
Prototype of the Device Driver Generation System for UNIX-like
Operating Systems

Tetsuro I(atayama
Faculty of Engineering,

Miyazaki University.
1-1 Gakuen, kibanadai-nishi,
Miyazaki 889-2192, Japan.

kat@cs.miyazaki-u.ac.jp

Keizo Saisho
Faculty of Engineering,

Kagawa University.
2217-20 Shinmachi, Hayashi,
Takamatsu 761-0396, Japan.

sai@eng.kagawa-u.ac.jp

Akira Fukuda
Graduate School of Information Science,

Nara Institute of Science and Technology.
8916-5 Takayama Ikoma,

Nara 630-0101, Japan.
fukuda@is.aist-nara.ac.jp

Abstract

Writing device drivers spends much time and makes
efforts because it needs knowledge of the target device
and operating system (OS). In order to lighten the bur
den, the authors have proposed a model to generate de
vice drivers and a device driver generation system be
fore. The system generates a source code of a device
driver from three inputs: device driver specification, OS
dependent specification, and device dependent specifi
cation. The device drivers generated in the model are
evolutionary because they can be expanded their features
easily. They, however, are not always effective because

the burden in describing the device dependent specifica
tion, which is one of the inputs, is nearly as same as
the traditional method. In this paper, to aim at more
reduction of the burden, device drivers are abstracted
again, each input is defined afresh, and then a prototype

of the system is implemented. As an example of the
generation, an interrupt handler of a network device,
FreeBSD and Linux as the target OS, and Etherlink

XL as the target device are chosen. The OS dependent
specification and the device dependent specification can

be reused in each OS and device, respectively. As a
result, an identical device dependent specification can
be applied to the both OSs. The burden in generating
new device drivers or porting ones to other OSs can be
reduced.

Keywords: operating system (OS), evolutionary device
driver, network, ethernet, interrupt handler, UNIX-like
OS

0-7695-0906-1101 $10.00 © 2001 IEEE
302

1 Introduction

Operating systems (OSs) cannot be applied effi
ciently to various kinds of hardware and application
software. Especially, writing device drivers is one of
the most difficult tasks to develop or port OSs[1, 2].
Some of the reasons are as follows:

• Programmers of device driver must know informa
tion about hardware such as specifications of de
vices and carefully describe complex parts such as
timing control.

• \\Then two devices have different chips (controllers)
even if they offer the same services, the program
mers must write two different device drivers for
each of them.

• If we change an OS but use the same devices, we
need to prepare the device drivers for new one.

As internet is grown and multi-media is progressed,
various devices would be developed. Moreover, as
many embedded systems are developed, the markets
request to write device drivers more rapidly. It is a
more serious problem to spend much time and make ef
forts to write the device drivers[3]. We should urgently
cope with reducing the burden and generate evolution
ary device drivers.

We have proposed a model to generate device drivers
and a device driver generation system before[4, 5]. The
system generates a source code of a device driver from

device driver (ex: PCI ethernet device driver)

Figure 1. Current device driver development
model

DE500A

code of device
drivers

I

board/chip
SMC Inc. (ex: cthernet card)

EtherPower II Etherlink XL

be written in the device drivers is the same.
ass control devices through the device drivers and

send/receive data to/from devices. Each as has its
own data structures or data types to store data, and
each device has its own interfaces, timing or data type
to send/receive data.

Hence, a device driver is a program to convert data
into a format corresponding to each as and device.
For example, in ethernet cards, data to send/receive
are ethernet frames, data structures to store them in
FreeBSD[6] and Linux[7] are mbuf structure and skbuff
structure, respectively.

Therefore, a device driver can be abstracted to three
parts as follows:

• a part to send/receive data between an as and a
device,

three inputs: device driver specification, as dependent
specification, and device dependent specification. The
device drivers generated in the model are evolution
ary because they can be expanded their features eas
ily. They, however, are not always effective because
the burden in describing the device dependent specifi
cation, which is one of the inputs, is nearly as same as
the traditional method.

In this paper, to aim at more reduction of the bur
den, device drivers are abstracted again, each input is
defined afresh, and then a prototype of the system is
implemented. In section2, we show the device driver
generation system and describe the inputs for the sys
tem. In section 3, we describe an example of the gen
eration. We choose an interrupt handler of a network
device, FreeBSD[6] and Linux[7] as the target as, and
Etherlink XL (3Com Co.) as the target device. In sec
tion 4, we discuss and evaluate our proposed method.

2 Device Driver Generation System

In this section, we introduce the model to gener
ate device drivers and the device driver generation
system[4, 5].

A device driver is a program to control a device by
an as. Since the driver is written corresponding to each
as and device, we need to write many device drivers
(see Figure 1).

Device drivers exist to control devices virtually from
ass. The function of the device drivers is determined
according to a type of devices. For example, in Ether
link XL and DE500A, which are representative ether
net cards, different controller chips are used, but the
role as an ethernet card is the same, and the facility to

303

• an interface to control data from/to the as, and

• an interface to control data from/to the device.

In writing device drivers, in the present we use fre-
quently the conditional compilation in C programming
language. We write source codes corresponding to all
ass and devices in a device driver to deal with mul
tiple ass and devices. However, in this method, the
source codes would be more complex and it is difficult
for other to understand or modify them.

We have proposed the method abstracting a device
driver in writing it so that it can correspond to mul
tiple ass and devices. Device drivers are generated
by describing three parts as mentioned above. Three
parts are defined as the device driver specification, the
as dependent specification, and the device dependent
specification, respectively.

• device driver specification

It shows operations of the device. It is a template
whose contents are translated into actual codes in
the other specifications to define a device driver. It
describes functions and data structure which the
generated device driver uses.

• OS dependent specification

It shows dependent parts on the as. It describes
names, arguments, return values of device driver
interfaces which the as provides. The device
driver interfaces are functions which the kernel
calls.

• device dependent specification

It shows dependent parts on the device. It de
scribes dependent parts on the hardware in func
tions of the device described in the device driver
specification.

as dependent
specification

device dependent
l-- ---.J specification

I I I I I I
board/chip

DEC Co. SMC Inc. 3Corn Co. (ex: ethemet card)

DE500A EtherPower II Etherlink XL

device driver (ex: PCI ethemet device driver)

Figure 2. Device driver development model
with three specifications

In order to write device drivers, we must consider
a target CPU and I/O bus also. In this paper, we fo
cus on interfaces of ass and the way to handle data
from/to devices which are fundamental elements in
generating device drivers. Differences of CPUs and/or
I/O buses are not considered.

Figure 2 shows the device driver development model
with three specifications. When a device is replaced
with a new one which offers the same services, we
rewrite only the part depended on a chip of the new
one, and the as dependent specification can be reused.
Similarly, when an as is replaced, the device depen
dent specification can be reused. As a result, we can
lighten the burden in developing device drivers and
solve the problems; the source codes of device drivers
would be more complex and it is difficult for others
to understand or modify them. Moreover, the device
drivers generated in the model are evolutionary be
cause they can be expanded their features easily by
rewriting the device driver specification only, which
shows a template to define a device driver. Figure 3
shows an outline of the device driver generation sys
tem.

However, the device dependent specification ac
counts for the greater part of the amount of the descrip
tion when three specifications are described according
to inputs we have defined before[5]. It is difficult to
divide between codes to access each OS's own struc
tures or functions and codes to access each device's
own structures. We describe such codes in the device
dependent specification. Hence, a person to describe
the device dependent specification needs to knowledge
of a target as. The generating device drivers by using
the system is not always effective because the burden in

304

describing the device dependent specification is nearly
as same as the traditional method.

In this paper, to aim at more reduction of the bur
den, the details of each specification are defined afresh.
Especially, both of the as dependent specification and
the device dependent specification are defined more
minutely. The knowledge to describe each specifica
tion is restricted. If multiple persons can describe sep
arately each specification in Figure 2, we can disperse
the burden in writing device drivers to developers on
OS's makers and ones on device's makers and develop
them effectively.

The design policy of three specifications in this pa
per is the following.

• device driver specification

It shows a template to define a device driver.
Kinds of data to use facilities of a device and con
trol flows handling the data are described. The fa
cilities are translated into actual codes in the other
specifications. It can be described in response to
each kind of devices.

• OS dependent specification

It shows dependent parts on an as. The way to
handle data between as and the devices and de
vice driver interfaces in calling the device drivers
from the as are described. It can be described in
response to each as.

• device dependent specification

It shows dependent parts on a device. Interfaces,
timing, and data types in handling data to/from
the device are described. It can be described in
response to each device.

The next section describes three inputs of the device
driver generation system by giving an actual example.

3 Inputs and Implementation of the
System

As an example of the generation, we choose
FreeBSD[6] and Linux[7] as the target as. The both
are representative UNIX-like ass, their source codes
are open, and the source codes of the device drivers
can be referred to.

We choose a network device as the target device and
ethernet as the interface of network. It is the most
popular and the burden of writing its device driver is
large because a period of time to develop a new device
is short. We choose Etherlink XL (3Com Co.) which

each device

I device driver specification I

each kind of device

I device dependent specification I lOS dependent specification I

~~ eachOS

Device Driver
Generation System

I Source code of a device driver I

Figure 3. Overview of the device driver gener
ation system

is a representative ethernet card of PCI (Peripheral
Component Interface).

We write an interrupt handler of a network device
and explain how to describe each input of the device
driver generation system. Three specifications are de
scribed according to grammar extended C program
ming language for the device driver generation system.

3.1 Device Driver Specification

In device driver specification, kinds of data to use
functions in a device and control flows handling the
data are described. The functions are translated into
actual codes in the other specifications. It can be de
scribed in response to each kind of devices.

Figure 4 shows a control flow of an interrupt han
dler. Its processing is divided into steps such as getting
information, forbidding interrupts, getting states, and
permitting interrupts of the device.

We describe separately two parts used in device
driver specification as follows.

• as dependent parts

codes to handle each OS's own data

codes to handle the data used in the kernel

codes to use arguments of device driver inter
faces

codes to use system calls

• Device dependent parts

codes to access devices directly

codes to handle variables

305

getting information of the device

forbidding interrupts

permitting interrupts

Figure 4. Overview of an interrupt handler

We can describe the as dependent codes to as de
pendent specification and the device dependent codes
to device dependent specification by dividing functions
in a device driver into two parts as above. In device
driver specification, we must describe control flows in
detail so that we can divide them into two parts.

Figure 5 shows a part of a device driver specifica
tion of an interrupt handler. Device driver specifica
tion consists of control statements and function calls.
The contents of a function are written between #begin
and #end. The name of the function is written just
behind #begin.

In function calls described in device driver specifi
cation, to distinguish kinds of the function, a label to
indicate the kinds is appended just before the calls.
The followings show each label and its meaning.

• [proc] - a processing belonging to as dependent
specification

• [cmd] - a processing belonging to device depen
dent specification

• [con] - a condition for a branch belonging to
device dependent specification

• [sub] - a subroutine in the device driver specifi
cation

• 'l.<name> - a label used to call directly other
functions belonging to device driver interfaces and

II ----------- Interrupt Handler ---------
#begin _intr

[proc]_get_dev_str(%(structinfo),%(buf));
[cmd]_disable_intr(%(ioadr));

The name of arguments used in function calls is
translated by referring to as dependent specification.

3.2 OS dependent specification

for(; ;)

{ [cmd] _get_status (%(status)) ; In as dependent specification, device driver inter-
if ([con] _break(%(status))) faces which a as provides, roles of their functions, vari-

break; abIes used in the functions, and codes of the functions
if([con]_up_complete(%(status))

[sub] _up_complete(%(arg), %(devinfo), %(ioadr)); appended the label [procJ in device driver specifica-
if ([con] _down_complete(%(status» tion are described. It can be described in response to

[sub]_down_complete(%(arg),%(devinfo),%(ioadr); each as.
if([con]_tx_complete(%(status))

[sub] _tx_complete(%(arg), %(devinfo), %(ioadr)); In FreeBSD, information of the device used in inter-
if ([con] _adfail(%(status») rupt handlers corresponds to ifnet structures and softc

[sub] _adfail(%(arg), %(status)); structures included in the ifnet structures. The softc
if([con]_stats(%(status))

[proc] _stats(%(arg)); structures store each device's own data. In Linux, de-
} vice structures have information of the device.
[cmd] _enable_intr(%(ioadr)); Figure 6 and Figure 7 show a part of as depen-
[proc] _start_rest (%(devinfo)) ; dent specifications of an interrupt handler for FreeBSD

#end and Linux, respectively. The contents of a process-
#begin _tx_complete ing in as dependent specification are written between

[] t 1 t (" () 'I (d . f) 'I (. d)) #begin and #end. The contents are divided into theproc _ x_comp ee" arg ,I,var eVJ.n 0 ,I,var J.oa r; .
[cmd] _tx_complete(%(arg) •%var (devinfo) , %(ioadr)) ; followlllg five parts.

#end

#begin _up_complete

%<name>_rxeof(%(arg));
[cmd]_up_complete(%(arg),%var(devinfo).%(ioadr)); ;

#end

#begin _down_complete

%<name>_txeof(%(arg));
[cmd]_down_complete(%(arg),%var(devinfo).%(ioadr)); ;

#end

#begin _adfail

[proc]_adfail(%(arg),%(status));
[cmd]_adfail(%(arg).%(status));

#end

Figure 5. A part of a device driver specifica
tion of an interrupt handler

functions written directly in C programming lan
guage

Each label also exists to express which specifications
a processing described in. Even if it has the same
names except for the label, it expresses a different pro
cessing. The label 'l.<name> is translated with a name
expressing a device driver. For example, the name for
the device driver of FreeBSD in Etherlink XL is xl.
The name is given as an argument in the starting of
the device driver generation system.

306

• function - It is transformed as a comment state
ment in a source code generated by the device
driver generation system. It expresses the contents
of a processing in the function.

• prototype - It declares prototypes of device
driver interfaces and establishes arguments and re
turn values. The name of the interfaces and the
arguments differ in FreeBSD and Linux (see Fig
ure 6 and Figure 7).

• variable -- It describes local variables used in
this function. According to the specification of C
language, it is generated just behind the beginning
of the function by the system. In FreeBSD and
Linux, ioadr and status are the same name and
meaning, but the other variables differ (see Figure
6 and Figure 7).

• transform - It gives another name to each vari
able such as local variable, global variable, and
argument used in this function. The names of
variables are changed according to different data
structures used in each as or device. It is in
troduced to describe three specifications without
changing the names of variables and used consis
tently in the specifications. For example, in Figure
6 structinfo corresponds to buf. The specifications
use the name as structinfo in the case of handling
buf. That is, structinfo is transformed as buf in a
source code generated by the system.

[procJ_tx_complete(arg,devinfo,ioadr)
{

devinfo->if_oerrors++j
%<narne>_txeoc(arg);

f.end

#end INTERRUPT

#begin INTERRUPT

Y.begin function
The interrupt handler does all of the Rx thread
work and clean up after the Tx thread.

Y.end

Y.begin prototype
static void Y.<narne>_intr(arg)
void* arg;

y'end

%begin variable
struct Y.<narne>_softc *SCj
struct ifnet *ifpj
long ioadrj
u_int16_t status;

%end

%begin transform
structinfo buf;
arg sCi
devinfo ifp;
ioadr ioadr
status status;

%end

%begin code
[procJ_get_dev_str(structinfo,arg)
{

arg = (%<narne>_softc*)structinfoj
}

}

Figure 7. A part of an as dependent specifi
cation of an interrupt handler for Linux

#end INTERRUPT

#begin INTERRUPT

Y.begin function
The interrupt handler does all of the Rx thread
work and clean up after the Tx thread.

Y.end

}

[procJ_rx_complete(arg)
{

%<narne>_rx(arg)j

?end

%begin prototype
static void %<narne>_interrupt(irq,dev_id,regs)
int irqj
void *dev_idj
struct pt_regs *regsj

%end

%begin variable
struct device *dev;
struct vortex_private *vPj
long ioadr;
int status;

Y.end

%begin transform
structinfo dev_idj
arg devj
devinfo dev;
ioadr ioadrj
status status;

%end

Y.begin code
[procJ_get_dev_str(structinfo,arg)
{

devinfo = (device*)structinfoj
arg = (struct Y.<narne>_private *)devinfo->privj
ioadr = device->base_addr;

NULL)

[procJ_start_rest(devinfo)
{

if(devinfo->if_snd.ifq_head !=
{

Y.<narne>_start(devinfo)j
}

Figure 6. A part of an OS dependent specifi
cation of an interrupt handler for FreeBSD

• code - It describes codes depending on as.

The label %<name>, which is used in the device driver
specification, can be appended to the functions de
scribed in as dependent specification. In the parts
of the code, %<name> of the head in each name of the
function is omitted. The other functions without any
label signify that they call their own name. They cor
respond to system calls in the kernel.

3.3 Device Dependent Specification

In device dependent specification, interfaces, timing,
and data types in handling data to/from the devices

are described. It can be described in response to each
device.

Functions described in device dependent specifica
tion can be divided into two types. One is a processing
handling variables or I/O port. The other is a process
ing returning states or conditions to control statements
in device driver specification. The former is appended
the label [cmd] , and the latter is appended the label
[con] .

Figure 8 shows a part of a device dependent spec
ification of an interrupt handler for Etherlink XL. In
device driver specification, we need to write only each
device's own codes. The device driver generation sys
tem does in-line expansion of the codes depending a
device to a generated source code. Hence, the over
head caused by dividing into three specification can be
prevented and the run time performance can be guar-

307

}

}

status = inw(ioadr + XL_STATUS);

ISspecificationdriverStepl. Device
scanned.

4.1 Portability

4 Discussion and Evaluation

In this section, we describe portability and availabil
ity of our method and compare it with hO(Intelligent
Input Output)[8J.

Figure 9 shows a generated source code of the func
tion _intr of Etherlink XL for FreeBSD. We have gen
erated source code of the interrupt handlers for Linux,
also. We have verified the both source codes are exe
cuted correctly.

Step2. A label #begin is read.

Step3. If a function call is found, its contents
are gotten from a subroutine in the de
vice driver specification, OS dependent
specification, or device dependent speci
fication.

Step4. The variables in the function are
translated referring to %transform in
the OS dependent specification.

Step5. If a label #end is found, go to Step6.
Otherwise, go to Step3.

Step6. If it reaches end of the file, this algo
rithm ends. Otherwise, go to Step2.

o·.return (status & XL INTRS

[con]_break(status)
{

}

outw(ioadr + XL_COMMAND. XL_CMD_INTR_ENBI
XL_INTRS);

[con]_adfail(status)
{

return (status & XL_STAT_ADFAIL);
}

[cmd]_tx_complete(ioadr)
{

outw(ioadr + XL_COMMAND. XL_CMD_INTR_ACKI
XL_STAT_TX_COMPLETE);

II ##### Interrupt ######

[cmd]_disable_intr(ioadr)
{

outw(ioadr + XL_COMMAND. XL_CMD_INTR_END);
}

[cmd]_get_status(status)
{

}

}

anteed.

In this paper, the details of each specification are
defined afresh. Especially, both of the OS dependent
specification and the device dependent specification
have been defined more minutely.

As an example of the generation, we choose an inter
rupt handler of a network device, FreeBSD and Linux
as the target OS, and Etherlink XL as the target de
vice. We have generated source codes of the interrupt
handlers for FreeBSD and Linux from the same device
dependent specification and executed them correctly.
The device dependent specification is portable because
the device drivers can be generated for the both OS
without changing the device dependent specification.

outw(ioadr + XL_COMMAND. XL_CMD_INTR_ACKI
XL_STAT_UP_COMPLETE);

Figure 8. A part of a device dependent spec
ification of an interrupt handler for Etherlink
XL

[cmd]_up_complete(ioadr)
{

3.4 Outline of the system

We have developed a prototype of the device driver
generation system. It translates three specifications
into a source code written in C programming language.
We have implemented the system by Perl language.

The generation algorithm are the following.

§Device Driver Generation Algorithm

4.2 Availability

In our defined method before[5], the burden in writ
ing device drivers focuses on describing device depen
dent specification because it accounts for the greater
part of the amount of the description. In this paper,
the details of each specification are defined afresh. As

308

Table 1. Comparison of Line Counts

Moreover, even if persons who describe as depen
dent specification do not have to know each device's
details or persons who describe device dependent spec
ification do not have to know each OS's details, they
engage in developing device drivers. The knowledge of
each person to describe each specification is restricted
and the burden of the persons is lightened.

A significant performance degradation of the gener
ated code does not occur in comparison with source
code written by the traditional method. The reason is
that the device driver generation system can generate
the source code nearly as same as an existing source
code for the interrupt handler (see Figure 9).

/* The interrupt handler does all of the Rx thread */
/* work and clean up after the Tx thread. */

static void xI_intrCsc)
void* SCi

{
struct xl_softc *sc;
struct ifnet *ifp;
long ioadr;
u_int16_t status;

/* #begin _intr */
{

sc = Cxl_softc*)buf;

t
outwC ioadr + XL_COMMAND, XL_CMD_INTR_END);

}
for C; ;)

~
status = inwC ioadr + XL_STATUS);

}
if CC status & XL_INTRS) == 0)

break;
if C status & XL_STAT_TX_COMPLETE
{

ifp->if_oerrors++;
xl_txeocCsc);

}
if C status & XL_STAT_ADFAIL
{

xl_resetCsc);
xLinitCsc) ;

Specifications

device driver specification
OS dependent specification
device dependent specification

prevIOUS current

14 58
2 53

171 69

}
if C status & XL_STAT_STATSOFLOW
{

sc->xl_stats_no_timeout 1;
xl_stats_updateCsc);
sc->xl_stats_no_timeout 0;

}

Figure 9. A part of a generated source code of
Etherlink XL for FreeBSD

a result, the ratio of the amount of the description in
three specifications becomes more uniform and the bur
den in writing device drivers are dispersed more fairly
to developers on OS's makers and ones on device's mak
ers.

Table 1 shows the number of lines of each specifica
tions which we need to describe about Etherlink XL in
our previous and current definition of the inputs. The
burden cannot be simply compared by the number of
lines but it can be adopted as one of standards. In the
previous definition, it of the device dependent speci
fication is about 85 times as large as one of the as
dependent specification and the burden concentrates
on describing the device dependent specification. In
the current definition, there is little difference of the
number of lines between three specifications. As a re
sult, the burden in writing device drivers are dispersed
more fairly.

309

4.3 Comparison with 12 0

h O(Intelligent Input Output) SIG[8] has deter
mined standard interface 12 0 between OSs and de
vices. Under the specification of h 0, a device driver
is divided into three classes such as OSM(OS Specific
Module) depending on an OS, HDM(Hardware Device
Module) depending on a device, and Messenger send
ing or receiving packets between OSM and HDM. An
OS can communicate the device with the same HDM
even if the OS changes[9].

It, however, includes lower performance than usual.
Especially, in rapid devices or real time system such
the case will be a fatal problem. In our proposed sys
tem such the overhead in communication will not occur
because device drivers are abstracted not at the target
device or OS but in the generation.

5 Conclusion

We aim at lightening the burden in writing device
drivers. We have proposed the model to generate de
vice drivers and the device driver generation system
before. The system generates a source code of a device
driver from three inputs: the device driver specifica
tion, the OS dependent specification, and the device
dependent specification. In this paper, device drivers
were abstracted again, and each input was defined more

minutely, and then a prototype of the system is imple
mented. As an example of the generation, we chose an
interrupt handler of a network device, FreeBSD and
Linux as the target as, and Etherlink XL (3Com Co.)
as the target device.

Device driver specification shows a template to de
fine a device driver. Functions, which are translated
into actual codes in the other specifications, of a de
vice and control flows handling the data are described.
as dependent specification shows dependent parts on
an as. Device driver interfaces in calling the device
drivers from the as and codes depending on the as
are described. Device dependent specification shows
dependent parts on a device. Codes depending on the
device such as interfaces, timing, and data types in
handling data to/from the device are described. The
device drivers generated in the model are evolutionary
because they can be expanded their features easily by
rewriting the device driver specification only.

We have generated source codes of the interrupt
handlers for FreeBSD and Linux from the same device
dependent specification and executed them correctly.
The device dependent specification is portable because
the device drivers can be generated for the both as
without changing the device dependent specification.
Moreover, even if persons who describe as dependent
specification do not know each device's details or per
sons who describe device dependent specification do
not know each OS's details, they engage in developing
device drivers. The knowledge of each person to de
scribe each specification is restricted and the burden of
the persons is lightened.

Future issues are as follows:

• Extension to other ass or devices.

In this paper, we chose an interrupt handler of a
network device, FreeBSD and Linux as the target
as, and Etherlink XL as the target device. We
need to adopt other ass or devices and evaluate
our method.

310

• Adaptation to other CPUs or I/O buses.

In this paper, we have focused on interfaces of
ass and the way to handle data from/to devices
which are fundamental elements in generating de
vice drivers. Differences of CPUs or I/O buses
were not considered. In order to adapt our method
to them, we plan to introduce CPU specification
and I/O bus specification in addition to three spec
ifications defined in this paper.

References

[1] E. Tuggle: "Introduction to Device Driver De
sign," P,oc. 5th Annual Embedded Sys. ConJ.,
Vol. 2, pp.455-468, 1993.

[2] D.C.R. Jensen, J. Madsen, and S. Pedersen:
"The Importance of Interfaces: A HW/SW Code
sign Case Study," P,oc. 5th Int'l Wo,ks. on
Ha,dw./Softw. Codesign (CODES/CASHE'97),
pp.87-91, 1997.

[3] S.J. Ryan: "Synchronization III Portable Device
Drivers," A Clvl OS Review, Vo1.32, No.4, pp.62
69, 1998.

[4] T. Katayama, K. Saisho, and A. Fukuda: "A
Method for Automatic Generation of Device
Drivers with a Formal Specification Language,"
Proc. Int'l T-Vo,ks. on Principles 0/ So/two Evolu
tion (IvVPSE98), pp.183-187, 1998.

[5] T. Katayama, K. Saisho, and A. Fukuda: "Pro
posal of a Support System for Device Driver
Generation," Proc. 1999 Asia-Pacific So/two Eng.
Conf. (APSEC'99), pp.494-497, 1999.

[6] FreeBSD Inc: http://www.freebsd.org/

[7] Linux Online: http://www.linux.org/

[8] 12 0 SIG: http://www.i2osig.org/

[9] D. Wilner: "I2 0's as Evolves," BYTE, Int. Ed.,
lvlcGraw-Hill, Vo1.23, No.4, pp.47-48, 1998.

	Image 0001
	Image 0002
	Image 0003
	Image 0004
	Image 0005
	Image 0006
	Image 0007
	Image 0008
	Image 0009
	Image 0010
	Image 0011
	Image 0012
	Image 0013
	Image 0014
	Image 0015
	Image 0016
	Image 0017
	Image 0018
	Image 0019
	Image 0020
	Image 0021
	Image 0022
	Image 0023
	Image 0024
	Image 0025
	Image 0026
	Image 0027
	Image 0028
	Image 0029
	Image 0030
	Image 0031
	Image 0032
	Image 0033
	Image 0034
	Image 0035
	Image 0036
	Image 0037

