Prototype of the Device Driver Generation System for UNIX-like
Operating Systems

Tetsuro Katayama
Faculty of Engineering,
Miyazaki University.

1-1 Gakuen, kibanadai-nishi,
Miyazaki 889-2192, Japan.

kat@cs.miyazaki-u.ac.jp

Keizo Saisho
Faculty of Engineering,
Kagawa University.
2217-20 Shinmachi, Hayashi,
Takamatsu 761-0396, Japan.

sai@eng.kagawa-u.ac.jp

Akira Fukuda
Graduate School of Information Science,
Nara Institute of Science and Technology.
8916-5 Takayama Ikoma,
Nara 630-0101, Japan.

fukuda@is.aist-nara.ac.jp

Abstract

Writing device drivers spends much time and makes
efforts because it needs knowledge of the target device
and operating system (OS). In order to lighten the bur-
den, the authors have proposed a model to generate de-
vice drivers and a device driver generation system be-
fore. The system generates a source code of a device
driver from three inputs: device driver specification, OS
dependent specification, and device dependent specifi-
cation. The device drivers generated in the model are
evolutionary because they can be expanded their features
easily. They, however, are not always effective because
the burden in describing the device dependent specifica-
tion, which is one of the inputs, is nearly as same as
the traditional method. In this paper, to aim at more
reduction of the burden, device drivers are abstracted
again, each input is defined afresh, and then a prototype
of the system is implemented. As an ezxample of the
generation, an interrupt handler of a network device,
FreeBSD and Linuz as the target OS, and Etherlink
XL as the target device are chosen. The OS dependent
specification and the device dependent specification can
be reused in each OS and device, respectively. As a
result, an identical device dependent specification can
be applied to the both OSs. The burden in generating
new device drivers or porting ones to other OSs can be
reduced.

Keywords: operating system (OS), evolutionary device
driver, network, ethernet, interrupt handler, UNIX-like
0S

0-7695-0906-1/01 $10.00 © 2001 IEEE

1 Introduction

Operating systems (OSs) cannot be applied effi-
ciently to various kinds of hardware and application
software. Especially, writing device drivers is one of
the most difficult tasks to develop or port OSs[l1, 2].
Some of the reasons are as follows:

e Programmers of device driver must know informa-
tion about hardware such as specifications of de-
vices and carefully describe complex parts such as
timing control.

o When two devices have different chips (controllers)
even if they offer the same services, the program-
mers must write two different device drivers for
each of them.

o If we change an OS but use the same devices, we
need to prepare the device drivers for new one.

As internet is grown and multi-media is progressed,
various devices would be developed. Moreover, as
many embedded systems are developed, the markets
request to write device drivers more rapidly. It is a
more serious problem to spend much time and make ef-
forts to write the device drivers[3]. We should urgently
cope with reducing the burden and generate evolution-
ary device drivers.

We have proposed a model to generate device drivers
and a device driver generation system before[4, 5]. The
system generates a source code of a device driver from

codc of device
drivers

board/chip
(cx: ethernct card)

Etherlink XL ‘

DEC Co. SMC Inc. 3Com Co.

‘ DE500A EtherPower 11

device driver (ex: PCI cthernet device driver)

Figure 1. Current device driver development
model

three inputs: device driver specification, OS dependent
specification, and device dependent specification. The
device drivers generated in the model are evolution-
ary because they can be expanded their features eas-
ily. They, however, are not always effective because
the burden in describing the device dependent specifi-
cation, which is one of the inputs, is nearly as same as
the traditional method.

In this paper, to aim at more reduction of the bur-
den, device drivers are abstracted again, each input is
defined afresh, and then a prototype of the system is
implemented. In section2, we show the device driver
generation system and describe the inputs for the sys-
tem. In section 3, we describe an example of the gen-
eration. We choose an interrupt handler of a network
device, FreeBSD[6] and Linux[7] as the target OS, and
Etherlink XL (3Com Co.) as the target device. In sec-
tion 4, we discuss and evaluate our proposed method.

2 Device Driver Generation System

In this section, we introduce the model to gener-
ate device drivers and the device driver generation
system([4, 5].

A device driver is a program to control a device by
an OS. Since the driver is written corresponding to each
OS and device, we need to write many device drivers
(see Figure 1).

Device drivers exist to control devices virtually from
OSs. The function of the device drivers 1s determined
according to a type of devices. For example, in Ether-
link XL and DE500A, which are representative ether-
net cards, different controller chips are used, but the
role as an ethernet card is the same, and the facility to

303

be written in the device drivers is the same.

OSs control devices through the device drivers and
send/receive data to/from devices. Each OS has its
own data structures or data types to store data, and
each device has its own interfaces, timing or data type
to send/receive data.

Hence, a device driver is a program to convert data
into a format corresponding to each OS and device.
For example, in ethernet cards, data to send/receive
are ethernet frames, data structures to store them in
FreeBSD(6] and Linux[7] are mbuf structure and skbuff
structure, respectively.

Therefore, a device driver can be abstracted to three
parts as follows:

e a part to send/receive data between an OS and a
device,

e an interface to control data from/to the OS, and
e an interface to control data from/to the device.

In writing device drivers, in the present we use fre-
quently the conditional compilation in C programming
language. We write source codes corresponding to all
OSs and devices in a device driver to deal with mul-
tiple OSs and devices. However, in this method, the
source codes would be more complex and it is difficult
for other to understand or modify them.

We have proposed the method abstracting a device
driver in writing it so that it can correspond to mul-
tiple OSs and devices. Device drivers are generated
by describing three parts as mentioned above. Three
parts are defined as the device driver specification, the
OS dependent specification, and the device dependent
specification, respectively.

¢ device driver specification

It shows operations of the device. It is a template
whose contents are translated into actual codes in
the other specifications to define a device driver. It
describes functions and data structure which the
generated device driver uses.

e OS dependent specification

It shows dependent parts on the OS. It describes
names, arguments, return values of device driver
interfaces which the OS provides. The device
driver interfaces are functions which the kernel
calls.

e device dependent specification

It shows dependent parts on the device. It de-
scribes dependent parts on the hardware in func-
tions of the device described in the device driver
specification.

OS dependent
specification

device driver specification

device dependent
specification
board/chi
DEC Co. SMCInc. | | 3Com Co. “ (ox: cthermet card)
L DESO0A EthcrPower Il Etherlink XL ’

device driver (ex: PCI cthernet device driver)

Figure 2. Device driver development model
with three specifications

In order to write device drivers, we must consider
a target CPU and I/O bus also. In this paper, we fo-
cus on interfaces of OSs and the way to handle data
from/to devices which are fundamental elements in
generating device drivers. Differences of CPUs and/or
I/O buses are not considered.

Figure 2 shows the device driver development model
with three specifications. When a device is replaced
with a new one which offers the same services, we
rewrite only the part depended on a chip of the new
one, and the OS dependent specification can be reused.
Similarly, when an OS is replaced, the device depen-
dent specification can be reused. As a result, we can
lighten the burden in developing device drivers and
solve the problems; the source codes of device drivers
would be more complex and it is difficult for others
to understand or modify them. Moreover, the device
drivers generated in the model are evolutionary be-
cause they can be expanded their features easily by
rewriting the device driver specification only, which
shows a template to define a device driver. Figure 3
shows an outline of the device driver generation sys-
tem.

However, the device dependent specification ac-
counts for the greater part of the amount of the descrip-
tion when three specifications are described according
to inputs we have defined before[5]. It is difficult to
divide between codes to access each OS’s own struc-
tures or functions and codes to access each device’s
own structures. We describe such codes in the device
dependent specification. Hence, a person to describe
the device dependent specification needs to knowledge
of a target OS. The generating device drivers by using
the system is not always effective because the burden in

304

describing the device dependent specification is nearly
as same as the traditional method.

In this paper, to aim at more reduction of the bur-
den, the details of each specification are defined afresh.
Especially, both of the OS dependent specification and
the device dependent specification are defined more
minutely. The knowledge to describe each specifica-
tion is restricted. If multiple persons can describe sep-
arately each specification in Figure 2, we can disperse
the burden in writing device drivers to developers on
OS’s makers and ones on device’s makers and develop
them effectively.

The design policy of three specifications in this pa-
per is the following.

e device driver specification

It shows a template to define a device driver.
Kinds of data to use facilities of a device and con-
trol flows handling the data are described. The fa-
cilities are translated into actual codes in the other
specifications. It can be described in response to
each kind of devices.

e OS dependent specification

It shows dependent parts on an OS. The way to
handle data between OS and the devices and de-
vice driver interfaces in calling the device drivers
from the OS are described. It can be described in
response to each OS.

¢ device dependent specification

It shows dependent parts on a device. Interfaces,
timing, and data types in handling data to/from
the device are described. It can be described in
response to each device.

The next section describes three inputs of the device
driver generation system by giving an actual example.

3 Inputs and Implementation of the
System

As an example of the generation, we choose
FreeBSD[6] and Linux[7] as the target OS. The both
are representative UNIX-like OSs, their source codes
are open, and the source codes of the device drivers
can be referred to.

We choose a network device as the target device and
ethernet as the interface of network. It is the most
popular and the burden of writing its device driver is
large because a period of time to develop a new device
is short. We choose Etherlink XL (3Com Co.) which

’ device driver specification |

each kind of device

device dependent specification ‘ | OS dependent specification

\ / each OS

Device Driver
Generation System

}

Eource code of a device driver

each device

Figure 3. Overview of the device driver gener-
ation system

is a representative ethernet card of PCI (Peripheral
Component Interface).

We write an interrupt handler of a network device
and explain how to describe each input of the device
driver generation system. Three specifications are de-
scribed according to grammar extended C program-
ming language for the device driver generation system.

3.1 Device Driver Specification

In device driver specification, kinds of data to use
functions in a device and control flows handling the
data are described. The functions are translated into
actual codes in the other specifications. It can be de-
scribed in response to each kind of devices.

Figure 4 shows a control flow of an interrupt han-
dler. Its processing is divided into steps such as getting
information, forbidding interrupts, getting states, and
permitting interrupts of the device.

We describe separately two parts used in device
driver specification as follows.

e OS dependent parts

— codes to handle each OS’s own data
— codes to handle the data used in the kernel

— codes to use arguments of device driver inter-
faces

codes to use system calls
e Device dependent parts

— codes to access devices directly

— codes to handle variables

305

l

getting information of the device

l

forbidding interrupts

getting states of the device

/\\

completion of completion of ready state of

sending receiving sending
T

permitting interrupts

Figure 4. Overview of an interrupt handler

We can describe the OS dependent codes to OS de-
pendent specification and the device dependent codes
to device dependent specification by dividing functions
in a device driver into two parts as above. In device
driver specification, we must describe control flows in
detail so that we can divide them into two parts.

Figure 5 shows a part of a device driver specifica-
tion of an interrupt handler. Device driver specifica-
tion consists of control statements and function calls.
The contents of a function are written between #begin
and #end. The name of the function is written just
behind #begin.

In function calls described in device driver specifi-
cation, to distinguish kinds of the function, a label to
indicate the kinds is appended just before the calls.
The followings show each label and its meaning.

o [proc] — a processing belonging to OS dependent
specification

e [cmd] — a processing belonging to device depen-
dent specification

e [con] — a condition for a branch belonging to
device dependent specification

e [sub] — a subroutine in the device driver specifi-
cation

e Y<name> — a label used to call directly other
functions belonging to device driver interfaces and

//

#begin _intr

[proc] _get_dev_str(/(structinfo),%(buf));
[cmd] _disable_intr (Y (iocadr));
for(;;)

[emd] _get_status(/(status));
if([con] _break(%(status)))

break;
if([con] _up_complete(%(status))

[sub] _up_complete(%(arg),%(devinfo),%(icadr));
if([con] _down_complete(%(status))

[sub] _down_complete(¥%(arg),%(devinfo),’(icadr));
if([con] _tx_complete((status))

[sub] _tx_complete(%(arg),%(devinfo),%(icadr));
if([con] _adfail(¥(status))

[sub] _adfail(¥%(arg),%(status));
if([con)_stats(%(status))

[proc] _stats(%(arg));

[emd] _enable_intr(%(ioadr));
[proc] _start_rest(/(devinfo));

#end
#begin _tx_complete

[proc] _tx_complete(’(arg) ,%var(devirfo),’var(iocadr));
[ecmd] _tx_complete(%(arg),’var(devinfo),’(iocadr));

#end
#begin _up_complete

%<name>_rxeof (%(arg));
[emd] _up_complete(%(arg),%var(devinfo),%(iocadr));;

#end
#begin _down_complete

%<name>_txeof (% (arg));

[cmd] _down_complete(’(arg),%var(devinfo),%{icadr));;
#end
#begin _adfail

[proc] _adfail(%(arg),’(status));

[emd] _adfail(¥%(arg),%(status));

#end

Figure 5. A part of a device driver specifica-
tion of an interrupt handler

functions written directly in C programming lan-
guage

Each label also exists to express which specifications
a processing described in. Even if it has the same
names except for the label, it expresses a different pro-
cessing. The label Y <name> is translated with a name
expressing a device driver. For example, the name for
the device driver of FreeBSD in Etherlink XL is x1.
The name is given as an argument in the starting of
the device driver generation system.

306

The name of arguments used in function calls is
translated by referring to OS dependent specification.

3.2 OS dependent specification

In OS dependent specification, device driver inter-
faces which a OS provides, roles of their functions, vari-
ables used in the functions, and codes of the functions
appended the label [proc] in device driver specifica-
tion are described. It can be described in response to
each OS.

In FreeBSD, information of the device used in inter-
rupt handlers corresponds to ifnet structures and softc
structures included in the ifnet structures. The softc
structures store each device’s own data. In Linux, de-
vice structures have information of the device.

Figure 6 and Figure 7 show a part of OS depen-
dent specifications of an interrupt handler for FreeBSD
and Linux, respectively. The contents of a process-
ing in OS dependent specification are written between
#begin and #end. The contents are divided into the
following five parts.

o function — It is transformed as a comment state-
ment in a source code generated by the device
driver generation system. [t expresses the contents
of a processing in the function.

prototype — It declares prototypes of device
driver interfaces and establishes arguments and re-
turn values. The name of the interfaces and the
arguments differ in FreeBSD and Linux (see Fig-
ure 6 and Figure 7).

variable —— It describes local variables used in
this function. According to the specification of C
language, it is generated just behind the beginning
of the function by the system. In FreeBSD and
Linux, ioadr and status are the same name and
meaning, but the other variables differ (see Figure
6 and Figure 7).

transform -— It gives another name to each vari-
able such as local variable, global variable, and
argument used in this function. The names of
variables are changed according to different data
structures used in each OS or device. It is in-
troduced to describe three specifications without
changing the names of variables and used consis-
tently in the specifications. For example, in Figure
6 structinfo corresponds to buf. The specifications
use the name as structinfo in the case of handling
buf. That is, structinfo is transformed as buf in a
source code generated by the system.

#begin INTERRUPT

%begin function
The interrupt handler does all of the Rx thread
work and clean up after the Tx thread.

%end

%begin prototype
static void %<name>_intr(arg)
void* arg;

%end

%begin variable
struct Y%<name>_softc *sc;
struct ifnet *ifp;
long ioadr;
u_int16_t status;
%end

%begin transform
structinfo buf;
arg sc;
devinfo ifp;
jioadr ioadr
status status;

%end

%begin code
[proc]l _get_dev_str(structinfo,arg)

arg = (%<name>_softc*)structinfo;

[proc] _start_rest(devinfo)
if(devinfo->if_snd.ifq_head != NULL)

Y<name>_start(devinfo);

}

[proc] _tx_complete(arg,devinfo,ioadr)

devinfo->if_oerrors++;
%<name>_txeoc(arg);

/

fend

#end INTERRUPT

Figure 6. A part of an OS dependent specifi-
cation of an interrupt handler for FreeBSD

e code — It describes codes depending on OS.

The label %<name>, which is used in the device driver
specification, can be appended to the functions de-
scribed in OS dependent specification. In the parts
of the code, %<name> of the head in each name of the
function is omitted. The other functions without any
label signify that they call their own name. They cor-
respond to system calls in the kernel.

3.3 Device Dependent Specification

In device dependent specification, interfaces, timing,
and data types in handling data to/from the devices

307

#begin INTERRUPT

%begin function
The interrupt handler does all of the Rx thread
work and clean up after the Tx thread.

%end

%begin prototype
static void Yi<name>_interrupt(irq,dev_id,regs)
int irg;
void =*dev_id;
struct pt_regs *regs;
%end

Abegin variable
struct device *dev;
struct vortex_private *vp;
long ioadr;
int status;
%end

%begin transform
structinfo dev_id;
arg dev;
devinfo dev;
ioadr ioadr;
status status;

%end

%“begin code
[proc]_get_dev_str(structinfo,arg)

devinfo = (device*)structinfo;
arg = (struct Y<name>_private *)devinfo->priv;
ioadr = device->base_addr;

[proc] _rx_complete(arg)
%<name>_rx(arg);

Jend

#end INTERRUPT

Figure 7. A part of an OS dependent specifi-
cation of an interrupt handler for Linux

are described. It can be described in response to each
device.

Functions described in device dependent specifica-
tion can be divided into two types. One is a processing
handling variables or I/O port. The other is a process-
ing returning states or conditions to control statements
in device driver specification. The former is appended
the label [cmd], and the latter is appended the label
fcon].

Figure 8 shows a part of a device dependent spec-
ification of an interrupt handler for Etherlink XL. In
device driver specification, we need to write only each
device’s own codes. The device driver generation sys-
tem does in-line expansion of the codes depending a
device to a generated source code. Hence, the over-
head caused by dividing into three specification can be
prevented and the run time performance can be guar-

// ##### Interrupt ######
[cmd] _disable_intr{(iocadr)

outw(ioadr + XL_COMMAND, XL_CMD_INTR_END);

[cmd] _get_status(status)

status = inw(ioadr + XL_STATUS);

[con] _break(status)
return (status & XL_INTRS) == 0;

[con] _up_complete(status)

return (status & XL_STAT_UP_COMPLETE);

[con] _down_complete(status)

return (status & XL_STAT_DOWN_COMPLETE);

[con] _tx_complete(status)

return (status & XL_STAT_TX_COMPLETE);

[con] _adfail(status)
return (status & XL_STAT_ADFAIL);

[cmd] _enable_intr(ioadr)

outw(ioadr + XL_COMMAND, XL_CMD_INTR_ENBI
XL_INTRS);

[cmd] _tx_complete(ioadr)
outw(ioadr + XL_COMMAND, XL_CMD_INTR_ACKI
XL_STAT_TX_COMPLETE);

[cmd] _up_complete(ioadr)

outw(ioadr + XL_COMMAND, XL_CMD_INTR_ACK]
XL_STAT_UP_COMPLETE) ;

Figure 8. A part of a device dependent spec-
ification of an interrupt handier for Etherlink
XL

anteed.
3.4 Outline of the system

We have developed a prototype of the device driver
generation system. It translates three specifications
into a source code written in C programming language.
We have implemented the system by Perl language.

The generation algorithm are the following.

§Device Driver Generation Algorithm

308

Stepl. Device driver specification 1is

scanned.
Step2. A label #begin is read.

Step3. If a function call is found, its contents
are gotten from a subroutine in the de-
vice driver specification, OS dependent
specification, or device dependent speci-
fication.

Step4. The variables in the function are
translated referring to %transform in
the OS dependent specification.

Step5. If a label #end is found, go to Step6.
Otherwise, go to Step3.

Step6. If it reaches end of the file, this algo-
rithm ends. Otherwise, go to Step2.

Figure 9 shows a generated source code of the func-
tion _intr of Etherlink XL for FreeBSD. We have gen-
erated source code of the interrupt handlers for Linux,
also. We have verified the both source codes are exe-
cuted correctly.

4 Discussion and Evaluation

In this section, we describe poitability and availabil-
ity of our method and compare it with I;O(Intelligent
Input Output)[8].

4.1 Portability

In this paper, the details of each specification are
defined afresh. Especially, both of the OS dependent
specification and the device dependent specification
have been defined more minutely.

As an example of the generation, we choose an inter-
rupt handler of a network device, FreeBSD and Linux
as the target OS, and Etherlink XL as the target de-
vice. We have generated source codes of the interrupt
handlers for FreeBSD and Linux from the same device
dependent specification and executed them correctly.
The device dependent specification is portable because
the device drivers can be generated for the both OS
without changing the device dependent specification.

4.2 Availability

In our defined method before[5], the burden in writ-
ing device drivers focuses on describing device depen-
dent specification because it accounts for the greater
part of the amount of the description. In this paper,
the details of each specification are defined afresh. As

/* The interrupt handler does all of the Rx thread
/* work and clean up after the Tx thread. */

static void x1_intr(sc)
void* sc;

{
struct xl_softc *sc;
struct ifnet =*ifp;

long ioadr;
u_intl6_t status;

/* #begin _intr */

{
sc = (x1_softc*)buf;
}
outw(iocadr + XL_COMMAND, XL_CMD_INTR_END);
¥
for(;;)
status = inw(ioadr + XL_STATUS);

if ((status & XL_INTRS) == 0)
break;
if (status & XL_STAT_TX_COMPLETE)

ifp->if_oerrors++;
x1_txeoc(sc);

}
if (status & XL_STAT_ADFAIL)

x1_reset(sc);
x1_init(sc);

if (status & XL_STAT_STATSOFLOW)

sc->x1_stats_no_timeout = 1;
x1_stats_update(sc);
sc~->x1_stats_no_timeout = O;

!

Figure 9. A part of a generated source code of
Etherlink XL for FreeBSD

}

a result, the ratio of the amount of the description in
three specifications becomes more uniform and the bur-
den in writing device drivers are dispersed more fairly
to developers on OS’s makers and ones on device’s mak-
ers.

Table 1 shows the number of lines of each specifica-
tions which we need to describe about Etherlink XL in
our previous and current definition of the inputs. The
burden cannot be simply compared by the number of
lines but it can be adopted as one of standards. In the
previous definition, it of the device dependent speci-
fication is about 85 times as large as one of the OS
dependent specification and the burden concentrates
on describing the device dependent specification. In
the current definition, there is little difference of the
number of lines between three specifications. As a re-
sult, the burden in writing device drivers are dispersed
more fairly.

*/

309

Table 1. Comparison of Line Counts

Specifications B | previous | current
device driver specification 14 58
OS dependent specification 2 53
device dependent specification 171 69

Moreover, even if persons who describe OS depen-
dent specification do not have to know each device’s
details or persons who describe device dependent spec-
ification do not have to know each OS’s details, they
engage in developing device drivers. The knowledge of
each person to describe each specification is restricted
and the burden of the persons is lightened.

A significant performance degradation of the gener-
ated code does not occur in comparison with source
code written by the traditional method. The reason is
that the device driver generation system can generate
the source code nearly as same as an existing source
code for the interrupt handler (see Figure 9).

4.3 Comparison with 1,0

I;O(Intelligent Input Output) SIG[8] has deter-
mined standard interface IO between OSs and de-
vices. Under the specification of [0, a device driver
is divided into three classes such as OSM(OS Specific
Module) depending on an OS, HDM(Hardware Device
Module) depending on a device, and Messenger send-
ing or receiving packets between OSM and HDM. An
OS can communicate the device with the same HDM
even if the OS changes|[9].

It, however, includes lower performance than usual.
Especially, in rapid devices or real time system such
the case will be a fatal problem. In our proposed sys-
tem such the overhead in communication will not occur
because device drivers are abstracted not at the target
device or OS but in the generation.

5 Conclusion

We aim at lightening the burden in writing device
drivers. We have proposed the model to generate de-
vice drivers and the device driver generation system
before. The system generates a source code of a device
driver from three inputs: the device driver specifica-
tion, the OS dependent specification, and the device
dependent specification. In this paper, device drivers
were abstracted again, and each input was defined more

minutely, and then a prototype of the system is imple-
mented. As an example of the generation, we chose an
interrupt handler of a network device, FreeBSD and
Linux as the target OS, and Etherlink XL (3Com Co.)
as the target device.

Device driver specification shows a template to de-
fine a device driver. Functions, which are translated
into actual codes in the other specifications, of a de-
vice and control flows handling the data are described.
OS dependent specification shows dependent parts on
an OS. Device driver interfaces in calling the device
drivers from the OS and codes depending on the OS
are described. Device dependent specification shows
dependent parts on a device. Codes depending on the
device such as interfaces, timing, and data types in
handling data to/from the device are described. The
device drivers generated in the model are evolutionary
because they can be expanded their features easily by
rewriting the device driver specification only.

We have generated source codes of the interrupt
handlers for FreeBSD and Linux from the same device
dependent specification and executed them correctly.
The device dependent specification is portable because
the device drivers can be generated for the both OS
without changing the device dependent specification.
Moreover, even if persons who describe OS dependent
specification do not know each device’s details or per-
sons who describe device dependent specification do
not know each OS’s details, they engage in developing
device drivers. The knowledge of each person to de-
scribe each specification is restricted and the burden of
the persons is lightened.

Future issues are as follows:

e Extension to other OSs or devices.

In this paper, we chose an interrupt handler of a
network device, FreeBSD and Linux as the target
OS, and Etherlink XL as the target device. We
need to adopt other OSs or devices and evaluate
our method.

310

e Adaptation to other CPUs or I/O buses.

In this paper, we have focused on interfaces of
OSs and the way to handle data from/to devices
which are fundamental elements in generating de-
vice drivers. Differences of CPUs or I/O buses
were not considered. In order to adapt our method
to them, we plan to introduce CPU specification
and I/O bus specification in addition to three spec-
ifications defined in this paper.

References

[1] E. Tuggle: “Introduction to Device Driver De-
sign,” Proc. 5th Annual Embedded Sys. Conf.,
Vol.2, pp.455-468, 1993.

D.C.R. Jensen, J. Madsen, and S. Pedersen:
“The Importance of Interfaces: A HW/SW Code-
sign Case Study,” Proc. 5th Int’'l Works. on
Hardw./Softw. Codesign (CODES/CASHE’97),
pp.87-91, 1997.

[3] S.J. Ryan: “Synchronization in Portable Device
Drivers,” ACM OS Review, Vol.32, No.4, pp.62-

69, 1998.

[4] T. Katayama, K. Saisho, and A. Fukuda: “A
Method for Automatic Generation of Device
Drivers with a Formal Specification Language,”
Proc. Int’l Works. on Principles of Softw. Evolu-

tion (IWPSE98), pp.183-187, 1998.

T. Katayama, K. Saisho, and A. Fukuda: “Pro-
posal of a Support System for Device Driver
Generation,” Proc. 1999 Asia-Pacific Softw. Eng.
Conf. (APSEC’99), pp.494-497, 1999.

[6] FreeBSD Inc: http://www.freebsd.org/
[7] Linux Online: http://www.linux.org/
[,O SIG: http://www.i20sig.org/

D. Wilner: “I,O’s OS Evolves,” BYTE, Int. Ed.,
MecGraw-Hill, Vol.23, No.4, pp.47-48, 1998.

[9]

	Image 0001
	Image 0002
	Image 0003
	Image 0004
	Image 0005
	Image 0006
	Image 0007
	Image 0008
	Image 0009
	Image 0010
	Image 0011
	Image 0012
	Image 0013
	Image 0014
	Image 0015
	Image 0016
	Image 0017
	Image 0018
	Image 0019
	Image 0020
	Image 0021
	Image 0022
	Image 0023
	Image 0024
	Image 0025
	Image 0026
	Image 0027
	Image 0028
	Image 0029
	Image 0030
	Image 0031
	Image 0032
	Image 0033
	Image 0034
	Image 0035
	Image 0036
	Image 0037

