ナレッジ・フォーラムの使い方は簡単だ.				····
(1)テレッシ・フォーラムの使い力は間単た. 燃えるをとく	9	18	10	0
身近な水溶液の性質を探ろう	3 16	15	8	0
(2)ナレッジ・フォーラムは, 授業で役に立つ.				
燃えるをとく	26	11	0	0
身近な水溶液の性質を探ろう	17	18	4	0

単位は人、燃えるをとく N=37、身近な水溶液の性質を探ろう N=39.

表2 データベース上のノートの作成状況

			燃えるをとく	身近な水溶液の性質を探ろう
教師・サポータの	ノート		52	53
子どものノート	新規ノート	シングルノート	60	123
		スレッドノート	21	98
	ビルド・オンノ	- ト	11	182
総ノート			144	456

表3 データベース中で読まれたノート数と一人当たりが読んだノート数

	ノートの総数	他者に読まれたノート数	一人が読んだノート数
燃えるをとく	92	69	17.4
身近な水溶液の性質を探ろう	403	380	91.9

表4 知識構築活動の評価

燃えるをとく

評価	non-cognitive	cognitive	socially-cognitive
スレッド	3	19	10
シングル	0	35	25
身近な水溶液の性質を探	ろう		
スレッド	16	166	98
シングル	0	111	12

b. コミュニケーションツールとしての活用状況 表2にはデータベース上でのノートの作成状況を示 している. 表3にはノートを読む活動について調べた 結果を示している.

(1)ノートの作成

実験1では、データベースに作成されたノートの総数は144であった. そのうち子どもたちが作成した ノート数は92で、残り52のノートについては教師や大 学のサポートメンバーによって書かれたものであっ た.全体の64%のノートが子どもたちによって作成さ れていたことが分かった.

実験2のデータベースに作成されたノートの総数は 456であった.そのうち子どもたちが作成したノート 数は403で,残り53のノートについては教師や大学の サポートメンバーによって書かれたものであった.全 体の88%のノートが子どもたちによって作成されてい たことが分かった.

(2)他者のノートへの意見

実験1で子どもたちがデータベースに作成したノート92のうち,新規ノートが81,ビルド・オンノートが11であった.子どもたちが作成したノートのうちビルド・オンノートの割合は12%であった.

実験2では、子どもたちがデータベースに作成した ノート403のうち、新規ノートが221、ビルド・オン ノートが182であった。子どもたちが作成したノート のうちビルド・オンノートの割合は45%であったこと が分かった。

(3)スレッドの形成

実験1でデータベースに子どもたちが作成した81の 新規ノートのうち,シングルノート数は60,スレッド ノート数は21であった.データベース上での対話の発 生率は26%であったことが分かった.

実験2では、データベースに子どもたちが作成した 221の新規ノートのうち、シングルノート数は123、ス レッドノート数は98で、データベース上での対話の発 生率は44%であったことが分かった.

(4)ノートを読む

実験1でデータベースに作成された92の子どもの ノートのうち著者を除く他者に読まれたノート数は69 であった.データベースに子どもが作成したノートの うちの75%が他者によって読まれていたことが分かっ た.また,1人あたりいくつのノートを読んでいたか 調べた結果,17.4のノートを読んでいたことが分かっ た.子どもが作成したノートに対する1人あたりが読 んだノートの割合は19%であった.

実験2では、データベースに作成された403のノートのうち著者を除く他者に読まれたノート数は380であった.データベースに子どもが作成したノートのうちの95%が他者によって読まれていたことが分かった.また、1人あたりいくつのノートを読んでいたか調べた結果、91.9のノートを読んでいたことが分かった.全体のノートに対する1人あたりが読んだノートの割合は23%であった.

c. 知識構築活動の評価

表4にはノートの内容評価の結果を示している.実 験1で子どもたちがデータベースに作成した92のノー トのうち、スレッドを形成したノートは、スレッド ノート21とビルド・オンノート11を合わせた32であっ た.スレッドを形成しなかったシングルノートは60で あった.2者で評定を行った結果は次の通りである (一致率72%).スレッドを形成したノートでは, non -cognitive m'3, cognitive m'19, socially-cognitive m'cognitive d_{35} , socially-cognitive m_{25} σ σ c. π イニ乗検定と多重比較の結果、スレッド、シングルと もに, non-cognitive よりも cognitive が有意に多く作 成されていことが分かった (スレッド: $\chi^2 = 12.06$, df = 2, p<.01; $\dot{\nu} \sim \mathcal{I} \quad \mathcal{V} : \chi^2 = 32.50$, df = 2, p <.01). しかし、両方とも non-cognitive と sociallycognitive,cognitive と socially-cognitive では,有意差 は見られなかった.

実験2で子どもたちがデータベースに作成した403 のノートのうち、スレッドを形成したノートはスレッ ドノート98とビルド・オンノート182を合わせた280で あった.スレッドを形成しなかったシングルノートは 123であった.2者で評定を行った結果は次の通りで ある(一致率80%).スレッドを形成したノートで は、non-cognitive が16, cognitive が166, sociallycognitive は98であった.シングルノートの noncognitive は98であった.シングルノートの noncognitive は0, cognitive は111, socially-cognitive が 12であった.カイ二乗検定と多重比較の結果、スレッ ド、シングルともに non-cognitive よりも、cognitive や socially-cognitive が有意に作成されていたことが 分かった(スレッド: χ^2 =120.88, df=2, p<.01; シングル: χ^2 =181.02, df=2, p<.01). cognitive と socially-cognitive ではスレッド,シングル両方と も cognitive が有意に作成されていた.

d. 学習成果に関する評価

実験1では, 燃焼理論についての妥当なモデルを構 築していたのは41人中26人であった.

実験2では、2つの評価基準を満たした調査探求活動を行うことができたのは、7グループ中4グループ で、これらのグループに属していた子どもは29人で あった.また、2つの評価基準のうちの1つを満たし たのは2グループで、これらのグループの子どもは10 人であった.1つのグループはどちらの基準も満たし ていなかった.

e. ホームページについての評価

面接調査の結果から,10人全員が「授業の流れが分 かりやすい」ことを理由にあげ,ホームページを肯定 的に評価していたことが分かった.表5には,そのう ちの2人の評価の内容について示している.子どもS は,データベースのノート作成画面に簡単にアクセス できることや学習履歴の見たい部分が簡単に分かるこ とを示している.また,子どもFは,前の授業を振 り返りながらノートの作成ができることや,ムービー などにより授業の履歴がよく分かることをあげてい る.

Ⅴ.考察

Web Knowledge Forum[®]の使用感について行った 質問紙調査から、ソフトウェアの使用方法の簡易さに ついて、実験1では約3分の2の子どもが簡単である と感じていたことが分かった.実験2の結果では、あ まり簡単でないと感じていた子どもが2割いるもの の、簡単であるという評価が全体に増加していた.実 験1から実験2へと経験を積むにつれて、使用方法に 習熟したことが推察される.しかし、もともと実験1 においても3分の2の子どもたちが簡易さにおいて肯 定的に評価していたことは、本ソフトウェアの使いや すさを示していると考えられる.なお、両実験とも、 簡単ではないと回答した子どもたちの主な理由は、 キーボードにおける文字入力とコンピュータそのもの の操作の難しさであった.

ソフトウェアの有益性について,実験1では全員が 肯定的であった.実験2でも,ほとんどが肯定的で 科学教育研究 Vol. 26 No. 1 (2002) 75

表5 ホームページについての子どもの評価

子どもS

あのー,すごく,あのーよかったと思うんですけれど も,えっと,そのホームページにつながって,<u>簡単に僕た</u> ちもそこから書き込みたいところに行けたり,いろんな見 たいところにすぐ,見たいところが分かったので,それは よかったです.

子どもF

あったが、否定的な評価をした子どもが4人いた.ま た、肯定評価においても「かなりそう思う」が減少し ていた.経験として使用方法に習熟し、ソフトウェア に対する客観的な評価能力が向上したものと推察され る.また、こうした有益性の意識の低下は、実験1よ りも実験2の方がその使用場面をより厳選してデザイ ンしたことにも起因すると考えられる.例えば、実験 2では Web Knowledge Forum[®]を前面に出した場面 よりも、実際の調査活動やface to faceの議論を優先 した場面も多くデザインされていたからである.学習 者は、Web Knowledge Forum[®]を調査したことの記 録や議論のための道具として使用したが、Web Knowledge Forum[®]を使うこと自体よりも、調査や議 論といった活動に意識を集中させることができたと考 えられる.

しかし、Web Knowledge Forum[®]上での活動において、実験2では、その利用状況や知識構築活動の質が、実験1よりも概ね向上していた.

「ノートの作成」については、実験1では全体の 64%のノートが、実験2では88%のノートが子どもた ちによって作成されていた。子どもたちは、両実験と もにノートを書くということにおいて、Web Knowledge Forum[®]を概ね活用できていたものと考え られる。しかし、実験1と比べて実験2では子どもの ノートの作成率は増加していた。「他者のノートへの 意見」に関しても、子どもたちが作成したノートのう ちビルド・オンノートの割合は、実験1で12%、実験

2では45%であった.実験2ではビルド・オン機能を 利用できた割合は約3割増加していた.また、「ス レッドの形成」として見出すことのできるデータベー ス上での対話の発生率は、実験1では26%で、実験2 では44%であった.実験2では約2倍に増加していた わけである.

次に「ノートを読む」について,実験1ではデータ ベースに子どもが作成したノートの75%が,実験2で は95%が他者によって読まれていたことから,データ ベースに作成されたノートは,学習のリソースとして 活用されているということが分かった.実験1と比べ て実験2では,他者に読まれたノートの割合は,ここ でも増加している.一方,1人あたりが読んだ他者の ノートは,実験1で全体の19%,実験2で23%であっ た.実験2では実験1よりもわずかに増加しているも のの,積極的に多くのノートを読んだとはいえないこ とが分かった.

知識構築活動の評価では、実験1ではスレッド、シ ングルともに、non-cognitive よりも cognitive が有意 に作成されていたが、non-cognitive と sociallycognitive では有意差は見られなかった.一方、実験 2ではスレッド、シングルともに non-cognitive より も、cognitive や socially-cognitive が有意に作成され ていた. この結果から、実験2では non-cognitive の ノートが全体として減少したことが示された.

学習成果に関する評価では、実験1で燃焼理論についての妥当なモデルを構築していたのは63%、実験2で2つの評価基準を満たした調査探求活動を行うことができた子どもは69%、1つを満たすことができた子どもは24%であった.ただし、学習成果については、実験1と実験2で学習活動のデザインの違いにより評価の基準が異なることから、一概に比較は行えない.しかしながら、実験2では、学習成果がわずかながら向上した可能性を示唆できるものと考えられる.

上述してきたような実験1と実験2における差異, すなわち実験2における知識構築活動の質的向上につ いて,授業デザインの観点から検討してみよう.

まず,実験1で他者への意見や対話の発生が少な かったのは,学習活動全体として各自の理論構築を中 心としたため,他者へ意見をするなどの対話が活発に なりにくかったのではないかと考えられる.

それに対して実験2では、学習履歴として作成した ホームページにおいて授業の流れを明確に示すことで 学習活動の位置づけに対する理解を容易にしたことの 効果を推測することができる.実験2におけるホーム ページは、授業の流れが、日時別ではなく、学習の内 容の連鎖として整理されているとともに、授業を振り 返るためのグラフィックスやムービーなどの学習リ ソースが豊富に配置されていたからである。授業では 毎時間、クラス全体でそれを確認し共有するようデザ インされており、こうしたデザインの修正が、単にソ フトウェアの使用経験の増大からだけでなく、Web Knowledge Forum[®]上の活動により良い変容をもたら したと考えられる. それは例えば、表5にも示したよ うに、ホームページについての学習者による評価の一 端に現れている.このように,授業の流れを明確に し、また、クラス全体で共通理解を行うことで、子ど もたちに、自分たちがどこへ向かおうとしているの か、そのために今していることはどのような意味を持 つのかを示すことができる。そうすることで、子ども たちが学習活動に対する責任感を持てたのではないか と推察できる、これは、実験2で授業に直接関係のな い内容を記載した non-cognitive のノートが全体的に 減っていることにも表れている.

また,実験2では,実験1以上に,他者の知識を共 有しなければ展開できないような学習活動をデザイン した点も指摘できる. それは、たとえばクラスで1つ の pH スケールを作成するために Web Knowledge Forum[®]上で議論するようなデザインのあり方であ る.このことは、実験2でほとんど全てのノートが学 習のリソースとして使用されていたことや、ビルド・ オン機能を利用した割合が3割増加したことにも現れ ている.他者のノートを参照することで、それらの ノートに対する意見などが生起し、Web Knowledge Forum[®]上でのコミュニケーションが活発になったと 推察できる. もちろん, 実験1のような理論構築活動 においても他者の知識の参照は不可欠であるが、それ は上述したように個人の知識構築に向かいやすく、こ うしたソフトウェアによる協調的な学習環境を提供す るだけでは活性化しないと考えられる。むしろ、他者 の知識を参照しなければ解決しないような調査探求を 中心とした学習活動を積極的にデザインすることが重 要な要件であるといえる.

VI. おわりに

2つのデザイン実験を通して、テクノロジーを活用

した科学教育における協調的な学習のあり方を検討し てきた. こうした CSCL システムの科学教育への適 用は、非常に意義あるものと考えられる、それは、科 学という知的活動が本来的に協調的な活動であるから に他ならないからである.そして,こうした協調的な 活動がテクノロジーによって確実に質の高いものに向 上するからである. 今後もデザイン実験に基づいた科 学教育の実践的研究は推進されていくべきであろう. そのとき、重要な課題となるのは、今回の結果にも見 られたように、他者との知識の共有化を促進する足場 かけとしてのデザインのあり方であろう. このこと は、今後、教育的実践を構築して行くにあたり、重要 な示唆を与えているかもしれない。科学教育において は、学習者が自ら発見したり、理論を構築したりする ことが尊重されているが、実は、他者の知識を参照す ることも、非常に重要な科学的活動であることに留意 して、さらなるデザインの修正を検討すべきである.

付記

本稿は、平成12年度日本科学教育学会第24回年会、 平成13年度日本科学教育学会第25回年会において発表 した内容を発展させて執筆したものである.本研究 は、平成11~13年度科学研究費補助金・基盤研究 (B)(1)「科学的な情報活用能力の育成を支援する学 校・地域・大学連携プログラムの開発」(課題番号 11480030,代表・稲垣成哲)の援助を受けている.

引用文献

- Brown, A. L.: Design experiments: Theoretical and methodological challenges in evaluating complex interventions in classroom settings. *The Journal of the Learning Sciences*, 2 (2), pp. 141-178, 1992.
- Collins, A.: Toward a design science of education. In E. Scanlon & T. O'Shea (Eds.), *New directions in educational technology* (pp. 15-22). New York : Springer-Verlag, 1992.
- 村山功・大島純・大島律子・稲垣成哲・中山迅・山口 悦司・竹中真希子:「協同学習支援環境 Web-KF の機能拡張」,『教育工学関連学協会連合第6回全国 大会講演論文集(第一分冊)』, pp.135-138, 2000.
- Oshima, J., Bereiter, C., & Scardamalia, M.: Information - access characteristics for high

conceptual progress in a computer-networked learning environment. *Proceedings of Computer Support for Collaborative Learning '95*, Bloomington, IN, USA. Mahwah, NJ: Lawrence Erlbaum, 1995.

- Oshima, J., Scardamalia, M. & Bereiter, C.: Collaborative learning processes associated with high and low conceptual progress. *Instructional Science*, 24, pp. 125 – 155, 1996.
- Scardamalia, M., Bereiter, C., McLean, S. R., Swallow J., & Woodruff, E.: Computer Supported Intentional Learning Environments. Paper presented at the Annual Meeting of the American Educational Research Association, Washington DC, 1987.

参考文献

- 稲垣成哲・大島純・大島律子・中山迅・村山功・山口 悦司・竹中真希子:「CSCL システムを用いた知識 構築カリキュラムのデザイン」,『日本科学教育学会 第24回年会論文集』, pp. 143-144, 2000.
- 大島純・大島律子・村山功・稲垣成哲・中山迅・山口 悦司・竹中真希子:「認知科学者はいかに学習環境 をデザインするか」,『日本認知科学学会第18回大会 発表論文集』, pp.230-231, 2001.
- Oshima, J., Oshima, R., Murayama, I., Inagaki, S., Nakayama, H., Yamaguchi, E., Takenaka, M.: Teachers and researchers as a design community: Changes in their relationship through design experiment approach with a CSCL technology, *Paper presented at the annual meeting of the American Educational Association*, Seattle, WA, 2001.
- 竹中真希子・稲垣成哲・大島純・大島律子・村山功・ 中山迅・山口悦司・長戸基・山本智一: 「Knowledge Forum[®]を利用した理科授業の理科授 業のデザイン実験」,『日本科学教育学会第25回年会 論文集』, pp.139-142, 2000.

(受付日2001年11月16日;受理日2002年2月6日)

〔問い合わせ	先〕
〒 657 − 8501	兵庫県神戸市灘区鶴甲3-11
	神戸大学大学院総合人間科学研究科
	竹中真希子
	e-mail : tmakiko@kobe-u.ac.jp
	神戸大学発達科学部
	稲垣成哲
	e-mail : inagakis@kobe-u.ac.jp